1
|
Gilbert TM, Randle L, Quinn M, McGreevy O, O'leary L, Young R, Diaz-Neito R, Jones RP, Greenhalf B, Goldring C, Fenwick S, Malik H, Palmer DH. Molecular biology of cholangiocarcinoma and its implications for targeted therapy in patient management. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108352. [PMID: 38653586 DOI: 10.1016/j.ejso.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) remains a devastating malignancy and a significant challenge to treat. The majority of CCA patients are diagnosed at an advanced stage, making the disease incurable in most cases. The advent of high-throughput genetic sequencing has significantly improved our understanding of the molecular biology underpinning cancer. The identification of 'druggable' genetic aberrations and the development of novel targeted therapies against them is opening up new treatment strategies. Currently, 3 targeted therapies are approved for use in CCA; Ivosidenib in patients with IDH1 mutations and Infigratinib/Pemigatinib in those with FGFR2 fusions. As our understanding of the biology underpinning CCA continues to improve it is highly likely that additional targeted therapies will become available in the near future. This is important, as it is thought up to 40 % of CCA patients harbour a potentially actionable mutation. In this review we provide an overview of the molecular pathogenesis of CCA and highlight currently available and potential future targeted treatments.
Collapse
Affiliation(s)
- T M Gilbert
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK.
| | - L Randle
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - M Quinn
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - O McGreevy
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - L O'leary
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R Young
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - R Diaz-Neito
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R P Jones
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - B Greenhalf
- Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| | - C Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - S Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - H Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - D H Palmer
- Clatterbridge Cancer Centre, Liverpool, UK; Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Liang X, Liu X, Zhang L, Liu J, Yan R, Li H, Zeng X, Wang H. Targeting the Ajuba/Notch axis increases the sensitivity of colon cancer cells to 5-fluorouracil. Cytojournal 2024; 21:44. [PMID: 39737130 PMCID: PMC11683402 DOI: 10.25259/cytojournal_44_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Colorectal cancer is severely challenging because of the insufficient understanding of the mechanism underlying its resistance to clinical chemotherapy. The purpose of our study is to investigate the role of the LIM protein Ajuba (JUB) in the chemoresistance of colon cancer and its potential effect on clinical treatment. Material and Methods The protein levels of JUB in colon cancer tissues were evaluated using Western blot analysis and immunohistochemistry assays. The correlation between JUB and the prognosis of patients with colorectal cancer was determined using Kaplan-Meier plot analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were employed to determine the 50% inhibitory concentration of 5-fluorouracil (5-FU) and thus assess the effect of JUB on the effectiveness of 5-FU. In addition, the rate of cellular apoptosis was measured using fluorescence-activated cell sorting assays. Side population and sphere formation analyses were conducted to determine the role of JUB in promoting the stem cell-like traits of colon cancer cells. In vivo assays were performed and detect whether the downregulation of JUB induces 5-FU sensitivity. Moreover, luciferase and Western blot assays were employed to uncover the mechanism through which JUB promotes chemoresistance in colon cancer. Results JUB expression was upregulated in chemoresistant colon cancer (P < 0.001) and correlated with relapse-free survival (P = 0.000002). Functionally, the upregulation of JUB conferred 5-FU resistance to colon cancer cells in vitro, whereas the downregulation of JUB induced 5-FU sensitivity in colon cancer cells in vivo. The high expression of JUB promoted the tumorigenic capability of colon cancer cells. Furthermore, the increased expression of JUB activated multiple downstream genes of the Notch signaling pathway with increased expression in JUB-overexpressing cells but reduced expression in JUB-silenced cells. Importantly, the inhibition of Notch signaling using a small-molecule inhibitor significantly suppressed JUB-induced chemoresistance. Conclusion Results suggest that JUB plays an important role and may serve as a biomarker for the clinical treatment of patients with 5-FU-resistant colon cancer.
Collapse
Affiliation(s)
- Xinghua Liang
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Xuelian Liu
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Long Zhang
- Department of Endoscopy Center, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junhao Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rong Yan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Haiyan Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Xiancheng Zeng
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hong Wang
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou First People`s Hospital, Guangzhou, China
| |
Collapse
|
3
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Ortiz-Rivero S, Peleteiro-Vigil A, Abete L, Lozano E, Hammer HS, Giacomo SD, Abad M, Boix L, Forner A, Reig M, Macias RIR, Pötz O, Marin JJG, Briz O. Sensitization of cholangiocarcinoma cells to chemotherapy through BCRP inhibition with β-caryophyllene oxide. Biomed Pharmacother 2024; 170:116038. [PMID: 38141281 DOI: 10.1016/j.biopha.2023.116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that β-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.
Collapse
Affiliation(s)
- Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Ana Peleteiro-Vigil
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | | | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Mar Abad
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - Alejandro Forner
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria Reig
- Liver Oncology Unit, Liver Unit, ICMDM, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oliver Pötz
- SIGNATOPE GmbH, Reutlingen, Germany; NMI Natural and Medical Sciences Institute, University of Tuebinegn, Reutlingen, Germany
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Spain; Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
5
|
Yoshizumi A, Kuboki S, Takayashiki T, Takano S, Takayanagi R, Sonoda I, Ohtsuka M. Tspan15-ADAM10 signalling enhances cancer stem cell-like properties and induces chemoresistance via Notch1 activation in ICC. Liver Int 2023; 43:2275-2291. [PMID: 37545390 DOI: 10.1111/liv.15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND & AIMS Notch1 activation promotes ICC progression and is associated with chemoresistance; however, therapies directly targeting Notch1 showed severe adverse effects. Notch1 activation is mediated by ADAM10, a molecular scissor that separates the target protein from its substrates in the cell membrane. Tspan15 regulates ADAM10 function, but the role of Tspan15 in ICC progression is unclear. METHODS Tspan15, ADAM10, and Notch1 expression and activation in fresh surgical specimens from 80 ICC patients and ICC cells were evaluated by immunohistochemistry, RT-PCR, western blotting, and flow cytometry. RESULTS Tspan15 expression was increased in ICC compared with adjacent liver tissue, and high Tspan15 expression was an independent factor for poor prognosis. In ICC with high Tspan15 expression, vascular invasion, lymph node metastasis, and haematogenous recurrence were increased. Tspan15 was co-expressed with ADAM10 in ICC, and associated with the expression of stemness and EMT markers. In ICC cells, Tspan15 induced ADAM10 activation by mediating the translocation of activated m-ADAM10 from the cytoplasm to the surface of the cell membrane, which further activated Notch1 by separating the intracellular domain of Notch1 from its extracellular domain, leading to enhancement of CSC-like properties and EMT. This signalling was associated with enhanced chemoresistance against gemcitabine and cisplatin. Inhibition of Tspan15 or ADAM10 is a promising therapeutic strategy in ICC, as Tspan15 or ADAM10 knockdown or treatment with ADAM10 inhibitor reduced chemoresistance and invasiveness by suppressing Notch1-mediated CSC-like properties and EMT. CONCLUSIONS Tspan15-ADAM10-Notch1 signalling is associated with aggressive tumour progression and poor prognosis in ICC.
Collapse
Affiliation(s)
- Arihito Yoshizumi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Takayanagi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Itaru Sonoda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Martinez Lyons A, Boulter L. NOTCH signalling - a core regulator of bile duct disease? Dis Model Mech 2023; 16:dmm050231. [PMID: 37605966 PMCID: PMC10461466 DOI: 10.1242/dmm.050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
The Notch signalling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, fate determination and maintenance of stem/progenitor cell populations across tissues. Although it was originally identified as a critical regulator of embryonic liver development, NOTCH signalling activation has been associated with the pathogenesis of a number of paediatric and adult liver diseases. It remains unclear, however, what role NOTCH actually plays in these pathophysiological processes and whether NOTCH activity represents the reactivation of a conserved developmental programme that is essential for adult tissue repair. In this Review, we explore the concepts that NOTCH signalling reactivation in the biliary epithelium is a reiterative and essential response to bile duct damage and that, in disease contexts in which biliary epithelial cells need to be regenerated, NOTCH signalling supports ductular regrowth. Furthermore, we evaluate the recent literature on NOTCH signalling as a critical factor in progenitor-mediated hepatocyte regeneration, which indicates that the mitogenic role for NOTCH signalling in biliary epithelial cell proliferation has also been co-opted to support other forms of epithelial regeneration in the adult liver.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
- CRUK Scottish Centre, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
7
|
Yang M, Li M, Lyu Z, Yang Z. Implication of Ferroptosis in Cholangiocarcinoma: A Potential Future Target? Cancer Manag Res 2023; 15:335-342. [PMID: 37063167 PMCID: PMC10093512 DOI: 10.2147/cmar.s406150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Cholangiocarcinoma (CCA), the second most common liver neoplasm, has a poor overall 5-year survival rate of less than 10%. A deeper understanding of the molecular pathogenesis contributing to CCA progression is essential for developing better therapeutic approaches to manage this disease. Ferroptosis, an oxidative iron-dependent form of regulated cell death, has been reported to be involved in tumorigenesis and progression. In particular, ferroptosis and inflammation, which are common issues in cholangiocarcinogenesis and CCA development, might be in concert with disease progression. Notably, the key feature of cancer cells is "iron addiction", which is crucial for the high metabolic demand in carcinogenesis and cancer progression. Additionally, iron metabolism is of great importance in ferroptosis. Moreover, that cancer cells are vulnerable to ferroptosis might be a possible mechanism of CCA development. Although the underlying mechanism of how ferroptosis is implicated in CCA development requires further investigation, developing a new strategy combined with a pro-ferroptotic treatment would be an exciting CCA treatment approach in the future.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhuozhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
- Correspondence: Zhen Yang, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, JingWu Road, Jinan, Shandong, 25000, People’s Republic of China, Tel +86 15168867123, Email
| |
Collapse
|
8
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
9
|
Chulkova SV, Loginov VI, Podluzhnyi DV, Egorova AV, Syskova AY, Semichev DG, Gladilina IA, Kudashkin NE. [The role of molecular genetic factors in the development of cholangiocellular carcinoma]. Arkh Patol 2022; 84:76-83. [PMID: 35639847 DOI: 10.17116/patol20228403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article lists the main inducers of cholangiocarcinogenesis. The main inflammatory mediators (IL-6, nitric oxide, COX2) have been considered. Data on the study of gene mutations in cholangiocarcinomas are presented. The spectrum of genetic mutations depends on the biliary cancer origin (FGFR2 with intrahepatic cholangiocarcinoma, PRKACA, PRKACB with extrahepatic cholangiocarcinoma). Mutations in the KRAS, TP53, ARIAD1A genes are common in extrahepatic bile duct cancer. The role of epigenetic changes such as DNA hypermethylation, histone modifications, chromatin remodeling, as well as disturbances in miRNA expression is presented. A number of epigenetic features, such as the presence of a TP53 mutations with hypermethylation of p14ARF, DAPK, and/or ASC, correlate with a more aggressive course of the disease. The role of the SOX17 gene in the development of drug resistance is highlighted. The study of the molecular genetic features of extrahepatic bile duct cancer can help to better understand the pathogenesis of this type of tumor, to establish new prognostic and diagnostic markers of the disease.
Collapse
Affiliation(s)
- S V Chulkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - V I Loginov
- Scientific Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - D V Podluzhnyi
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Egorova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - A Yu Syskova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - D G Semichev
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Gladilina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - N E Kudashkin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Zheng Q, Zhang B, Li C, Zhang X. Overcome Drug Resistance in Cholangiocarcinoma: New Insight Into Mechanisms and Refining the Preclinical Experiment Models. Front Oncol 2022; 12:850732. [PMID: 35372014 PMCID: PMC8970309 DOI: 10.3389/fonc.2022.850732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor characterized by a poor prognosis. Therapeutic options are limited in patients with advanced stage of CCA, as a result of the intrinsic or acquired resistance to currently available chemotherapeutic agents, and the lack of new drugs entering into clinical application. The challenge in translating basic research to the clinical setting, caused by preclinical models not being able to recapitulate the tumor characteristics of the patient, seems to be an important reason for the lack of effective and specific therapies for CCA. So, there seems to be two ways to improve patient outcomes. The first one is developing the combination therapies based on a better understanding of the mechanisms contributing to the resistance to currently available chemotherapeutic agents. The second one is developing novel preclinical experimental models that better recapitulate the genetic and histopathological features of the primary tumor, facilitating the screening of new drugs for CCA patients. In this review, we discussed the evidence implicating the mechanisms underlying treatment resistance to currently investigated drugs, and the development of preclinical experiment models for CCA.
Collapse
Affiliation(s)
- Qingfan Zheng
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
13
|
Vanaroj P, Chaijaroenkul W, Na-Bangchang K. Notch signaling in the pathogenesis, progression and identification of potential targets for cholangiocarcinoma (Review). Mol Clin Oncol 2022; 16:66. [PMID: 35154706 PMCID: PMC8825743 DOI: 10.3892/mco.2022.2499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive type of bile duct cancer that is characterized by a high mortality rate due to its late diagnosis and ineffective treatment. The aim of the present systematic review was to analyze the association between Notch signaling and CCA in terms of its pathogenesis, progression and potential treatment targets. Relevant information was gathered from the PubMed, ScienceDirect and Scopus databases using the search terms 'cholangiocarcinoma' AND 'Notch signaling'. Of the 90 articles identified, 28 fulfilled the eligibility criteria and were included in the analysis. It was concluded that overexpression/upregulation of Notch ligands, such as Jagged1 and Notch receptors (Notch1, Notch2 and Notch3), as well as upregulation of the upstream Notch signaling pathway, promoted CCA development and progression. In addition, downregulation of Notch1 signaling through several possible interventions appears to be a promising strategy for inhibition of CCA development and progression. Therefore, the Notch signaling pathway may be considered as a potential target for CCA control.
Collapse
Affiliation(s)
- Peeranate Vanaroj
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Wanna Chaijaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
14
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
16
|
Damrauer JS, Smith MA, Walter V, Thennavan A, Mose LE, Selitsky SR, Hoadley KA. Genomic characterization of rare molecular subclasses of hepatocellular carcinoma. Commun Biol 2021; 4:1150. [PMID: 34608257 PMCID: PMC8490450 DOI: 10.1038/s42003-021-02674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer, consisting of both cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC), is the second leading cause of cancer deaths worldwide. Our goal is to genomically characterize rare HCC subclasses to provide insight into disease biology. Leveraging The Cancer Genome Atlas (TCGA) to perform a combined analysis of CCA (n = 36) and HCC (n = 275), we integrated multiple genomic platforms, to assess transcriptional profiles, mutational signatures, and copy number patterns to uncover underlying etiology and linage specific patterns. We identified two molecular classes distinct from prototypical HCC tumors. The first, CCA-Like, although histologically indistinguishable from HCC, had enrichment of CCA mutations (IDH1, BAP1), mutational signatures, and transcriptional patterns (SOX9, KRT19). CCA-Like, however, retained a copy number landscape similar to HCC, suggesting a hepatocellular linage. The second, Blast-Like, is enriched in TP53 mutations, HBV infection, exposure related mutational signatures and transcriptionally similar to hepatoblasts. Although these subclasses are molecularly distinct, they both have a worse progression-free survival compared to classical HCC tumors, yet are clinically treated the same. The identification of and characterization of CCA-Like and Blast-Like subclasses advance our knowledge of HCC as well as represents an urgent need for the identification of class specific biomarkers and targeted therapy.
Collapse
Affiliation(s)
- Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markia A Smith
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Borlak F, Reutzel-Selke A, Schirmeier A, Gogolok J, von Hoerschelmann E, Sauer IM, Pratschke J, Bahra M, Schmuck RB. Notch Signaling Pathway in Pancreatobiliary Tumors. ACTA ACUST UNITED AC 2021; 57:medicina57020105. [PMID: 33498866 PMCID: PMC7911049 DOI: 10.3390/medicina57020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Background and Objectives: The Notch signaling pathway plays an important role both in the development of the ductal systems of the pancreas and the bile ducts as well as in cancer development and progression. The aim of this study was to examine the expression of central proteins of the Notch signaling pathway in pancreatobiliary tumors and its influence on patient survival. Materials and Methods: We compared the receptors (Notch1, Notch4), activating splicing factors (ADAM17), and target genes (HES1) of the Notch pathway and progenitor cell markers with relevance for the Notch signaling pathway (CD44, MSI1) between pancreatic adenocarcinomas (PDAC, n = 14), intrahepatic cholangiocarcinoma (iCC, n = 24), and extrahepatic cholangiocarcinoma (eCC, n = 22) cholangiocarcinomas via immunohistochemistry and ImageJ software-assisted analysis. An Immunohistochemistry (IHC)-score was determined by the percentage and intensity of stained (positive) cells (scale 0–7) and normal and malignant tissue was compared. In the IHC results, patients’ (gender, age) and tumor (TNM Classification of Malignant Tumors, Union Internationale contre le Cancer (UICC) stages, grading, and lymphangitic carcinomatosa) characteristics were correlated to patient survival. Results: For eCC, the expression of CD44 (p = 0.043, IHC-score 3.94 vs. 3.54) and for iCC, the expression of CD44 (p = 0.026, IHC-score 4.04 vs. 3.48) and Notch1 (p < 0.001, IHC-score 2.87 vs. 1.78) was significantly higher in the tumor compared to non-malignant tissue. For PDAC, the expression of ADAM17 (p = 0.008, IHC-score 3.43 vs. 1.73), CD44 (p = 0.012, IHC-score 3.64 vs. 2.27), Notch1 (p = 0.012, IHC-score 2.21 vs. 0.64), and Notch4 (p = 0.008, IHC-score 2.86 vs. 0.91) was significantly higher in the tumor tissue. However, none of the analyzed Notch-signaling related components showed an association to patient survival. Conclusion: A significant overexpression of almost all studied components of the Notch signaling pathway can be found in the tumor tissue, however, without a significant influence on patient survival. Therefore, further studies are warranted to draw conclusions on Notch pathway’s relevance for patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rosa B. Schmuck
- Correspondence: ; Tel.: +49-30450652184; Fax: +49-304507652184
| |
Collapse
|
18
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1459] [Impact Index Per Article: 291.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
19
|
Zhou Y, Xu X, Wu J, Xu L, Zhang M, Li Z, Wang D. Allyl isothiocyanate treatment alleviates chronic obstructive pulmonary disease through the Nrf2-Notch1 signaling and upregulation of MRP1. Life Sci 2020; 243:117291. [PMID: 31927049 DOI: 10.1016/j.lfs.2020.117291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
AIMS Chronic obstructive pulmonary disease (COPD) is a disease with high morbidity and mortality worldwide, which can cause serious social and economic burdens. Allyl isothiocyanate (AITC) is one of the most common natural isothiocyanates and has been shown to have anti-inflammatory and antioxidant biological activities. The purpose of this study was to investigate whether AITC regulated Multidrug resistance-associated protein 1 (MRP1), reactive oxide species (ROS) and reduced glutathione (GSH) levels via Nrf2 and Notch1 signaling pathways to treat COPD and whether there was an interaction between these two pathways. MAIN METHODS Lung function indexes and histopathological changes in mice were determined by lung function instrument and HE staining, respectively. The protein expression was analyzed using immunohistochemistry and Western blotting. The mRNA expression was measured by RT-PCR in human bronchial epithelial cell line 16HBE. The contents of ROS, GSH and GSSG were detected by kits in 16HBE cells. KEY FINDINGS The protein expression of Notch1, Hes1, MRP1, Nrf2, and HO-1 in lung tissues of WT mice and untransfected cells were significantly down-regulated in COPD, then significantly ameliorated in treatment groups. The protein expression of MRP1, Notch1 and Hes1 in lung tissues of Nrf2-/- mice were markedly reduced. There was a significant reduction in expression of Nrf2, HO-1 and MRP1 in si-Notch1 transfected cells. Pretreatment with AITC markedly improved oxidative stress and GSH-redox disorder in COPD. SIGNIFICANCE Our study demonstrates that there is a potential interaction between Nrf2 and Notch1 signaling pathways during treatment of COPD.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xiaoya Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Department of Pharmacy, Hospital of Armed Police of Anhui Province, Heifei 230061, Anhui, China
| | - Jie Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Lingling Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Min Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Zegeng Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China.
| |
Collapse
|
20
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:1172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low-a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|
21
|
Guo SS, Wang Y, Fan QX. Raddeanin A promotes apoptosis and ameliorates 5-fluorouracil resistance in cholangiocarcinoma cells. World J Gastroenterol 2019; 25:3380-3391. [PMID: 31341363 PMCID: PMC6639556 DOI: 10.3748/wjg.v25.i26.3380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/18/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bile duct cancer is characterized by fast metastasis and invasion and has been regarded as one of the most aggressive tumors due to the absence of effective diagnosis at an early stage. Therefore, it is in the urgent demand to explore novel diagnostic approaches and therapeutic strategies for bile duct cancer to improve patient survival. Raddeanin A (RA) is extracted from the anemone raddeana regel and has been demonstrated to play antitumor roles in various cancers.
AIM To investigate the effects of RA treatment on bile duct cancer cells.
METHODS In this study, four cholangiocarcinoma cell lines (RBE, LIPF155C, LIPF178C, and LICCF) treated with RA were used to test the cell viability. The RA-associated cell functional analysis, 5-fluorouracil (5-Fu) effectiveness as well as cell cycle- and apoptosis-related protein expression were investigated.
RESULTS RA reduced cell viability in a dose-dependent pattern in four cell lines, and the migration and colony formation abilities were also impaired by RA in RBE and LIPF155C cell lines. RA sensitized cell lines to 5-Fu treatment and enhanced the effects of 5-Fu in cholangiocarcinoma. Also, RA decreased protein expression of Wee1, while the combinational effect of RA and 5-Fu decreased protein expressions of cyclooxygenase-2, B cell lymphoma 2, and Wee1 but increased protein levels of Bax, cyclin D1, and cyclin E.
CONCLUSION Taken together, the results suggest that RA acts as an anti-cancer agent and enhancer of 5-Fu in bile duct cancer cells via regulating multiple cell cycle and apoptosis-related proteins. This finding provides novel clues to exploring a novel antitumor drug for bile duct cancer.
Collapse
Affiliation(s)
- Shuang-Shuang Guo
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Oncology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Ying Wang
- Department of Oncology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Qing-Xia Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
22
|
Labib PL, Goodchild G, Pereira SP. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019; 19:185. [PMID: 30819129 PMCID: PMC6394015 DOI: 10.1186/s12885-019-5391-0] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinomas are a heterogeneous group of malignancies arising from a number of cells of origin along the biliary tree. Although most cases in Western countries are sporadic, large population-based studies have identified a number of risk factors. This review summarises the evidence behind reported risk factors and current understanding of the molecular pathogenesis of cholangiocarcinoma, with a focus on inflammation and cholestasis as the driving forces in cholangiocarcinoma development. RISK FACTORS FOR CHOLANGIOCARCINOGENESIS Cholestatic liver diseases (e.g. primary sclerosing cholangitis and fibropolycystic liver diseases), liver cirrhosis, and biliary stone disease all increase the risk of cholangiocarcinoma. Certain bacterial, viral or parasitic infections such as hepatitis B and C and liver flukes also increase cholangiocarcinoma risk. Other risk factors include inflammatory disorders (such as inflammatory bowel disease and chronic pancreatitis), toxins (e.g. alcohol and tobacco), metabolic conditions (diabetes, obesity and non-alcoholic fatty liver disease) and a number of genetic disorders. MOLECULAR PATHOGENESIS OF CHOLANGIOCARCINOMA Regardless of aetiology, most risk factors cause chronic inflammation or cholestasis. Chronic inflammation leads to increased exposure of cholangiocytes to the inflammatory mediators interleukin-6, Tumour Necrosis Factor-ɑ, Cyclo-oxygenase-2 and Wnt, resulting in progressive mutations in tumour suppressor genes, proto-oncogenes and DNA mismatch-repair genes. Accumulating bile acids from cholestasis lead to reduced pH, increased apoptosis and activation of ERK1/2, Akt and NF-κB pathways that encourage cell proliferation, migration and survival. Other mediators upregulated in cholangiocarcinoma include Transforming Growth Factor-β, Vascular Endothelial Growth Factor, Hepatocyte Growth Factor and several microRNAs. Increased expression of the cell surface receptor c-Met, the glucose transporter GLUT-1 and the sodium iodide symporter lead to tumour growth, angiogenesis and cell migration. Stromal changes are also observed, resulting in alterations to the extracellular matrix composition and recruitment of fibroblasts and macrophages that create a microenvironment promoting cell survival, invasion and metastasis. CONCLUSION Regardless of aetiology, most risk factors for cholangiocarcinoma cause chronic inflammation and/or cholestasis, leading to the activation of common intracellular pathways that result in reactive cell proliferation, genetic/epigenetic mutations and cholangiocarcinogenesis. An understanding of the molecular pathogenesis of cholangiocarcinoma is vital when developing new diagnostic biomarkers and targeted therapies for this disease.
Collapse
Affiliation(s)
- Peter L. Labib
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - George Goodchild
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| |
Collapse
|
23
|
Wang J, Dong M, Xu Z, Song X, Zhang S, Qiao Y, Che L, Gordan J, Hu K, Liu Y, Calvisi DF, Chen X. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene 2018; 37:3229-3242. [PMID: 29545603 PMCID: PMC6002343 DOI: 10.1038/s41388-018-0188-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Liver cancer comprises a group of malignant tumors, among which hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common. ICC is especially pernicious and associated with poor clinical outcome. Studies have shown that a subset of human ICCs may originate from mature hepatocytes. However, the mechanisms driving the trans-differentiation of hepatocytes into malignant cholangiocytes remain poorly defined. We adopted lineage tracing techniques and an established murine hepatocyte-derived ICC model by hydrodynamic injection of activated forms of AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes. Wild-type, Notch1 flox/flox , and Notch2 flox/flox mice were used to investigate the role of canonical Notch signaling and Notch receptors in AKT/Yap-driven ICC formation. Human ICC and HCC cell lines were transfected with siRNA against Notch2 to determine whether Notch2 regulates biliary marker expression in liver tumor cells. We found that AKT/Yap-induced ICC formation is hepatocyte derived and this process is strictly dependent on the canonical Notch signaling pathway in vivo. Deletion of Notch2 in AKT/Yap-induced tumors switched the phenotype from ICC to hepatocellular adenoma-like lesions, while inactivation of Notch1 in hepatocytes did not result in significant histomorphological changes. Finally, in vitro studies revealed that Notch2 silencing in ICC and HCC cell lines down-regulates the expression of Sox9 and EpCAM biliary markers. Notch2 is the major determinant of hepatocyte-derived ICC formation in mice.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/pathology
- Bile Ducts, Intrahepatic/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Proteins
- Cell Line, Tumor
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Female
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Transgenic
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Signal Transduction/physiology
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjie Dong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
- 307 Hospital of Academy of Military Medical Science, Beijing, China
| | - Zhong Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
| | - John Gordan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- 307 Hospital of Academy of Military Medical Science, Beijing, China.
| | - Diego F Calvisi
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
24
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Høgdall D, Lewinska M, Andersen JB. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. Trends Cancer 2018; 4:239-255. [PMID: 29506673 DOI: 10.1016/j.trecan.2018.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a dismal disease which often is diagnosed at a late stage where the tumor is locally advanced, metastatic, and, as a result, is associated with low resectability. The heterogeneity of this cancer type is a major reason why the majority of patients fail to respond to therapy, and surgery remains their only curative option. Among patients who undergo surgical intervention, such tumors typically recur in 50% of cases within 1year. Thus, CCA is among the most aggressive and chemoresistant malignancies. CCA is characterized by marked tumor reactive stroma, a fibrogenic connective tissue which surrounds and infiltrates the tumor epithelium. This desmoplastic environment presents a clinical challenge, limiting drug delivery and supporting the growth of the tumor mass. In this review we attempt to highlight key pathways involved in cell to cell communication between the tumor epithelium and stroma, the immune components, and opportunities for novel strategies to improve patient outcome.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; These authors contributed equally
| | - Monika Lewinska
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; These authors contributed equally
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
26
|
The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget 2018; 7:46750-46767. [PMID: 27102149 PMCID: PMC5216834 DOI: 10.18632/oncotarget.8775] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/10/2016] [Indexed: 01/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a relatively rare malignancy that arises from the epithelial cells of the intrahepatic, perihilar and distal biliary tree. Intrahepatic CCA (ICC) represents the second most common primary liver cancer, after hepatocellular cancer. Two-thirds of the patients with ICC present with locally advanced or metastatic disease. Despite standard treatment with gemcitabine and cisplatin, prognosis remains dismal with a median survival of less than one year. Several biological plausibilities can account for its poor clinical outcomes. First, despite the advent of next generation and whole exome sequencing, no oncogenic addiction loops have been validated as clinically actionable targets. Second, the anatomical, pathological and molecular heterogeneity, and rarity of CCA confer an ongoing challenge of instituting adequately powered clinical trials. Last, most of the studies were not biomarker-driven, which may undermine the potential benefit of targeted therapy in distinct subpopulations carrying the unique molecular signature. Recent whole genome sequencing efforts have identified known mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), v-raf murine sarcoma viral oncogene homolog (BRAF) and tumor protein p53 (TP53), novel mutations in isocitrate dehydrogenase (IDH), BRCA1-Associated Protein 1 (BAP1) and AT-rich interactive domain-containing protein 1A (ARID1A), and novel fusions such as fibroblast growth factor receptor 2 (FGFR2) and ROS proto-oncogene 1 (ROS1). In this review, we will discuss the evolving genetic landscape of CCA, with an in depth focus on novel fusions (e.g. FGFR2 and ROS1) and somatic mutations (e.g. IDH1/2), which are promising actionable molecular targets.
Collapse
|
27
|
Han N, Hu G, Shi L, Long G, Yang L, Xi Q, Guo Q, Wang J, Dong Z, Zhang M. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget 2017; 8:88059-88068. [PMID: 29152141 PMCID: PMC5675693 DOI: 10.18632/oncotarget.21409] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Broad specific Notch1 inhibitors suppress glioblastoma multiforme (GBM) growth but have significant gastrointestinal toxicities. Here, we examined Notch1 expression in GBM tissue specimens and its correlation with the overall survival (OS) of GBM patients. Furthermore, using the CRISPR/Cas9 system, we investigated the effects of Notch1 downregulation on clonogenic growth and angiogenesis of GBM cells and xenografts. Immunohistochemistry showed positive Notch1 expression in 71% (49/69) of GBM tissues. Our multivariate Cox regression analysis further revealed that Notch1 expression was an independent adverse prognostic factor for OS. Notch1 downregulation suppressed the growth of GBM cells U87MG and U251. The mean duration to reach 6 x the starting volume was 18.3 days for xenografts with Notch1 downregulation and 13.4 days for the control xenografts. Immunofluorescent staining further disclosed that Notch1 downregulation markedly increased the number of γH2AX foci and radiosensitized GBM cells. Notch1 downregulation also impaired angiogenesis and attenuated VEGF and hypoxic response to irradiation in xenografts. In conclusion, Notch1 ablation inhibited GBM cell proliferation and neovascularization and radiosensitized GBM cells and xenografts, suggesting a pivotal role of Notch1 in tumor growth, angiogenesis, and radioresistance in GBM.
Collapse
Affiliation(s)
- Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Shi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyun Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhen Dong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
28
|
Vaquero J, Guedj N, Clapéron A, Nguyen Ho-Bouldoires TH, Paradis V, Fouassier L. Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks. J Hepatol 2017; 66:424-441. [PMID: 27686679 DOI: 10.1016/j.jhep.2016.09.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Unfortunately, most of the patients are not eligible for curative surgery owing to the presence of metastases at the time of diagnosis. Therefore, it is important to understand the steps leading to cell dissemination in patients with CCA. To metastasize from the primary site, cancer cells must acquire migratory and invasive properties by a cell plasticity-promoting phenomenon known as epithelial-mesenchymal transition (EMT). EMT is a reversible dynamic process by which epithelial cells gradually adopt structural and functional characteristics of mesenchymal cells, and has lately become a centre of attention in the field of metastatic dissemination. In the present review, we aim to provide an extensive overview of the current clinical data and the prognostic value of different EMT markers that have been analysed in CCA. We summarize all the regulatory networks implicated in EMT from the membrane receptors to the main EMT-inducing transcription factors (SNAIL, TWIST and ZEB). Furthermore, since a tumor is a complex structure not exclusively formed by tumor cells, we also address the prominent role of the main cell types of the desmoplastic stroma that characterizes CCA in the regulation of EMT. Finally, we discuss the therapeutic considerations and difficulties faced to develop an effective anti-EMT treatment due to the redundancies and bypasses among the pathways regulating EMT.
Collapse
Affiliation(s)
- Javier Vaquero
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France; FONDATION ARC, F-94803 Villejuif, France
| | - Nathalie Guedj
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Audrey Clapéron
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France
| | | | - Valérie Paradis
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Laura Fouassier
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| |
Collapse
|
29
|
Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18010149. [PMID: 28098760 PMCID: PMC5297782 DOI: 10.3390/ijms18010149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.
Collapse
|
30
|
Che L, Fan B, Pilo MG, Xu Z, Liu Y, Cigliano A, Cossu A, Palmieri G, Pascale RM, Porcu A, Vidili G, Serra M, Dombrowski F, Ribback S, Calvisi DF, Chen X. Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans. Oncogenesis 2016; 5:e274. [PMID: 27918553 PMCID: PMC5177771 DOI: 10.1038/oncsis.2016.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare yet deadly malignancy with limited treatment options. Activation of the Notch signalling cascade has been implicated in cholangiocarcinogenesis. However, while several studies focused on the Notch receptors required for ICC development, little is known about the upstream inducers responsible for their activation. Here, we show that the Jagged 1 (Jag1) ligand is almost ubiquitously upregulated in human ICC samples when compared with corresponding non-tumorous counterparts. Furthermore, we found that while overexpression of Jag1 alone does not lead to liver tumour development, overexpression of Jag1 synergizes with activated AKT signalling to promote liver carcinogenesis in AKT/Jag1 mice. Histologically, tumours consisted exclusively of ICC, with hepatocellular tumours not occurring in AKT/Jag1 mice. Furthermore, tumours from AKT/Jag1 mice exhibited extensive desmoplastic reaction, an important feature of human ICC. At the molecular level, we found that both AKT/mTOR and Notch cascades are activated in AKT/Jag1 ICC tissues, and that the Notch signalling is necessary for ICC development in AKT/Jag1 mice. In human ICC cell lines, silencing of Jag1 via specific small interfering RNA reduces proliferation and increases apoptosis. Finally, combined inhibition of AKT and Notch pathways is highly detrimental for the in vitro growth of ICC cell lines. In summary, our study demonstrates that Jag1 is an important upstream inducer of the Notch signalling in human and mouse ICC. Targeting Jag1 might represent a novel therapeutic strategy for the treatment of this deadly disease.
Collapse
Affiliation(s)
- L Che
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - B Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - M G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Z Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Department of Gastroenterology, Guizhou Provincial People's Hospital, The Affiliated People's Hospital of Guizhou Medical University, Guiyang, China
| | - Y Liu
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - A Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - A Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - G Palmieri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - R M Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - A Porcu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Vidili
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - M Serra
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - F Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - S Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - D F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - X Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Thakur PS, Khan AM, Talegaonkar S, Ahmad FJ, Iqbal Z. Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
Affiliation(s)
- P S Thakur
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - A M Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - S Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - F J Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Z Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
32
|
Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Physiol Rep 2016; 4:4/16/e12853. [PMID: 27796269 PMCID: PMC5002904 DOI: 10.14814/phy2.12853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/16/2023] Open
Abstract
Brain endothelial cells (BECs) form a major component of the blood-brain barrier (BBB). In late gestation, these cells express high levels of the multidrug transporter p-glycoprotein (P-gp; encoded by Abcb1), which prevents the passage of an array of endogenous factors and xenobiotics into the fetal brain. P-gp levels in the BECs increase dramatically in late gestation, coincident with astrocyte differentiation. However, the role of astrocytes in modulating P-gp in the developing BBB is unknown. We hypothesized that factors produced by astrocytes positively regulate P-gp in BECs. Astrocytes and BECs were isolated from fetal and postnatal guinea pigs. Levels of Abcb1 mRNA and P-gp were increased in BECs co-cultured with astrocytes compared to BECs in monoculture. Moreover, postnatal astrocytes enhanced P-gp function in fetal BECs but fetal astrocytes had no effect on postnatal BECs. These effects were dependent on secreted proteins with a molecular weight in the range of 3-100 kDa. LC/MS-MS revealed significant differences in proteins secreted by fetal and postnatal astrocytes. We propose that astrocytes are critical modulators of P-gp at the developing BBB. As such, aberrations in astrocyte maturation, observed in neurodevelopmental disorders, will likely decrease P-gp at the BBB. This would allow increased transfer of P-gp endogenous and exogenous substrates into the brain, many of which have neurodevelopmental consequences.
Collapse
Affiliation(s)
- Stephanie Baello
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| | - Majid Iqbal
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| | - William Gibb
- Department of Obstetrics and Gynecology, Faculty of Medicine University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Risk and Surveillance of Cancers in Primary Biliary Tract Disease. Gastroenterol Res Pract 2016; 2016:3432640. [PMID: 27413366 PMCID: PMC4930812 DOI: 10.1155/2016/3432640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Primary biliary diseases have been associated in several studies with various malignancies. Understanding the risk and optimizing surveillance strategy of these malignancies in this specific subset of patients are an important facet of clinical care. For instance, primary sclerosing cholangitis is associated with an increased risk for cholangiocarcinoma (which is very challenging to diagnose) and when IBD is present for colorectal cancer. On the other hand, primary biliary cirrhosis patients with cirrhosis or not responding to 12 months of ursodeoxycholic acid therapy are at increased risk of hepatocellular carcinoma. In this review we will discuss in detail the risks and optimal surveillance strategies for patients with primary biliary diseases.
Collapse
|
34
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 942] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
35
|
Gil-García B, Baladrón V. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma. Biol Cell 2015; 108:29-40. [DOI: 10.1111/boc.201500029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Borja Gil-García
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| | - Victoriano Baladrón
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| |
Collapse
|
36
|
Gao ZJ, Wang FS. Current diagnosis and treatment of primary intrahepatic cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4939-4945. [DOI: 10.11569/wcjd.v23.i31.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary intrahepatic cholangiocarcinoma (ICC) is a rare malignancy arising from intrahepatic biliary epithelial cells and is also defined as cholangiohepatoma. It is the second most common primary liver malignancy after hepatocellular carcinoma. Epidemiologic research shows that the incidence rate of ICC has increased in recent years. Till now, surgical resection remains the only effective treatment to cure the disease, but single-center large-sample clinical trials are still limited. Early diagnosis of ICC is difficult due to the lack of specific clinical manifestations. The rate of resection is low, while the mortality is high and the prognosis is poor. With the development of medical imaging and pathological diagnosis technology, the early diagnosis and overall survival rates are increasing. Comprehensive therapy including non-surgical treatment plays a more and more important role in improving the prognosis. The aim of this study is to review the advances in the diagnosis and treatment of ICC in recent years.
Collapse
|
37
|
Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis. PLoS One 2015; 10:e0131183. [PMID: 26126114 PMCID: PMC4488356 DOI: 10.1371/journal.pone.0131183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/31/2015] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC), and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of these pathways. Therefore, these nine differentially expressed genes and their associated functional pathways should provide the basis for novel personalized clinical treatments of basal-like breast cancer.
Collapse
|
38
|
Sun Y, Zhang R, Zhou S, Ji Y. Overexpression of Notch1 is associated with the progression of cervical cancer. Oncol Lett 2015; 9:2750-2756. [PMID: 26137140 DOI: 10.3892/ol.2015.3143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer is the third most common malignancy worldwide, accounting for 250,000 mortalities annually. Notch1, an important regulator of cell-fate decisions and differentiation, has been found to be overexpressed in certain types of cancer. However, the role of Notch1 in cervical carcinogenesis remains unclear. In the present study, immunohistochemical staining and western blot analysis revealed that Notch1 expression was significantly higher in cervical cancer tissues than that in normal cervical tissues. Furthermore, statistical analysis revealed that Notch1 expression was significantly associated with tumor differentiation and tumor stage. These findings indicated that Notch1 expression was associated with the progression of cervical cancer. The western blot assay also identified a positive correlation between Notch1 and Ki67 expression in cervical cancer tissues, which suggested that Notch1 expression may be associated with the proliferation of cervical cancer. In order to further evaluate the specific role of Notch1 in cervical cancer progression, its expression in SiHa and C33A cells was knocked down using small interfering RNA. It was revealed that the knockdown of Notch1 in SiHa and C33A cells resulted in significant inhibition of cell proliferation and colony formation in vitro. These results indicated that Notch1 was able to promote cell proliferation in cervical cancer. In conclusion, the results of the present study indicated that Notch1 may function as a promoter in cervical carcinogenesis.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Rui Zhang
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Shujuan Zhou
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Yuqiang Ji
- Department of Cardiovascular Medicine, No. 1 Hospital of Xi'an City, Xi'an, Shaanxi 710002, P.R. China
| |
Collapse
|
39
|
Koprowski S, Sokolowski K, Kunnimalaiyaan S, Gamblin TC, Kunnimalaiyaan M. Curcumin-mediated regulation of Notch1/hairy and enhancer of split-1/survivin: molecular targeting in cholangiocarcinoma. J Surg Res 2015; 198:434-40. [PMID: 25890434 DOI: 10.1016/j.jss.2015.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is highly malignant and characterized by poor prognosis with chemotherapeutic resistance. Therefore, continued development of novel, effective approaches are needed. Notch expression is markedly upregulated in CCA, but the utility of Notch1 inhibition is not defined. Based on recent findings, we hypothesized that curcumin, a polyphenolic phytochemical, suppresses CCA growth in vitro via inhibition of Notch1 signaling. METHODS Established CCA cell lines CCLP-1 and SG-231 were treated with varying concentrations of curcumin (0-20 μM). Viability was assessed through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and clonogenic assays. Evaluation of apoptosis was determined via Western analysis for apoptotic markers and Caspase-Glo 3/7 assay. Cell lysates were further analyzed via Western blotting for Notch1/HES-1/survivin pathway expression, cell cycle progression, and survival. RESULTS Curcumin-treated CCA cells exhibited reduced viability compared with control treatment. Statistically significant reductions in cell viability were observed with curcumin treatment at concentrations of 7.5, 10, and 15 μM by approximately 10%, 48%, and 56% for CCLP-1 and 13%, 25%, and 50% for SG-231, respectively. On Western analysis, concentrations of ≥10 μM showed reductions in Notch1, HES-1, and survivin. Apoptosis was evidenced by an increase in expression of cleaved poly [ADP] ribose polymerase and an increase in caspase activity. Cyclin D1 (cell cycle progression) expression levels were also reduced with treatment. CONCLUSIONS Curcumin effectively induces CCA (CCLP-1 and SG-231) growth suppression and apoptosis at relatively low treatment concentrations when compared with the previous research. A concomitant reduction of Notch1, HES-1, and survivin expression in CCA cell lines provides novel evidence for a potential antitumorigenic mechanism-of-action. To our knowledge, this is the first report showing reduction in HES-1 expression via protein analysis after treatment with curcumin. Such findings merit further investigation of curcumin-mediated inhibition of Notch signaling in CCA either alone or in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Steven Koprowski
- Division of Surgical Oncology, Department of Surgery, MCW Cancer Center, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Sokolowski
- Division of Surgical Oncology, Department of Surgery, MCW Cancer Center, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Selvi Kunnimalaiyaan
- Division of Surgical Oncology, Department of Surgery, MCW Cancer Center, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - T Clark Gamblin
- Division of Surgical Oncology, Department of Surgery, MCW Cancer Center, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Muthusamy Kunnimalaiyaan
- Division of Surgical Oncology, Department of Surgery, MCW Cancer Center, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
40
|
Xu LB, Liu C. Role of liver stem cells in hepatocarcinogenesis. World J Stem Cells 2014; 6:579-590. [PMID: 25426254 PMCID: PMC4178257 DOI: 10.4252/wjsc.v6.i5.579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.
Collapse
|