1
|
Finiuk N, Zelisko N, Klyuchivska O, Yushyn I, Lozynskyi A, Cherniienko A, Manko N, Senkiv J, Stoika R, Lesyk R. Thiopyrano[2,3-d]thiazole structures as promising scaffold with anticancer potential. Chem Biol Interact 2022; 368:110246. [DOI: 10.1016/j.cbi.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/03/2022]
|
2
|
Cela I, Cufaro MC, Fucito M, Pieragostino D, Lanuti P, Sallese M, Del Boccio P, Di Matteo A, Allocati N, De Laurenzi V, Federici L. Proteomic Investigation of the Role of Nucleostemin in Nucleophosmin-Mutated OCI-AML 3 Cell Line. Int J Mol Sci 2022; 23:ijms23147655. [PMID: 35886999 PMCID: PMC9317519 DOI: 10.3390/ijms23147655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar–nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Luca Federici
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Correspondence:
| |
Collapse
|
3
|
Fakhimahmadi A, Nazmi F, Rahmati M, Bonab NM, Hashemi M, Moosavi MA. Nucleostemin silencing induces differentiation and potentiates all-trans-retinoic acid effects in human acute promyelocytic leukemia NB4 cells via autophagy. Leuk Res 2017; 63:15-21. [PMID: 29096331 DOI: 10.1016/j.leukres.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
Here, we report that targeting Nucleostemin (NS), a recently discovered stem cells-enriched gene, by a specific small interference RNA (siNS), decreases the rate of proliferation of acute promyelocytic leukemia (APL) NB4 cells and induces differentiation and autophagy. In addition, NS silencing promotes the effects of all-trans-retinoic acid (ATRA)-based differentiation therapy in NB4 cells. Autophagy inhibitors 3-methyladenine and bafilomycin block the effect of NS targeting on differentiation, indicating a new functional link between NS and autophagy as an important regulator of differentiation in NB4 cells. The capability of NS in modulating autophagy and differentiation, alone or in combination with ATRA, may help to broaden the range of treatment options available to treat leukemia.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O. Box:14965/161, Tehran, Iran; Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Farinaz Nazmi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O. Box:14965/161, Tehran, Iran; Department of Biology, Faculty of Natural Science, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Moghtaran Bonab
- Department of Biology, Faculty of Natural Science, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | | | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O. Box:14965/161, Tehran, Iran.
| |
Collapse
|
4
|
Sun X, Jia Y, Wei Y, Liu S, Yue B. Gene expression profiling of NB4 cells following knockdown of nucleostemin using DNA microarrays. Mol Med Rep 2016; 14:175-83. [PMID: 27374947 PMCID: PMC4918620 DOI: 10.3892/mmr.2016.5213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
Nucleostemin (NS) is mainly expressed in stem and tumor cells, and is necessary for the maintenance of their self-renewal and proliferation. Originally, NS was thought to exert its effects through inhibiting p53, while recent studies have revealed that NS is also able to function independently of p53. The present study performed a gene expression profiling analysis of p53‑mutant NB4 leukeima cells following knockdown of NS in order to elucidate the p53‑independent NS pathway. NS expression was silenced using lentivirus‑mediated RNA interference technology, and gene expression profiling of NB4 cells was performed by DNA microarray analysis. A total of 1,953 genes were identified to be differentially expressed (fold change ≥2 or ≤0.5) following knockdown of NS expression. Furthermore, reverse‑transcription quantitative polymerase chain reaction analysis was used to detect the expression of certain candidate genes, and the results were in agreement with the micaroarray data. Pathway analysis indicated that aberrant genes were enhanced in endoplasmic, c‑Jun N‑terminal kinase and mineral absorption pathways. The present study shed light on the mechanisms of the p54‑independent NS pathway in NB4 cells and provided a foundation for the discovery of promising targets for the treatment of p53-mutant leukemia.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yu Jia
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuanyu Wei
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Liu
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Baohong Yue
- Department of Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|