1
|
Yang Q, Zhang Q, Zhou X, Feng J, Zhang S, Lin L, Yi S, Qin Z, Luo J. Whole-exome sequencing identified a novel heterozygous variant in UBAP2L in a Chinese family with neurodevelopmental disorder characterized by impaired language, behavioral abnormalities, and dysmorphic facies. Front Genet 2024; 15:1503048. [PMID: 39720179 PMCID: PMC11666500 DOI: 10.3389/fgene.2024.1503048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
UBAP2L-deficiency syndrome, also known as neurodevelopmental disorder with impaired language, behavioral abnormalities, and dysmorphic facies (NEDLBF, OMIM 620494), is an extremely rare autosomal dominant disorder. This condition is caused by heterozygous variant in the UBAP2L gene (NM_014847.4, MIM 616472), which encodes the ubiquitin-associated protein 2-like protein involved in the formation of stress granules (SGs). To date, only one report has documented 12 loss-of-function variants in UBAP2L, all of which were identified as de novo variants. In our study, we recruited a Chinese family with two patients exhibiting intellectual disability and seizures. Whole-exome sequencing was performed on the proband, revealing a novel heterozygous frameshift variant, UBAP2L (NM_014847.4):c.2453_2454del (p.Tyr818Trpfs*3). The variant was inherited from the affected mother, and confirmed in the proband and his parents by Sanger sequencing. This is the first familial report of a deleterious UBAP2L variant. The proband in this family presented a clinical phenotype similar to NEDLBF, which includes intellectual disability, developmental delay, speech delay, facial dysmorphism, seizures, and behavioral abnormalities. The affected mother presented only mild intellectual disability and mild language impairment. By clinical evaluation of our patients and previously reported cases with UBAP2L variants, we propose that intellectual disability, developmental delay (particularly in speech), infants' feeding difficulties, behavioural abnormalities and seizures are the main clinical features of NEDLBF patients. Our study expands the genetic and phenotypic spectrum associated with NEDLBF.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Juntan Feng
- Department of Pediatric Neurology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Clinical Research Center for Pediatric Diseases, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Lin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
2
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Liao Y, Andronov L, Liu X, Lin J, Guerber L, Lu L, Agote-Arán A, Pangou E, Ran L, Kleiss C, Qu M, Schmucker S, Cirillo L, Zhang Z, Riveline D, Gotta M, Klaholz BP, Sumara I. UBAP2L ensures homeostasis of nuclear pore complexes at the intact nuclear envelope. J Cell Biol 2024; 223:e202310006. [PMID: 38652117 PMCID: PMC11040503 DOI: 10.1083/jcb.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.
Collapse
Affiliation(s)
- Yongrong Liao
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Xiaotian Liu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lucile Guerber
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Linjie Lu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Arantxa Agote-Arán
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Li Ran
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Charlotte Kleiss
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mengdi Qu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Stephane Schmucker
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Zhirong Zhang
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Daniel Riveline
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Bruno P. Klaholz
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Guerber L, Pangou E, Sumara I. Ubiquitin Binding Protein 2-Like (UBAP2L): is it so NICE After All? Front Cell Dev Biol 2022; 10:931115. [PMID: 35794863 PMCID: PMC9250975 DOI: 10.3389/fcell.2022.931115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin Binding Protein 2-like (UBAP2L, also known as NICE-4) is a ubiquitin- and RNA-binding protein, highly conserved in metazoans. Despite its abundance, its functions have only recently started to be characterized. Several studies have demonstrated the crucial involvement of UBAP2L in various cellular processes such as cell cycle regulation, stem cell activity and stress-response signaling. In addition, UBAP2L has recently emerged as a master regulator of growth and proliferation in several human cancers, where it is suggested to display oncogenic properties. Given that this versatile protein is involved in the regulation of multiple and distinct cellular pathways, actively contributing to the maintenance of cell homeostasis and survival, UBAP2L might represent a good candidate for future therapeutic studies. In this review, we discuss the current knowledge and latest advances on elucidating UBAP2L cellular functions, with an aim to highlight the importance of targeting UBAP2L for future therapies.
Collapse
Affiliation(s)
- Lucile Guerber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Izabela Sumara,
| |
Collapse
|
5
|
Damiani V, Cufaro MC, Fucito M, Dufrusine B, Rossi C, Del Boccio P, Federici L, Turco MC, Sallese M, Pieragostino D, De Laurenzi V. Proteomics Approach Highlights Early Changes in Human Fibroblasts-Pancreatic Ductal Adenocarcinoma Cells Crosstalk. Cells 2022; 11:1160. [PMID: 35406724 PMCID: PMC8997741 DOI: 10.3390/cells11071160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.
Collapse
Affiliation(s)
- Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy;
- R&D Division, BIOUNIVERSA s.r.l., 84081 Baronissi, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| |
Collapse
|
6
|
Li O, Zhao C, Zhang J, Li FN, Yang ZY, Liu SL, Cai C, Jia ZY, Gong W, Shu YJ, Dong P. UBAP2L promotes gastric cancer metastasis by activating NF-κB through PI3K/AKT pathway. Cell Death Discov 2022; 8:123. [PMID: 35304439 PMCID: PMC8933503 DOI: 10.1038/s41420-022-00916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-associated protein 2-like (UBAP2L) is highly expressed in various types of tumors and has been shown to participate in tumor growth and metastasis; however, its role in gastric cancer (GC) remains unknown. In this study, we observed that UBAP2L expression was markedly elevated in GC tissues and five GC cell lines. Higher expression of UBAP2L was associated with poor prognosis as revealed by bioinformatics analysis on online websites and laboratory experiments. Knockdown of UBAP2L impeded the migration and invasion abilities of GC cell lines. In contrast, its overexpression enhanced the migration and invasion abilities of GC cell lines. Overexpression of UBAP2L also increased the number and size of lung metastatic nodules in vivo. According to the results of mass spectrometry and pathway annotation of the identified proteins, the PI3K/AKT pathway was found to be related to UBAP2L regulation. Further exploration and rescue experiments revealed that UBAP2L stimulates the expression and nuclear aggregation of p65 and promotes the expression of SP1 by activating the PI3K/AKT pathway. In summary, our findings indicate that UBAP2L regulates GC metastasis through the PI3K/AKT/SP1/NF-κB axis. Thus, targeting UBAP2L may be a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ou Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Jian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Feng-Nan Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Chen Cai
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yao Jia
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| |
Collapse
|
7
|
Lin S, Yan Z, Tang Q, Zhang S. Ubiquitin-associated protein 2 like (UBAP2L) enhances growth and metastasis of gastric cancer cells. Bioengineered 2021; 12:10232-10245. [PMID: 34823423 PMCID: PMC8809994 DOI: 10.1080/21655979.2021.1982308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-proteasome pathway has emerged as therapeutic targets for cancer. GEPIA database analysis showed that the expression of ubiquitin-associated protein 2 like (UBAP2L) in gastric cancer specimens was significantly higher than that in non-tumor tissue, and its high expression is associated with poor survival of gastric cancer patients. This study aims to investigate the role of UBAP2L in gastric cancer. Real-time PCR and western blot results showed that UBAP2L expression was upregulated in gastric cancer cell lines. Loss- and gain-of-function experiments demonstrated that silencing of UBAP2L inhibited proliferation, migration and invasion, and induced apoptosis of gastric cancer cells, and overexpression of UBAP2L played opposite roles. Nude mice inoculated with UBAP2L-silenced gastric cancer cells generated smaller xenografted tumors in vivo. Furthermore, UBAP2L activated Wnt/β-catenin signaling - the accumulation of nuclear β-catenin and the expression of its downstream targets (cyclin D1, AXIN-2 and c-MYC) was facilitated, whereas knockdown of UBAP2L deactivated this signaling. The tumor-suppressing effect of UBAP2L silencing was abolished by forced activation of β-cateninS33A. UBAP2L has been confirmed as a novel and direct target of miR-148b-3p. The anti-tumor effect of miR-148b-3p was partly reversed by UBAP2L overexpression. The expression of miR-148b-3p was negatively correlated with that of UBAP2L in gastric cancer samples. Overall, our study indicates that UBAP2L is required to maintain malignant behavior of gastric cancer cells, which involves the activation of Wnt/β-catenin signaling pathway. We propose UBAP2L as a potential therapeutic target against gastric cancer.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhiyong Yan
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Qiaofei Tang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Shuang Zhang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| |
Collapse
|
8
|
Carlston C, Weinmann R, Stec N, Abbatemarco S, Schwager F, Wang J, Ouyang H, Ewald CY, Gotta M, Hammell CM. PQN-59 antagonizes microRNA-mediated repression during post-embryonic temporal patterning and modulates translation and stress granule formation in C. elegans. PLoS Genet 2021; 17:e1009599. [PMID: 34807903 PMCID: PMC8648105 DOI: 10.1371/journal.pgen.1009599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.
Collapse
Affiliation(s)
- Colleen Carlston
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Robin Weinmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Simona Abbatemarco
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Huiwu Ouyang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Monica Gotta
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
9
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
10
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
11
|
Pan Y, Jin K, Xie X, Wang K, Zhang H. MicroRNA-19a-3p inhibits the cellular proliferation and invasion of non-small cell lung cancer by downregulating UBAP2L. Exp Ther Med 2020; 20:2252-2261. [PMID: 32765702 DOI: 10.3892/etm.2020.8926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are increasingly recognized as important regulators of non-small cell lung cancer (NSCLC) progression by directly regulating their target genes. The aim of the present study was to assess the biological role of miR-19a-3p in NSCLC. It was revealed that miR-19a-3p expression was significantly downregulated in human NSCLC tissues and cell lines compared with normal tissues and lung epithelial cells. In addition, a lower miR-19a-3p expression was significantly associated with Tumor Node Metastasis stage and lymph node metastasis. Furthermore, the upregulation of miR-19a-3p in NSCLC cell lines significantly inhibited cell proliferation, migration and invasion, as determined using an MTT, colony formation, wound healing and transwell Matrigel invasion assays, respectively. A luciferase reporter assay and western blotting determined that ubiquitin associated protein 2 like (UBAP2L) was a direct target of miR-19a-3p and could be inhibited through the upregulation of miR-19a-3p in NSCLC. In addition, UBAP2L silencing induced similar effects to those observed following miR-19a-3p overexpression. The overexpression of UBAP2L partially reversed the effects of miR-19a-3p on NSCLC cell lines. Collectively, these data indicated that miR-19a-3p may serve as a tumor suppressor partly through the regulation of UBAP2L expression in NSCLC and that the targeting of miR-19a-3p may be a novel method for NSCLC treatment.
Collapse
Affiliation(s)
- Yuejiang Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kexi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Huizhong Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
12
|
Yoshida K, Kajiyama H, Inami E, Tamauchi S, Ikeda Y, Yoshikawa N, Nishino K, Utsumi F, Niimi K, Suzuki S, Shibata K, Nawa A, Kikkawa F. Clinical Significance of Ubiquitin-associated Protein 2-like in Patients With Uterine Cervical Cancer. In Vivo 2020; 34:109-116. [PMID: 31882469 DOI: 10.21873/invivo.11751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ubiquitin-associated protein 2-like (UBAP2L) has been demonstrated to be associated with the progression of multiple types of cancer. However, the function of UBAP2L in uterine cervical cancer remains unclear. MATERIALS AND METHODS Between 2005 and 2015, 84 patients who underwent surgery were included in this study. The patients were stratified into two groups on the basis of immunohistochemical staining for UBAP2L, and survival analysis was performed. Moreover, loss-of-function analysis was performed using the cervical cancer cell lines CaSki and SiHa. RESULTS Based on immunohistochemistry, the overall survival in patients with low UBAP2L expression was significantly longer than that of those with high UBAP2L expression (p=0.045). The in vitro experiment revealed that knockdown of UBAP2L remarkably inhibited cell proliferation in both live cell imaging and the MTS assay. CONCLUSION Patients with high UBAP2L expression had unfavorable prognosis and UBAP2L appears to play an important role in proliferation.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Inami
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Akihiro Nawa
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
UBAP2L arginine methylation by PRMT1 modulates stress granule assembly. Cell Death Differ 2019; 27:227-241. [PMID: 31114027 PMCID: PMC7205891 DOI: 10.1038/s41418-019-0350-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) are discrete assemblies of stalled messenger ribonucleoprotein complexes (mRNPs) that form when eukaryotic cells encounter environmental stress. RNA-binding proteins (RBPs) mediate their condensation by recruiting populations of mRNPs. However, the cellular and molecular mechanisms underlying the role of ubiquitin-associated protein 2-like (UBAP2L) in the regulation of SG dynamics remain elusive. Here, we show that UBAP2L is required for both SG assembly and disassembly. UBAP2L overexpression nucleated SGs under stress-null conditions. The UBAP2L Arg–Gly–Gly (RGG) motif was required for SG competence, and mediated the recruitment of SG components, including mRNPs, RBPs, and ribosomal subunits. The domain of unknown function (DUF) of UBAP2L-mediated interaction with ras GTPase-activating protein-binding protein (G3BP)1/2, and its deletion caused the cytoplasmic–nuclear transport of UBAP2L and G3BP1/2, thereby compromising SG formation. The protein arginine methyltransferase PRMT1 asymmetrically dimethylated UBAP2L by targeting the RGG motif. Increased arginine methylation blocked, whereas its decrease enhanced UBAP2L interactions with SG components, ablating and promoting SG assembly, respectively. These results provide new insights into the mechanisms by which UBAP2L regulates SG dynamics and RNA metabolism.
Collapse
|
14
|
Upregulation of UBAP2L in Bone Marrow Mesenchymal Stem Cells Promotes Functional Recovery in Rats with Spinal Cord Injury. Curr Med Sci 2018; 38:1081-1089. [PMID: 30536073 DOI: 10.1007/s11596-018-1987-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Post-translational modifications of cellular proteins with ubiquitin or ubiquitin-like proteins regulate many cellular processes, such as cell proliferation, differentiation, apoptosis, signal transduction, intercellular immune recognition, inflammatory response, stress response, and DNA repair. Nice4/UBAP2L is an important member in the family of ubiquitin-like proteins, and its biological function remains unknown. This study aimed to investigate the effect of UBAP2L on spinal cord injury (SCI). At first, rat bone marrow mesenchymal stem cells (BMSCs) were infected with adeno-associated virus to induce over-expression of Nice4. Subsequently, the infected BMSCs were transplanted into rats suffering from semi-sectioned SCI. The results showed that the over-expression of Nice4 significantly promoted the proliferation and differentiation of BMSCs. In addition, the transplantation of infected BMSCs into the injured area of SCI rats improved the function repair of SCI. Importantly, the immunohistochemical and hematoxylin-eosin staining and RT-PCR results showed that the number of neuronal cells, oligodendrocytes, and astrocytes was significantly increased in the injured area, along with significantly upregulated expression of cyclin D1 and p38 mitogen-activated protein kinase (MAPK). Meanwhile, the expression of caspase 3 protein was significantly down-regulated. In conclusion, the over-expression of Nice4 gene can promote the functional recovery in SCI rats by promoting cell proliferation and inhibiting apoptosis. The results of this study indicate an alternative option for the clinical treatment of SCI.
Collapse
|
15
|
Li Q, Wang W, Hu YC, Yin TT, He J. Knockdown of Ubiquitin Associated Protein 2-Like (UBAP2L) Inhibits Growth and Metastasis of Hepatocellular Carcinoma. Med Sci Monit 2018; 24:7109-7118. [PMID: 30291221 PMCID: PMC6284357 DOI: 10.12659/msm.912861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the influence of ubiquitin associated protein 2-like (UBAP2L) on the growth and metastasis of hepatocellular carcinoma (HCC) and its potential underlying mechanism. MATERIAL AND METHODS UBAP2L gene was knocked down in SMMC-7721 by RNA interference and cell function experiments were performed. A subcutaneous xenograft tumor model was constructed to examine the effect of UBAP2L silence on HCC growth. Finally, the whole genomic microarrays were used to screen the potential mechanism of UBAP2L in regulating the biological function of HCC. RESULTS Compared with those in the control group, the cell proliferation and clone formation were significantly reduced, cell cycle was arrested in G2/M phase, the number of apoptotic cells was remarkably increased, and the abilities of vascular formation and cell migration and metastasis were dramatically weakened in the shUBAP2L group (All P<0.05). UBAP2L knockdown significantly suppressed the tumor growth of HCC in vivo. Moreover, a total of 320 genes changed significantly after UBAP2L knockdown, among which, 159 genes were upregulated and 161 genes were downregulated. Then, gene enrichment analysis revealed that PI3K/AKT and P53 signal pathway were the most significant in the top 10 enrichments. Finally, Western blot analysis verified that UBAP2L knockdown caused the increase of P21 and PTEN and decrease of CDK1, CCNB1, p-PI3K, and p-AKT. CONCLUSIONS UBAP2L plays an oncogenic role in HCC, and knockdown of its expression significantly inhibits HCC growth and metastasis, which may be related to the regulation of PI3K/AKT and P53 signaling pathways by UBAP2L.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China (mainland).,The Provincial Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Wei Wang
- Department of Medical Oncology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Yu-Chen Hu
- Department of Pathology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China (mainland).,The Provincial Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Tian-Tian Yin
- Department of Pathology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China (mainland).,The Provincial Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Jie He
- Department of Pathology, First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China (mainland)
| |
Collapse
|
16
|
He J, Chen Y, Cai L, Li Z, Guo X. UBAP2L silencing inhibits cell proliferation and G2/M phase transition in breast cancer. Breast Cancer 2017; 25:224-232. [PMID: 29196913 PMCID: PMC5818569 DOI: 10.1007/s12282-017-0820-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Background Ubiquitin-associated protein 2-like (UBAP2L) contains a ubiquitin-associated domain near its N-terminus, which has been demonstrated to be overexpressed in multiple tumors, including hepatocellular carcinoma and colorectal carcinoma but its role has not been well studied in breast cancer. Thus, this study was designed to evaluate whether UBAP2L can serve as a potential molecular target for breast cancer therapy. Methods The expression of UBAP2L was determined in breast cancer tissues and cell lines by Western blotting and Oncomine database mining. Then the expression of UBAP2L was silenced using RNA interference and the effects of UBAP2L knockdown on breast cancer cell proliferation and cell cycle progression by MTT and colony formation assay, and Flow cytometry, respectively. Results We found the expression of UBAP2L was significantly up-regulated in breast cancer tissues and cell lines. Knockdown of UBAP2L suppressed cell proliferation, impaired colony formation ability and induced cell cycle arrest at G2/M phase. At molecular levels, knockdown of UBAP2L increased p21 expression, but decreased the expression of CDK1 and Cyclin B1 in breast cancer cells. Conclusion Our findings suggest that UBAP2L plays an important role in breast cancer cell proliferation and might serve as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, No. 17 Hongqi Avenue, Ganzhou, 341000, Jiangxi, China
| | - Yuanping Chen
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, No. 17 Hongqi Avenue, Ganzhou, 341000, Jiangxi, China
| | - Lu Cai
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, No. 17 Hongqi Avenue, Ganzhou, 341000, Jiangxi, China
| | - Zelei Li
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, No. 17 Hongqi Avenue, Ganzhou, 341000, Jiangxi, China
| | - Xiaoqing Guo
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, No. 17 Hongqi Avenue, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
17
|
Wang W, Zhang M, Peng Y, He J. Ubiquitin Associated Protein 2-Like (UBAP2L) Overexpression in Patients with Hepatocellular Carcinoma and its Clinical Significance. Med Sci Monit 2017; 23:4779-4788. [PMID: 28981479 PMCID: PMC5639951 DOI: 10.12659/msm.907071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, accumulating studies have shown that ubiquitin associated protein 2-like (UBAP2L) is overexpressed in many kinds of malignant tumors, which is closely associated to tumor growth and metastasis. However, the correlations of UBAP2L expression with clinicopathological factors and prognosis of hepatocellular carcinoma (HCC) patients still remain unclear. MATERIAL AND METHODS Bioinformatics database (GEO and TCGA) and our own experimental results (including immunohistochemical staining, western blotting and real-time PCR) were analyzed to validate the expression levels of UBAP2L in HCC. Furthermore, Kaplan-Meier survival analysis and Cox multivariate regression model were used to demonstrate the associations of UBAP2L expression with clinicopathological factors and prognosis of HCC patients. Additionally, the potential underlying mechanisms associated to angiogenesis were preliminarily explored. RESULTS Compared to the normal group, UBAP2L was significantly highly expressed in HCC cell lines and tissues. Kaplan-Meier survival analysis revealed that patients with high UBAP2L expression level had dramatically less survival time than those with low UBAP2L expression level (p=0.000). Moreover, multivariate Cox regression analysis showed that UBAP2L high expression was an independently unfavorable prognostic parameter for OS of HCC patients (p=0.000). Additionally, Pearson correlation analysis showed that the relationship between UBAP2L expression and VEGF or MVD was significantly positive, respectively (r=0.460, p=0.000 and r=0.387, p=0.000). CONCLUSIONS UBAP2L was overexpressed in HCC, and patients with high UBAP2L expression had unfavorable prognosis. UBAP2L could be a new potential therapeutic target for HCC in the future.
Collapse
Affiliation(s)
- Wei Wang
- Medical College of Shandong University, Jinan, Shandong, China (mainland).,Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Min Zhang
- Department of Pathology, Anhui Provincial Cancer Hospital, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yan Peng
- Department of Pathology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Jie He
- Department of Pathology, Anhui Provincial Cancer Hospital, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
18
|
Aucagne R, Girard S, Mayotte N, Lehnertz B, Lopes-Paciencia S, Gendron P, Boucher G, Chagraoui J, Sauvageau G. UBAP2L is amplified in a large subset of human lung adenocarcinoma and is critical for epithelial lung cell identity and tumor metastasis. FASEB J 2017; 31:5012-5018. [PMID: 28754713 DOI: 10.1096/fj.201601219rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
The ubiquitin-associated protein 2-like (UBAP2L) gene remains poorly studied in human and mouse development. UBAP2L interacts with the Polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and determines the activity of mouse hematopoietic stem cells in vivo Here we show that loss of Ubap2l leads to disorganized respiratory epithelium of mutant neonates, which die of respiratory failure. We also show that UBAP2L overexpression leads to epithelial-mesenchymal transition-like phenotype in a non-small cell lung carcinoma (NSCLC) cell line. UBAP2L is amplified in 15% of human primary lung adenocarcinoma specimens. Such patients express higher levels of UBAP2L and show a reduction in survival when compared with those who do not have this gene amplification. Supporting a possible role for UBAP2L in lung tumor progression, NSCLC cells engineered to express low levels of this gene produce much smaller tumors in vivo than wild-type control cells. Together, these results suggest that UBAP2L contributes to epithelial lung cell identity in mice and that it plays an important role in human lung adenocarcinoma.-Aucagne, R., Girard, S., Mayotte, N., Lehnertz, B., Lopes-Paciencia, S., Gendron, P., Boucher, G., Chagraoui, J., Sauvageau, G. UBAP2L is amplified in a large subset of human lung adenocarcinoma and is critical for epithelial lung cell identity and tumor metastasis.
Collapse
Affiliation(s)
- Romain Aucagne
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Simon Girard
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Nadine Mayotte
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Bernhard Lehnertz
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Stéphane Lopes-Paciencia
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Patrick Gendron
- Bioinformatics Platform, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Québec, Canada
| | - Geneviève Boucher
- Bioinformatics Platform, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Québec, Canada
| | - Jalila Chagraoui
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Université de Montréal, Montreal, Québec, Canada; .,Department of Medicine, Université de Montréal, Montreal, Québec, Canada; and.,Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Québec, Canada
| |
Collapse
|
19
|
Role of γ-glutamyl cyclotransferase as a therapeutic target for colorectal cancer based on the lentivirus-mediated system. Anticancer Drugs 2016; 27:1011-20. [DOI: 10.1097/cad.0000000000000407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Lund PJ, Elias JE, Davis MM. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3086-3098. [PMID: 27655845 DOI: 10.4049/jimmunol.1502031] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
Abstract
T cell activation in response to Ag is largely regulated by protein posttranslational modifications. Although phosphorylation has been extensively characterized in T cells, much less is known about the glycosylation of serine/threonine residues by O-linked N-acetylglucosamine (O-GlcNAc). Given that O-GlcNAc appears to regulate cell signaling pathways and protein activity similarly to phosphorylation, we performed a comprehensive analysis of O-GlcNAc during T cell activation to address the functional importance of this modification and to identify the modified proteins. Activation of T cells through the TCR resulted in a global elevation of O-GlcNAc levels and in the absence of O-GlcNAc, IL-2 production and proliferation were compromised. T cell activation also led to changes in the relative expression of O-GlcNAc transferase (OGT) isoforms and accumulation of OGT at the immunological synapse of murine T cells. Using a glycoproteomics approach, we identified >200 O-GlcNAc proteins in human T cells. Many of the identified proteins had a functional relationship to RNA metabolism, and consistent with a connection between O-GlcNAc and RNA, inhibition of OGT impaired nascent RNA synthesis upon T cell activation. Overall, our studies provide a global analysis of O-GlcNAc dynamics during T cell activation and the first characterization, to our knowledge, of the O-GlcNAc glycoproteome in human T cells.
Collapse
Affiliation(s)
- Peder J Lund
- Interdepartmental Program in Immunology, Stanford University, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; .,Stanford Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305; and.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
21
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
22
|
Chai R, Yu X, Tu S, Zheng B. Depletion of UBA protein 2-like protein inhibits growth and induces apoptosis of human colorectal carcinoma cells. Tumour Biol 2016; 37:13225-13235. [PMID: 27456362 DOI: 10.1007/s13277-016-5159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-proteasome system regulates cell proliferation, apoptosis, angiogenesis, and motility, which are processes with particular importance for carcinogenesis. UBA protein 2-like protein (UBAP2L) was found to be associated with proteasome; however, its biological function is largely unknown. In this study, the mRNA levels of UBAP2L in human normal and colorectal carcinoma tissues were analyzed using the datasets from the publicly available Oncomine database ( www.oncomine.org ) and found UBAP2L was overexpressed in colorectal carcinoma tissues. Furthermore, we elucidated the role of UBAP2L in human colorectal cancer via an RNA interference lentivirus system in three colorectal carcinoma cell lines HCT116, SW1116, and RKO. Knockdown of UBAP2L led to suppressed cell proliferation and impaired colony formation. UBAP2L depletion in HCT116 and RKO cells also induced cell cycle arrest as well as apoptosis. Moreover, the phosphorylation of PRAS40, Bad, and the cleavage of PARP were remarkably increased after UBAP2L knockdown by Intracellular signaling array and also the activation of P38 was obviously decreased and the cleavage of Caspase 3 and Bax were increased after UBAP2L silencing by western blot assay, indicated that UBAP2L might be involved in the cell growth by the regulation of apoptosis-related proteins. Our findings indicated that UBAP2L may be essential for colorectal carcinoma growth and survival. Lentivirus-mediated small interfering RNA against UBAP2L might serve as a potential therapeutic approach for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Rui Chai
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Xiaojun Yu
- Department of Gastroenterological Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Bo'an Zheng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
23
|
Maeda M, Hasegawa H, Sugiyama M, Hyodo T, Ito S, Chen D, Asano E, Masuda A, Hasegawa Y, Hamaguchi M, Senga T. Arginine methylation of ubiquitin-associated protein 2-like is required for the accurate distribution of chromosomes. FASEB J 2015; 30:312-23. [PMID: 26381755 DOI: 10.1096/fj.14-268987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
Abstract
Proper bioriented attachment of microtubules and kinetochores is essential for the precise distribution of duplicated chromosomes to each daughter cell. An aberrant kinetochore-microtubule attachment results in chromosome instability, which leads to cellular transformation or apoptosis. In this article, we show that ubiquitin-associated protein 2-like (UBAP2L) is necessary for correct kinetochore-microtubule attachment. Depletion of UBAP2L inhibited chromosome alignment in metaphase and delayed progression to anaphase by activating spindle assembly checkpoint signaling. In addition, UBAP2L knockdown increased side-on attachment of kinetochores along the microtubules and suppressed stable kinetochore fiber formation. A proteomics analysis identified protein arginine methyltransferase (PRMT)1 as a direct interaction partner of UBAP2L. UBAP2L has an arginine- and glycine-rich motif called the RGG/RG or GAR motif in the N terminus. Biochemical analysis confirmed that arginine residues in the RGG/RG motif of UBAP2L were directly methylated by PRMT1. Finally, we demonstrated that the RGG/RG motif of UBAP2L is essential for the proper alignment of chromosomes in metaphase for the accurate distribution of chromosomes. Our results show a possible role for arginine methylation in UBAP2L for the progression of mitosis.
Collapse
Affiliation(s)
- Masao Maeda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoki Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Sugiyama
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshinori Hyodo
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Ito
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dan Chen
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Asano
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, Manlove LA, LaRue RS, Temiz NA, Molyneux SD, Choi K, Holly KJ, Sarver AL, Scott MC, Forster CL, Modiano JF, Khanna C, Hewitt SM, Khokha R, Yang Y, Gorlick R, Dyer MA, Largaespada DA. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet 2015; 47:615-24. [PMID: 25961939 DOI: 10.1038/ng.3293] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma.
Collapse
Affiliation(s)
- Branden S Moriarity
- 1] Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA. [2] Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA. [3] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - George M Otto
- 1] Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA. [2] Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA. [3] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [4] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric P Rahrmann
- 1] Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA. [2] Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA. [3] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [4] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalie K Wolf
- 1] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [2] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Madison T Weg
- 1] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [2] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Luke A Manlove
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rebecca S LaRue
- 1] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [2] Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin J Holly
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Milcah C Scott
- 1] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [2] Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jaime F Modiano
- 1] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [2] Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, USA. [3] Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chand Khanna
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen M Hewitt
- Tissue Array Research Program (TARP), Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Rama Khokha
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Yi Yang
- Department of Orthopedic Surgery, Musculoskeletal Tumor Center, People's Hospital, Peking University, Beijing, China
| | - Richard Gorlick
- 1] Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, New York, USA. [2] Department of Molecular Pharmacology, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, New York, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David A Largaespada
- 1] Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA. [2] Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA. [3] Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA. [4] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|