1
|
Chaturvedi S, Sonawane A. Recapitulating the potential contribution of protein S-palmitoylation in cancer. Cancer Metastasis Rev 2024; 44:20. [PMID: 39725785 DOI: 10.1007/s10555-024-10217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Protein S-palmitoylation is a reversible form of protein lipidation in which the formation of a thioester bond occurs between a cysteine (Cys) residue of a protein and a 16-carbon fatty acid chain. This modification is catalyzed by a family of palmitoyl acyl transferases, the DHHC enzymes, so called because of their Asp-His-His-Cys (DHHC) catalytic motif. Deregulation of DHHC enzymes has been linked to various diseases, including cancer and infections. Cancer, a major cause of global mortality, is characterized by features like uncontrolled cell growth, resistance to cell death, angiogenesis, invasion, and metastasis. Several of these processes are controlled by DHHC-mediated S-palmitoylation of oncogenes or tumor suppressors, including growth factor receptors (e.g., EGFR), kinases (e.g., AKT), and transcription factors (e.g., β-catenin). Dynamic regulation of S-palmitoylation is also governed by protein depalmitoylases. These enzymes balance the cycling of palmitoylation and regulate cellular signaling, cell growth, and its organization. Given the significance of S-palmitoylation in cancer, the DHHCs and protein depalmitoylases are promising targets for cancer therapy. Here we summarize the catalytic mechanisms of DHHC enzymes and depalmitoylases, their role in cancer progression and prevention, as well as the crosstalk of palmitoylation with other post-translational modifications. Additionally, we discuss the methods to detect S-palmitoylation, the limitations of available DHHC-targeting inhibitors, and ongoing research efforts to address these obstacles.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India.
| |
Collapse
|
2
|
Abdulla MH, Alzailai AA, Vaali-Mohammed MA, Ahmad R, Fatima S, Zubaidi A, Traiki TB, Mahmood A, Hamoud Alrashoudi R, Khan Z. The platinum coordination complex inhibits cell invasion-migration and epithelial-to-mesenchymal transition by altering the TGF-β-SMAD pathway in colorectal cancer. Front Pharmacol 2023; 14:1178190. [PMID: 38027033 PMCID: PMC10679924 DOI: 10.3389/fphar.2023.1178190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: There is a steady increase in colorectal cancer (CRC) incidences worldwide; at diagnosis, about 20 percent of cases show metastases. The transforming growth factor-beta (TGF-β) signaling pathway is one of the critical pathways that influence the expression of cadherins allowing the epithelial-to-mesenchymal transition (EMT), which is involved in the progression of the normal colorectal epithelium to adenoma and metastatic carcinoma. The current study aimed to investigate the impact of a novel coordination complex of platinum (salicylaldiminato) PT(II) complex with dimethyl propylene linkage (PT-complex) on TGF-β and EMT markers involved in the invasion and migration of the human HT-29 and SW620 CRC cell lines. Methods: Functional study and wound healing assay showed PT-complex significantly reduced cell motility and the migration and invasion of CRC cell lines compared to the untreated control. Western blot performed in the presence and absence of TGF-β demonstrated that PT-complex significantly regulated the TGF-β-mediated altered expressions of EMT markers. Results and Discussion: PT-complex attenuated the migration and invasion by upregulating the protein expression of EMT-suppressing factor E-cadherin and suppressing EMT-inducing factors such as N-Cadherin and Vimentin. Moreover, PT-complex significantly suppressed the activation of SMAD3 in both CRC cell lines. Further, the microarray data analysis revealed differential expression of genes related to invasion and migration. In conclusion, besides displaying antiproliferative activity, the PT complex can decrease the metastasis of CRC cell lines by modulating TGF-β-regulated EMT markers. These findings provide new insight into TGF-β/SMAD signaling as the molecular mechanism involved in the antitumoral properties of novel PT-complex.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aminah Ahmad Alzailai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Zubaidi
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Reem Hamoud Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
4
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
5
|
Jia Z, Long D, Yu Y. Dynamic Expression of Palmitoylation Regulators across Human Organ Development and Cancers Based on Bioinformatics. Curr Issues Mol Biol 2022; 44:4472-4489. [PMID: 36286021 PMCID: PMC9600046 DOI: 10.3390/cimb44100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible modification process that links palmitate to cysteine residues via a reversible thioester bond. Palmitoylation exerts an important role in human organ development and tumor progression. However, a comprehensive landscape regarding the dynamic expression of palmitoylation regulators in human organ development remains unclear. In this study, we analyzed the dynamic expression of palmitoylation regulators in seven organ development and eight cancer types based on bioinformatics. We found that the expression levels of most palmitoylation regulators were altered after birth. In particular, ZDHHC7/20/21 exhibited converse expression patterns in multiple cancer types. Survival analysis showed that the poor prognosis in patients with kidney renal clear carcinoma (KIRC) is related to low expression of ZDHHC7/20/21, and a high expression of ZDHHC7/20/21 is related to worse survival in patients with liver hepatocellular carcinoma (LIHC). Furthermore, we found that the expression of ZDHHC7 is associated with infiltration levels of some types of immune cells in the tumor microenvironment (TME), and we explored the relationship between ZDHHC7 expression and immune checkpoint (ICP) genes across 33 cancer types. In addition, gene set enrichment analysis (GSEA) results indicated that ZDHHC7 might regulate different genes to mediate the same pathway in different organs. In summary, the comprehensive analysis of palmitoylation regulators reveals their functions in human organ development and cancer, which may provide new insights for developing new tumor markers.
Collapse
Affiliation(s)
- Zixian Jia
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Deyu Long
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yingcui Yu
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
6
|
Liu Y, Vandekeere A, Xu M, Fendt SM, Altea-Manzano P. Metabolite-derived protein modifications modulating oncogenic signaling. Front Oncol 2022; 12:988626. [PMID: 36226054 PMCID: PMC9549695 DOI: 10.3389/fonc.2022.988626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant growth is defined by multiple aberrant cellular features, including metabolic rewiring, inactivation of tumor suppressors and the activation of oncogenes. Even though these features have been described as separate hallmarks, many studies have shown an extensive mutual regulatory relationship amongst them. On one hand, the change in expression or activity of tumor suppressors and oncogenes has extensive direct and indirect effects on cellular metabolism, activating metabolic pathways required for malignant growth. On the other hand, the tumor microenvironment and tumor intrinsic metabolic alterations result in changes in intracellular metabolite levels, which directly modulate the protein modification of oncogenes and tumor suppressors at both epigenetic and post-translational levels. In this mini-review, we summarize the crosstalk between tumor suppressors/oncogenes and metabolism-induced protein modifications at both levels and explore the impact of metabolic (micro)environments in shaping these.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| |
Collapse
|
7
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
8
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
9
|
Jafari E, Safinejad S, Dabiri S, Naghibzadeh-Tahami A. Study of the Relationship between MMP-2 and MMP-9 and Her2/neu Overexpression in Gastric Cancer: Clinico- Pathological Correlations. Asian Pac J Cancer Prev 2021; 22:811-817. [PMID: 33773545 PMCID: PMC8286688 DOI: 10.31557/apjcp.2021.22.3.811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/09/2022] Open
Abstract
Background: The relationship between the expressions of matrix metalloproteinases with clinico-pathological data on gastric cancer has been investigated in many countries, but this relationship remains unexplored in Iranian patients. Also, the correlation of the MMPs and the HER-2/neu proto-oncogene with other clinic-pathological variables has been evaluated for several other malignancies, but little effort has been made to shed light on the relationship with gastric cancer. Methods: We investigated MMP-2 and MMP-9 expression and HERE-2/neu overexpression in 48 gastric cancer patients referred to Afzalipour Hospital, associated with Kerman Medical University. Immunohistochemistry staining with rabbit polyclonal antibodies was used. Data statistical analysis was done by SPSS software (Version 20.0). Results: The mean age was 59, most of the patients were male (79.2%), and the average tumor size was larger than 5 centimeters in its greatest diameter. The majority of tumors were of the intestinal subtype and were located in the pyloric and antrum regions (43.8%). Invasion to muscularis properia was seen in 87.5% of the tumors (T3). MMP-2 and MMP-9 were highly expressed in 58.3% and 50% of cases, respectively, and Her-2/neu positivity was 10.4%. MMP-2, MMP-9 and HER-2 were found to have no relation with any clinicopathological parameters. Conclusion: According to the results of this study, MMP-2 and MMP-9 were highly expressed in gastric cancer, but there was no significant association with other clinicopathological variables.
Collapse
Affiliation(s)
- Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Somaye Safinejad
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Naghibzadeh-Tahami
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Wu Z, Tan R, Zhu L, Yao P, Hu Q. Protein S-Palmitoylation and Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:165-186. [PMID: 34019269 DOI: 10.1007/978-3-030-68748-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-palmitoylation of protein is a posttranslational, reversible lipid modification; it was catalyzed by a family of 23 mammalian palmitoyl acyltransferases in humans. S-palmitoylation can impact protein function by regulating protein sorting, secretion, trafficking, stability, and protein interaction. Thus, S-palmitoylation plays a crucial role in many human diseases including mental illness and cancers. In this chapter, we systematically reviewed the influence of S-palmitoylation on protein performance, the characteristics of S-palmitoylation regulating protein function, and the role of S-palmitoylation in pulmonary inflammation and pulmonary hypertension and summed up the treatment strategies of S-palmitoylation-related diseases and the research status of targeted S-palmitoylation agonists/inhibitors. In conclusion, we highlighted the potential role of S-palmitoylation and depalmitoylation in the treatment of human diseases.
Collapse
Affiliation(s)
- Zeang Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rubin Tan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Liping Zhu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinghua Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol 2020; 236:3220-3233. [PMID: 33094504 DOI: 10.1002/jcp.30122] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Protein palmitoylation, in which C16 fatty acid chains are attached to cysteine residues via a reversible thioester linkage, is one of the most common lipid modifications and plays important roles in regulating protein stability, subcellular localization, membrane trafficking, interactions with effector proteins, enzymatic activity, and a variety of other cellular processes. Moreover, the unique reversibility of palmitoylation allows proteins to be rapidly shuttled between biological membranes and cytoplasmic substrates in a process usually controlled by a member of the DHHC family of protein palmitoyl transferases (PATs). Notably, mutations in PATs are closely related to a variety of human diseases, such as cancer, neurological disorders, and immune deficiency conditions. In addition to PATs, intracellular palmitoylation dynamics are also regulated by the interplay between distinct posttranslational modifications, including ubiquitination and phosphorylation. Understanding the specific mechanisms of palmitoylation may reveal novel potential therapeutic targets for many human diseases.
Collapse
Affiliation(s)
- Jiayu Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xinhong Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Dan Meng
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Martinelli C, Gabriele F, Manai F, Ciccone R, Novara F, Sauta E, Bellazzi R, Patane M, Moroni I, Paterra R, Comincini S. The Search for Molecular Markers in a Gene-Orphan Case Study of a Pediatric Spinal Cord Pilocytic Astrocytoma. Cancer Genomics Proteomics 2020; 17:117-130. [PMID: 32108034 DOI: 10.21873/cgp.20172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/AIM We herein presented a case of pediatric spinal cord pilocytic astrocytoma diagnosed on the basis of histopathological and clinical findings. MATERIALS AND METHODS Given the paucity of data on genetic features for this tumor, we performed exome, array CGH and RNA sequencing analysis from nucleic acids isolated from a unique and not repeatable very small amount of a formalin-fixed, paraffin-embedded (FFPE) specimen. RESULTS DNA mutation analysis, comparing tumor and normal lymphocyte peripheral DNA, evidenced few tumor-specific single nucleotide variants in DEFB119, MUC5B, NUDT1, LTBP3 and CPSF3L genes. Differently, tumor DNA was not characterized by for the main pilocytic astrocytoma gene variations, including BRAFV600E. An inframe trinucleotides insertion involving DLX6 or lnc DLX6-AS1 genes was scored in 44.9% of sequenced reads; the temporal profile of this variation on the expression of DLX-AS1 was investigated in patient's urine-derived exosomes, reporting no significant variation in the one-year molecular follow-up. Array CGH identified a tumor microdeletion at the 6q25.3 chromosomal region, spanning 1,01 Mb and comprising ZDHHC14, SNX9, TULP4 and SYTL3 genes. The expression of these genes did not change in urine-derived exosomes during the one-year investigation period. Finally, RNAseq did not reveal any of the common pilocytic BRAF-KIAA1549 genes fusion events. CONCLUSION To our knowledge, the present report is one of the first described gene-orphan case studies of a pediatric spinal cord pilocytic astrocytoma.
Collapse
Affiliation(s)
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Roberto Ciccone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Microgenomics Laboratory, Pavia, Italy
| | | | - Elisabetta Sauta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Monica Patane
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Le X, Mu J, Peng W, Tang J, Xiang Q, Tian S, Feng Y, He S, Qiu Z, Ren G, Huang A, Lin Y, Tao Q, Xiang T. DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis. Theranostics 2020; 10:9495-9511. [PMID: 32863941 PMCID: PMC7449911 DOI: 10.7150/thno.45631] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer progression is an intricate biological process profiled by not only unscheduled proliferation, but also altered metabolism mechanisms. In this article, we introduced a novel tumor suppressor gene (TSG), Zinc Finger DHHC-Type Containing 1 (ZDHHC1, also known as ZNF377), frequently silenced due to epigenetic modification among various cancers, which exerts significant anti-tumor effects through metabolic regulation. Methods: Quantitative reversed-transcription PCR (qRT-PCR), reverse transcription PCR (RT-PCR) and Western blot were employed to demonstrate transcriptional and protein levels of targeted regulators. Methylation of ZDHHC1 promoter was detected by bisulfite genomic sequencing (BGS) and methylation specific PCR (MSP). Proteomics were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were utilized for metabolomics analysis. Cellular functions were examined via corresponding approaches. Nude mice were used for xenograft tumor models. Indirect immunofluorescence staining was utilized to obtain precise location and expression of target proteins. Oxidative and ER stress indicators were detected using specific kits. Results: We found that ZDHHC1 expression was frequently silenced in multiple tumor cells and specimens due to methylation. Restoration of ZDHHC1 expression can curb cancer cell progression via stimulating apoptosis and cell cycle arrest, repressing metastasis, and reversing EMT transition and cell stemness. ZDHHC1's salient anti-tumor abilities were recognized in vivo as well. Metabolomic and proteomic analyses predicted inhibitory role of ZDHHC1 in glucose metabolism pathways in a CYGB-dependent manner, and in pentose phosphate pathway (PPP), which was validated by examining altered key factors. Moreover, we unraveled that ZDHHC1 dedicates to the increment of oxidative stress and endoplasmic reticulum (ER) stress to promote pyroptosis for anticancer purposes. Conclusion: Our study for the first time indicates ZDHHC1 is a potential tumor-suppressor frequently silenced due to promoter methylation, capable of negatively regulating metabolisms of tumor cells while stimulating oxidative stress and ER stress to expedite cell death through induction of pyroptosis and apoptosis, which can be exploited for development of new cancer prevention and therapies.
Collapse
Affiliation(s)
- Xin Le
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanxiu He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- MOE Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Disease, Chongqing Medical University, China
| | - Yong Lin
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Qian Tao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Perry GML. 'Fat's chances': Loci for phenotypic dispersion in plasma leptin in mouse models of diabetes mellitus. PLoS One 2019; 14:e0222654. [PMID: 31661517 PMCID: PMC6818960 DOI: 10.1371/journal.pone.0222654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/04/2019] [Indexed: 01/29/2023] Open
Abstract
Background Leptin, a critical mediator of feeding, metabolism and diabetes, is expressed on an incidental basis according to satiety. The genetic regulation of leptin should similarly be episodic. Methodology Data from three mouse cohorts hosted by the Jackson Laboratory– 402 (174F, 228M) F2 Dilute Brown non-Agouti (DBA/2)×DU6i intercrosses, 142 Non Obese Diabetic (NOD/ShiLtJ×(NOD/ShiLtJ×129S1/SvImJ.H2g7) N2 backcross females, and 204 male Nonobese Nondiabetic (NON)×New Zealand Obese (NZO/HlLtJ) reciprocal backcrosses–were used to test for loci associated with absolute residuals in plasma leptin and arcsin-transformed percent fat (‘phenotypic dispersion’; PDpLep and PDAFP). Individual data from 1,780 mice from 43 inbred strains was also used to estimate genetic variances and covariances for dispersion in each trait. Principal findings Several loci for PDpLep were detected, including possibly syntenic Chr 17 loci, but there was only a single position on Chr 6 for PDAFP. Coding SNP in genes linked to the consensus Chr 17 PDpLep locus occurred in immunological and cancer genes, genes linked to diabetes and energy regulation, post-transcriptional processors and vomeronasal variants. There was evidence of intersexual differences in the genetic architecture of PDpLep. PDpLep had moderate heritability (hs2=0.29) and PDAFP low heritability (hs2=0.12); dispersion in these traits was highly genetically correlated r = 0.8). Conclusions Greater genetic variance for dispersion in plasma leptin, a physiological trait, may reflect its more ephemeral nature compared to body fat, an accrued progressive character. Genetic effects on incidental phenotypes such as leptin might be effectively characterized with randomization-detection methodologies in addition to classical approaches, helping identify incipient or borderline cases or providing new therapeutic targets.
Collapse
Affiliation(s)
- Guy M. L. Perry
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
- * E-mail:
| |
Collapse
|
15
|
Nazir SU, Kumar R, Singh A, Khan A, Tanwar P, Tripathi R, Mehrotra R, Hussain S. Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor. Gene 2019; 711:143952. [PMID: 31265880 DOI: 10.1016/j.gene.2019.143952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Ets-1 is one of the crucial member of transcription factor family which share a unique DNA binding domain. It is predominantly expressed in various tumor subtypes and has shown its association in the regulation of various important genes which include ECM-degrading proteases. Our study aimed to understand the mechanism(s) in the pathogenesis of breast carcinogenesis by Ets-1 transcription factor and its downstream target gene MMP-9. Role of Ets-1 in MCF-7 and MDA-MB-231 breast cancer cells was studied by RNA-interference in combination with pull down and ChIP assays to identify the regulation of MMP-9 in these cell lines. Our results showed that transfection of Ets-1 siRNA in breast cancer cell lines resulted in downregulation of Ets-1 and MMP-9. Ets-1 knock down also showed reduced cell invasion and altered expression of EMT markers. Moreover, we could also predict that MMP-9 gene promoter harbors a binding site for Ets-1 transcription factor may be responsible in direct transactivation of Ets-1 along with EMT markers. Phenotypic changes and molecular alterations that may result in increased aggressiveness/invasiveness and metastatic nature of cancerous cells may lead to changes in EMT markers. Therefore, these findings may suggest a plausible role of Ets-1 dependent regulation of MMP-9 gene and may have a significant impact on breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India; Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ankita Singh
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Tripathi
- Division of Preventive Oncology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India.
| |
Collapse
|
16
|
McGovern SP, Purfield DC, Ring SC, Carthy TR, Graham DA, Berry DP. Candidate genes associated with the heritable humoral response to Mycobacterium avium ssp. paratuberculosis in dairy cows have factors in common with gastrointestinal diseases in humans. J Dairy Sci 2019; 102:4249-4263. [PMID: 30852025 DOI: 10.3168/jds.2018-15906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
Infection of cattle with bovine paratuberculosis (i.e., Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP) and results in a chronic incurable gastroenteritis. This disease, which has economic ramifications for the cattle industry, is increasing in detected prevalence globally; subclinically infected animals can silently shed the bacterium into the environment for years, exposing contemporaries and hampering disease-control programs. The objective of the present study was to first quantify the genetic parameters for humoral response to MAP in dairy cattle. This was followed by a genome-based association analysis and subsequent downstream bioinformatic analyses from imputed whole genome sequence SNP data. After edits, ELISA test records were available on 136,767 cows; analyses were also undertaken on a subset of 33,818 of these animals from herds with at least 5 MAP ELISA-positive cows, with at least 1 of those positive cows being homebred. Variance components were estimated using univariate animal and sire linear mixed models. The heritability calculated from the animal model for humoral response to MAP using alternative phenotype definitions varied from 0.02 (standard error = 0.003) to 0.05 (standard error = 0.008). The genome-based associations were undertaken within a mixed model framework using weighted deregressed estimated breeding values as a dependent variable on 1,883 phenotyped animals that were ≥87.5% Holstein-Friesian. Putative susceptibility quantitative trait loci (QTL) were identified on Bos taurus autosome 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 18, 21, 23, 25, 26, 27, and 29; mapping the most significant SNP to genes within and overlapping these QTL revealed that the most significant associations were with the 10 functional candidate genes KALRN, ZBTB20, LPP, SLA2, FI3A1, LRCH3, DNAJC6, ZDHHC14, SNX1, and HAS2. Pathway analysis failed to reveal significantly enriched biological pathways, when both bovine-specific pathway data and human ortholog data were taken into account. The existence of genetic variation for MAP susceptibility in a large data set of dairy cows signifies the potential of breeding programs for reducing MAP susceptibility. Furthermore, the identification of susceptible QTL facilitates greater biological understanding of bovine paratuberculosis and potential therapeutic targets for future investigation. The novel molecular similarities identified between bovine paratuberculosis and human inflammatory bowel disease suggest potential for human therapeutic interventions to be translated to veterinary medicine and vice versa.
Collapse
Affiliation(s)
- S P McGovern
- Department of Microbiology, University College Cork, Coláiste na hOllscoile Corcaigh, College Road, Cork City, Co. Cork, Ireland T12 CY82
| | - D C Purfield
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - S C Ring
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, Ireland P72 X050
| | - T R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - D A Graham
- Animal Health Ireland, 4-5 The Archways, Carrick-on-Shannon, Co. Leitrim, Ireland N41 WN27
| | - D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
17
|
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep 2018; 19:embr.201846666. [PMID: 30232163 DOI: 10.15252/embr.201846666] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S-palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl-protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S-palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
19
|
Reduced methylation downregulates CD39/ENTPD1 and ZDHHC14 to suppress trophoblast cell proliferation and invasion: Implications in preeclampsia. Pregnancy Hypertens 2018; 14:59-67. [PMID: 30527120 DOI: 10.1016/j.preghy.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/28/2018] [Accepted: 03/23/2018] [Indexed: 01/23/2023]
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome affecting up to 8% of pregnancies worldwide. While PE is a leading cause of maternal and neonatal mortality and morbidity, the pathophysiology of PE is unclear to date. Here, we have verified that dysregulation of CD39/ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and zinc finger DHHC-type containing 14 (ZDHHC14) via DNA methylation plays a vital role in late-onset PE pathology. Our study confirmed the differentially methylated regions (DMRs) of the CD39 and ZDHHC14 gene bodies that we found previously in clinical samples of preeclamptic placentas by MassARRAY EpiTYPER. Then, we showed that CD39 and ZDHHC14 were restricted to the syncytiotrophoblast of the full-term human placenta and that their gene expression levels were significantly decreased in the late-onset preeclamptic placenta. Because DNA methylation can affect gene expression, treatment of trophoblast cell lines (BeWo and JEG-3) with 5-Aza-2'-deoxycytidine (5-Aza-dC) was performed to deplete global DNA methylation in vitro. Then, we found that gene expression of CD39 and ZDHHC14 was decreased and that secretion of CD39 was also markedly downregulated in the hypomethylated trophoblast cell lines. Moreover, siRNA-mediated knockdown of CD39 or ZDHHC14 significantly inhibited trophoblast cell proliferation and invasion. Collectively, our study shows that downregulation of CD39 and ZDHHC14 via hypomethylation is relevant to late-onset PE through the effects of these genes on trophoblast cell lines. Hence, CD39 and ZDHHC14 may act as potential markers and targets for the clinical diagnosis and treatment of PE.
Collapse
|
20
|
Howie J, Wypijewski KJ, Plain F, Tulloch LB, Fraser NJ, Fuller W. Greasing the wheels or a spanner in the works? Regulation of the cardiac sodium pump by palmitoylation. Crit Rev Biochem Mol Biol 2018; 53:175-191. [PMID: 29424237 DOI: 10.1080/10409238.2018.1432560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.
Collapse
Affiliation(s)
- Jacqueline Howie
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | | | - Fiona Plain
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Lindsay B Tulloch
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Niall J Fraser
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - William Fuller
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
21
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Lai Z, Lin P, Weng X, Su J, Chen Y, He Y, Wu G, Wang J, Yu Y, Zhang L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed Pharmacother 2018; 97:162-167. [DOI: 10.1016/j.biopha.2017.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
23
|
Honma R, Goto K, Sakamoto N, Sekino Y, Sentani K, Oue N, Yasui W. Expression and function of Uc.160+, a transcribed ultraconserved region, in gastric cancer. Gastric Cancer 2017; 20:960-969. [PMID: 28382457 DOI: 10.1007/s10120-017-0714-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transcribed ultraconserved regions (T-UCRs) are a novel class of noncoding RNAs that are highly conserved among the orthologous regions in most vertebrates. It has been reported that T-UCRs have distinct signatures in human cancers. We previously discovered the downregulation of T-UCR expression in gastric cancer (GC), indicating that T-UCRs could play an important role in GC biology. Uc.160+, a T-UCR reported to be downregulated in human cancer, has not been examined in GC. METHODS We analyzed the expression pattern of Uc.160+ in nonneoplastic and tumor tissues of the stomach by using uantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH), specifically focusing on the mechanism of transcriptional regulation and target genes that are regulated by T-UCRs. We also attempted to determine the effect of Uc.160+ expression on biological features of GC cell lines by Western blotting. RESULTS On the basis of the qRT-PCR and ISH results, Uc.160+ expression in adenoma and GC tissues was clearly downregulated compared with that in nonneoplastic mucosa tissues of the stomach. Cancer-specific DNA methylation in the promoter region of Uc.160 was observed by bisulfite genomic DNA sequencing analysis. The effect of DNA methylation on Uc.160+ expression was further confirmed by reporter gene assay. We also revealed that Uc.160+ inhibited the phosphorylation of Akt by regulating phosphatase and tensin homolog (PTEN) expression. CONCLUSIONS These results indicate that Uc.160+ could possibly have a tumor suppressive role in GC.
Collapse
Affiliation(s)
- Ririno Honma
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Keisuke Goto
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street Suite 600, Honolulu, HI, 96813, USA
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
24
|
Mukai S, Oue N, Oshima T, Mukai R, Tatsumoto Y, Sakamoto N, Sentani K, Tanabe K, Egi H, Hinoi T, Ohdan H, Yasui W. Overexpression of Transmembrane Protein BST2 is Associated with Poor Survival of Patients with Esophageal, Gastric, or Colorectal Cancer. Ann Surg Oncol 2016; 24:594-602. [PMID: 26832883 DOI: 10.1245/s10434-016-5100-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal (GI) cancer, including gastric cancer (GC), colorectal cancer (CRC), and esophageal squamous cell carcinoma (ESCC), is the most common malignancy worldwide. To identify genes that encode transmembrane proteins present in GI cancer, Escherichia coli ampicillin secretion trap libraries were generated from MKN-74 GC cells, and BST2 was identified as overexpressed in GC. This study analyzed the expression and function of the BST2 gene in human GI cancers and examined the relationship between bone marrow stromal antigen-2 (BST-2) expression and GI patient clinicopathologic characteristics. METHODS Expression and distribution of BST-2 protein was analyzed by immunohistochemistry in 180 GC cases, 140 CRC cases, and 132 ESCC cases. Cell growth was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Immunohistochemical analysis of BST-2 in GC tissues showed that 65 (36 %) of 180 GC cases were positive for BST-2. Uni- and multivariate analyses demonstrated that BST-2 expression is an independent prognostic classifier of GC patients. Immunohistochemical analysis showed that 46 % of 140 CRC cases and 27 % of 132 ESCC cases were positive for BST-2. In ESCC, BST-2 expression was an independent prognostic predictor for survival. The growth of BST2 small interfering RNA (siRNA)-transfected GC cells was significantly slower than the growth of negative control siRNA-transfected GC cells. The levels of phosphorylated epidermal growth factor receptor, extracellular signal-regulated kinase, and Akt were lower in BST2 siRNA-transfected GC cells than in control cells. CONCLUSIONS The results suggest that BST-2 is involved in tumor progression and serves as an independent prognostic classifier for patients with GC. Because BST-2 is expressed on the cell membrane, BST-2 could be a therapeutic target for GC, CRC, and ESCC.
Collapse
Affiliation(s)
- Shoichiro Mukai
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Risa Mukai
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yoshiko Tatsumoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazuaki Tanabe
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Egi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hinoi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| |
Collapse
|
25
|
Protein S-palmitoylation and cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:107-20. [PMID: 26112306 DOI: 10.1016/j.bbcan.2015.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/16/2022]
Abstract
Protein S-palmitoylation is a reversible posttranslational modification of proteins with fatty acids, an enzymatic process driven by a recently discovered family of protein acyltransferases (PATs) that are defined by a conserved catalytic domain characterized by a DHHC sequence motif. Protein S-palmitoylation has a prominent role in regulating protein location, trafficking and function. Recent studies of DHHC PATs and their functional effects have demonstrated that their dysregulation is associated with human diseases, including schizophrenia, X-linked mental retardation, and Huntington's Disease. A growing number of reports indicate an important role for DHHC proteins and their substrates in tumorigenesis. Whereas DHHC PATs comprise a family of 23 enzymes in humans, a smaller number of enzymes that remove palmitate have been identified and characterized as potential therapeutic targets. Here we review current knowledge of the enzymes that mediate reversible palmitoylation and their cancer-associated substrates and discuss potential therapeutic applications.
Collapse
|
26
|
Luo G, Zhou Y, Yi W, Yi H. Lactotransferrin expression is downregulated and affects the mitogen-activated protein kinase pathway in gastric cancer. Oncol Lett 2015; 9:2409-2413. [PMID: 26137081 DOI: 10.3892/ol.2015.3011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-associated mortality worldwide. In advanced and metastatic GC, conventional chemotherapy results in limited efficacy and the average survival rate is currently approximately 10 months. Dysregulated activation of numerous genes, including zinc finger, DHHC-type containing 14; caspase-associated recruitment domain-containing protein; and Ras association domain family member 10, have been implicated in GC. The tumor suppressor function of lactotransferrin (LTF) has been reported in a variety of tumors, including GC, nasopharyngeal carcinoma (NPC) and prostate cancer. However, the mechanism of the tumor suppressor function of LTF in GC remains unclear. In the present study, the expression levels of LTF in patient GC tissue samples were investigated using reverse transcription-quantitative polymerase chain reaction, and it was demonstrated that the LTF mRNA expression level in GC tissue samples was reduced by ~20-fold compared with the adjacent non-cancerous tissues (t=4.56, P<0.01). A similar trend in LTF protein expression was observed by western blot analysis. Furthermore, the present study demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway intermediates p38, c-Jun N-terminal kinase (JNK) and c-Jun were highly expressed in GC tissue samples, and indicated that LTF downregulation may be associated with the dysregulation of the MAPK signaling pathway in GC tissues. In addition, the present study indicated that LTF overexpression reduced the expression of p38, JNK2 and c-Jun in the GC cell line, SGC7901. The present study demonstrates that LTF expression is downregulated in GC tissues and that LTF may serve an important role in the dysregulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Yi
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zhu W, Ju TF, Jin HC. MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 2015; 22:101-7. [PMID: 25633484 DOI: 10.1038/cgt.2014.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression is not only closely associated with the tumor growth, but is also related to tumor invasion. We here aimed to investigate the mechanism of HER2 mediation in the pathogenesis of gastric cancer. The human gastric cancer cell lines SGC-7901, MKN-45, AGS, the immortalized cell line GES-1 derived from normal gastric mucosa. Cell transfection and selection of stable cell lines and the gene and protein levels of HER2 and Matrix metalloproteinase-9 (MMP-9) were examined to determine the molecular relationship between them in the pathogenesis of gastric cancer. The human gastric cancer cell lines SGC-7901, MKN-45, AGS, the immortalized cell line GES-1 derived from normal gastric mucosa. Cell transfection and selection of stable cell lines and the gene and protein levels of HER2 and MMP-9 were examined to determine the molecular relationship between them in the pathogenesis of gastric cancer. We demonstrated that vector-based shRNA significantly knocked down the expression of HER2 and considerably inhibited both the migration and invasion of gastric cancer cells. HER2 knockdown resulted in the downregulation of the expression of MMP-9, whereas HER2 overexpression improved the transcription of MMP-9 through the activation of an MMP-9 promoter. The promoter region of MMP-9 between -2500 and -2000 bp was found to be crucial for the upregulation of HER2-mediated transcription. Furthermore, a truncated promoter (-70 to +63) did not display any transcriptional activity. Cell invasion activity was almost completely inhibited when MMP-9 was knocked down. Conversely, the overexpression of MMP-9 partly rescued the invasion ability of cell strains with knockdown HER2. These findings help further understanding of the molecular mechanisms through which HER2 promotes malignancy, and suggest that targeting both HER2 and MMP-9 may be required to effectively block HER2 signaling in gastric cancer therapy.
Collapse
Affiliation(s)
- Y-Q Shan
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - R-C Ying
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - C-H Zhou
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - A-K Zhu
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - J Ye
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - W Zhu
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - T-F Ju
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - H-C Jin
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
28
|
Fu YF, Gui R, Liu J. HER-2-induced PI3K signaling pathway was involved in the pathogenesis of gastric cancer. Cancer Gene Ther 2015; 22:145-53. [PMID: 25613482 DOI: 10.1038/cgt.2014.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/02/2023]
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpression was closely associated with the tumor growth and invasion, we here aimed to investigate the mechanism of HER-2 mediation in the pathogenesis of gastric cancer (GC). We first detected the expression of HER-2 in GC cell line SGC-7901 and then examined the levels of nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) and the association between them by molecular methods. Statistical analysis was used to compare the significance. We further detected the possible molecular mechanism involved in their relationship in the SGC-7901 genesis. The MMP-9, NF-κB and secretory type (s-ICAM-1) levels were significantly greater in peripheral blood serum from SGC-7901 than healthy control GES-1 (P<0.01). ICAM-1, MMP-9 and NF-κB mRNA and protein levels were more highly expressed in SGC-7901 than healthy control GES-1. The expression levels of NF-κB, MMP-9 and ICAM-1 were positively related in GC cell line SGC-7901, which was HER-2 positive. The HER-2 positive SGC-7901 secreted more transforming growth factor beta 1 (TGF-β1) and resultantly activated MMP-9 to enhance s-ICAM-1 secretion and further studies showed that phosphatidylinositol-3 kinase (PI3K)/Akt/NF-κB signaling pathway was involved in GC pathogenesis. The GC cells that express the HER-2 oncogene spur the activation of NF-κB that can upregulate the expression of ICAM-1 and induce the expression of MMP-9, which hydrolyzes ICAM-1 into s-ICAM-1 to promote tumor immune escape. TGF-β1-induced PI3K/Akt/NF-κB signaling pathway was involved in the pathogenesis of GC and they could be a new target for cancer therapy. The GC cells that express the HER-2 oncogene spur the activation of NF-κB that can upregulate the expression of ICAM-1 and induce the expression of MMP-9, which hydrolyzes ICAM-1 into s-ICAM-1 to promote tumor immune escape. TGF-β1-induced PI3K/Akt/NF-κB signaling pathway was involved in the pathogenesis of GC and they could be a new target for cancer therapy.
Collapse
Affiliation(s)
- Y F Fu
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| | - R Gui
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| | - J Liu
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
MicroRNA let-7b suppresses human gastric cancer malignancy by targeting ING1. Cancer Gene Ther 2015; 22:122-9. [PMID: 25613480 DOI: 10.1038/cgt.2014.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. In this study, we investigate whether let-7b acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. We analyzed the expression of let-7b in 60 pair-matched gastric neoplastic and adjacent non-neoplastic tissues by quantitative real-time polymerase chain reaction. Functional analysis of let-7b expression was assessed in vitro in gastric cancer cell lines with let-7b precursor and inhibitor. The roles of let-7b in tumorigenesis and tumor metastasis were analyzed using a stable let-7b expression plasmid in nude mice. A luciferase reporter assay was used to assess the effect of let-7b on inhibitor of growth family, member 1 (ING1) expression. Real-time PCR showed decreased levels of let-7b expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7b mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7b could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7b. Luciferase reporter assays demonstrated that let-7b directly binds to the 3'-UTR of ING1, and real-time PCR and western blotting further indicated that let-7b downregulated the expression of ING1 at the mRNA and protein levels. Our study demonstrates that overexpression of let-7b in gastric cancer can inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene ING1. These findings help clarify the molecular mechanisms involved in gastric cancer metastasis and indicate that let-7b modulation may be a bona fide treatment of gastric cancer.
Collapse
|
30
|
Jing Y, Guo S, Zhang X, Sun A, Tao F, Ju H, Qian H. Effects of small interfering RNA interference of connexin 37 on subcutaneous gastric tumours in mice. Mol Med Rep 2014; 10:2955-60. [PMID: 25310476 DOI: 10.3892/mmr.2014.2609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of small interfering (si)RNA interference of connexin 37 (Cx37) on subcutaneous gastric tumours in mice. Constructed lentiviruses carrying siRNA against Cx37 significantly knocked down Cx37 mRNA and protein expression in vitro. A total of 60 mice with gastric cancer were randomly divided into the Cx37 siRNA group, the mock‑siRNA group and the control group. Cx37 siRNA, mock‑siRNA and saline were separately injected (with the lentiviruses transfected into the gastric cancer cells). Following six weeks, the Cx37 mRNA expression, Cx37 protein expression and tumor apoptosis were detected using semiquantitative reverse transcription‑polymerase chain reaction, western blot analysis and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling, respectively. Six weeks following lentiviral transfection, the Cx37 mRNA levels in the Cx37 siRNA group, mock‑siRNA group and saline group decreased to 42, 63 and 67%, respectively (P<0.05). The mock‑siRNA group demonstrated no significant change in Cx37 levels compared with the control group. Western blot analysis revealed lower Cx37 protein levels in the Cx37‑RNAi group than in the other groups (0.21±0.07 vs. 0.65±0.06 vs. 0.54±0.07), and that the apoptotic index of the Cx37‑RNAi group was higher than those of the mock‑siRNA and control groups (19.7±5.1 vs. 9.8±6.4 vs. 10.5±7.2%, 11.1±6.9; P<0.05). In conclusion, it was demonstrated that Cx37 siRNA is correlated with gastric cancer. Interference of Cx37 effectively reduces Cx37 mRNA and protein expression and promotes tumour apoptosis.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Suxia Guo
- Department of Cardiology, The Affiliated People's Hospital of Nanjing Medical University in Wuxi and People's Hospital of Wuxi City, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaoping Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Aijing Sun
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|