1
|
Mohamed-Ezzat RA, Srour AM. Design and Synthesis of Aspirin-chalcone Mimic Conjugates as Potential Anticancer Agents. Anticancer Agents Med Chem 2024; 24:544-557. [PMID: 38204260 DOI: 10.2174/0118715206280025231213065519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells. METHODS A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization. RESULTS Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted. CONCLUSION The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Disalicylic Acid Provides Effective Control of Pectobacterium brasiliense. Microorganisms 2022; 10:microorganisms10122516. [PMID: 36557768 PMCID: PMC9784377 DOI: 10.3390/microorganisms10122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bis(2-carboxyphenyl) succinate (disalicylic acid; DSA) is composed of two salicylic acids connected by a succinyl linker. Here, we propose its use as a new, synthetic plant-protection agent. DSA was shown to control Pectobacterium brasiliense, an emerging soft-rot pathogen of potato and ornamental crops, at minimal inhibitory concentrations (MIC) lower than those of salicylic acid. Our computational-docking analysis predicted that DSA would inhibit the quorum-sensing (QS) synthase of P. brasiliense ExpI more strongly than SA would. In fact, applying DSA to P. brasiliense inhibited its biofilm formation, secretion of plant cell wall-degrading enzymes, motility and production of acyl-homoserine lactones (AHL) and, subsequently, impaired its virulence. DSA also inhibited the production of AHL by a QS-negative Escherichia coli strain (DH5α) that had been transformed with P. brasiliense AHL synthase, as demonstrated by the biosensors Chromobacterium violaceaum CV026 and E. coli pSB401. Inhibition of the QS machinery appears to be one of the mechanisms by which DSA inhibits specific virulence determinants. A new route is proposed for the synthesis of DSA, which holds greater potential for use as an anti-virulence agent than its precursor SA. Based on these findings, DSA is an excellent candidate for repurposing for new applications.
Collapse
|
3
|
Tran PHL, Lee BJ, Tran TTD. Current Studies of Aspirin as an Anticancer Agent and Strategies to Strengthen its Therapeutic Application in Cancer. Curr Pharm Des 2021; 27:2209-2220. [PMID: 33138752 DOI: 10.2174/1381612826666201102101758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiate aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on the continuing efforts of the scientist on the way of developing an effective therapy for patients with a low response to current cancer treatments.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Bashir AIJ, Kankipati CS, Jones S, Newman RM, Safrany ST, Perry CJ, Nicholl ID. A novel mechanism for the anticancer activity of aspirin and salicylates. Int J Oncol 2019; 54:1256-1270. [PMID: 30720135 PMCID: PMC6411351 DOI: 10.3892/ijo.2019.4701] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies indicate that long‑term aspirin usage reduces the incidence of colorectal cancer (CRC) and may protect against other non‑CRC associated adenocarcinomas, including oesophageal cancer. A number of hypotheses have been proposed with respect to the molecular action of aspirin and other non‑steroidal anti‑inflammatory drugs in cancer development. The mechanism by which aspirin exhibits toxicity to CRC has been previously investigated by synthesising novel analogues and derivatives of aspirin in an effort to identify functionally significant moieties. Herein, an early effect of aspirin and aspirin‑like analogues against the SW480 CRC cell line was investigated, with a particular focus on critical molecules in the epidermal growth factor (EGF) pathway. The present authors proposed that aspirin, diaspirin and analogues, and diflunisal (a salicylic acid derivative) may rapidly perturb EGF and EGF receptor (EGFR) internalisation. Upon longer incubations, the diaspirins and thioaspirins may inhibit EGFR phosphorylation at Tyr1045 and Tyr1173. It was additionally demonstrated, using a qualitative approach, that EGF internalisation in the SW480 cell line may be directed to endosomes by fumaryldiaspirin using early endosome antigen 1 as an early endosomal marker and that EGF internalisation may also be perturbed in oesophageal cell lines, suggestive of an effect not only restricted to CRC cells. Taken together and in light of our previous findings that the aspirin‑like analogues can affect cyclin D1 expression and nuclear factor‑κB localisation, it was hypothesized that aspirin and aspirin analogues significantly and swiftly perturb the EGFR axis and that the protective activity of aspirin may in part be explained by perturbed EGFR internalisation and activation. These findings may also have implications in understanding the inhibitory effect of aspirin and salicylates on wound healing, given the critical role of EGF in the response to tissue trauma.
Collapse
Affiliation(s)
- Asma'u I J Bashir
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Chandra S Kankipati
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Sarah Jones
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Robert M Newman
- School of Mathematics and Computer Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | - Christopher J Perry
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
5
|
Kilari RS, Bashir AIJ, Devitt A, Perry CJ, Safrany ST, Nicholl ID. The Cytotoxicity and Synergistic Potential of Aspirin and Aspirin Analogues Towards Oesophageal and Colorectal Cancer. ACTA ACUST UNITED AC 2018; 14:141-151. [PMID: 30417794 PMCID: PMC7040498 DOI: 10.2174/1574884713666181112141151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
Background Oesophageal cancer (OC) is a deadly cancer because of its aggressive nature with survival rates that have barely improved in decades. Epidemiologic studies have shown that low-dose daily intake of aspirin can decrease the incidence of OC. Methods The toxicity of aspirin and aspirin derivatives to OC and a CRC cell line were investigated in the presence and absence of platins. Results The data in this study show the effects of a number of aspirin analogues and aspirin on OC cell lines that originally presented as squamous cell carcinoma (SSC) and adenocarcinoma (ADC). The aspirin analogues fumaryldiaspirin (PN517) and the benzoylsalicylates (PN524, PN528 and PN529), were observed to be more toxic against the OC cell lines than aspirin. Both quantitative and qualitative apoptosis experiments reveal that these compounds largely induce apoptosis, although some necrosis was evident with PN528 and PN529. Failure to recover following the treatment with these analogues emphasized that these drugs are largely cytotoxic in nature. The OE21 (SSC) and OE33 (ADC) cell lines were more sensitive to the aspirin analogues compared to the Flo-1 cell line (ADC). A non-cancerous oesophageal primary cells NOK2101, was used to determine the specificity of the aspirin analogues and cytotoxicity assays revealed that analogues PN528 and PN529 were selectively toxic to cancer cell lines, whereas PN508, PN517 and PN524 also induced cell death in NOK2101. In combination index testing synergistic interactions of the most promising compounds, including aspirin, with cisplatin, oxaliplatin and carboplatin against the OE33 cell line and the SW480 colorectal cancer (CRC) cell line were investigated. Compounds PN517 and PN524, and to a lesser extent PN528, synergised with cisplatin against OE33 cells. Cisplatin and oxaliplatin synergised with aspirin and PN517 when tested against the SW480 cell line. Conclusion These findings indicate the potential and limitations of aspirin and aspirin analogues as chemotherapeutic agents against OC and CRC when combined with platins
Collapse
Affiliation(s)
- Rajagopal S Kilari
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| | - Asma'u I J Bashir
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom.,Department of Pharmacology, Faculty of Pharmaceutical Sciences, Gombe State University, Gombe, Nigeria
| | - Andreue Devitt
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Christopher J Perry
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| | | | - Iain D Nicholl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1 LY, United Kingdom
| |
Collapse
|
6
|
Gu M, Nishihara R, Chen Y, Li W, Shi Y, Masugi Y, Hamada T, Kosumi K, Liu L, da Silva A, Nowak JA, Twombly T, Du C, Koh H, Li W, Meyerhardt JA, Wolpin BM, Giannakis M, Aguirre AJ, Bass AJ, Drew DA, Chan AT, Fuchs CS, Qian ZR, Ogino S. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells. Oncotarget 2017; 8:87379-87389. [PMID: 29152088 PMCID: PMC5675640 DOI: 10.18632/oncotarget.20972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA-mutant colorectal carcinoma, but not in PIK3CA-wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA-mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferative activity of aspirin might be stronger for PIK3CA-mutant colon cancer cells than for PIK3CA-wild-type colon cancer cells. We measured the anti-proliferative effect of aspirin at physiologic concentrations in seven PIK3CA-mutant and six PIK3CA-wild-type human colon cancer cell lines. After exposure to aspirin, the apoptotic index and cell cycle phase of colon cancer cells were assessed. In addition, the effect of aspirin was examined in parental SW48 cells and SW48 cell clones with individual knock-in PIK3CA mutations of either c.3140A>G (p.H1047R) or c.1633G>A (p.E545K). Aspirin induced greater dose-dependent loss of cell viability in PIK3CA-mutant cells than in PIK3CA-wild-type cells after treatment for 48 and 72 hours. Aspirin treatment also led to higher proportions of apoptotic cells and G0/G1 phase arrest in PIK3CA-mutant cells than in PIK3CA-wild-type cells. Aspirin treatment of isogenic SW48 cells carrying a PIK3CA mutation, either c.3140A>G (p.H1047R) or c.1633G>A (p. E545K), resulted in a more significant loss of cell viability compared to wild-type controls. Our findings indicate that aspirin causes cell cycle arrest, induces apoptosis, and leads to loss of cell viability more profoundly in PIK3CA-mutated colon cancer cells than in PIK3CA-wild-type colon cancer cells. These findings support the use of aspirin to treat patients with PIK3CA-mutant colon cancer.
Collapse
Affiliation(s)
- Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Chen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Medical Oncology Department 2, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Medical Oncology Department 2, Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Chunxia Du
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Wenbin Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Willecke-Hochmuth R, Pachmann K, Drevs J. Treatment of advanced solid tumours with NSAIDs: Correlation of quantitative monitoring of circulating tumour cells and positron emission tomography-computed tomography imaging. Oncol Lett 2016; 12:1711-1716. [PMID: 27588120 PMCID: PMC4997972 DOI: 10.3892/ol.2016.4878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/07/2016] [Indexed: 12/21/2022] Open
Abstract
The detection and characterisation of tumour-derived circulating epithelial tumor cells (CETCs) or circulating tumor cells (CTCs) have been a main focus of basic oncological research over previous years. Numerous studies in the past decade have shown that CTCs are a promising tool for the estimation of the risk for metastatic relapse. The present observational study describes treatment results using tumour imaging and the quantification of CTCs. A group of 14 patients with advanced carcinomas was followed during their anticancer treatments. CTC numbers were serially detected and treatment success was estimated by positron emission tomography-computed tomography. A connection was found between tumour remission and a decreasing CTC count in 83%, a connection between stable disease and stable CTC numbers in 78% and a connection between progressive disease (PD) and an increase in CTC count in 50% of cases. In the patients with PD, an incomplete response was observed affecting the CTCs, but not the solid region of the tumour. As a result of this study, it may be concluded that patients with solid tumours benefit from serial quantification of CTCs in addition to imaging, as this combination of techniques provides a more sensitive result than imaging alone.
Collapse
|
8
|
Abstract
The incidence of cancer is rising in parallel with an ageing populous thus increasing the strain on both treatment options and budgets for healthcare providers worldwide. New cancer therapies are being developed but at what cost? The new treatments are expensive and poor survival rates still exist for some cancers. What is needed now is to prevent or at least limit the disease occurring in the first place. This review evaluates the current situation and the progress in upcoming strategies as well as suggesting some areas for further research within the increasingly important field of cancer chemoprevention. The key principles of cancer chemoprevention are discussed and areas for improvement highlighted. Despite significant progress, chemoprevention has not been widely adopted. Cancer chemoprevention has many challenges to face but this only emphasises the size of the task. These hurdles include a lack of awareness of the benefits, a lack of interest and a lack of investment in taking prevention forward. Despite the huge potential importance of cancer prevention and clinical success stories such as the well-publicised HPV vaccine, the challenges remain significant. With cancer and its treatment being a global issue, the opportunities offered by chemoprevention must be re-evaluated and uptake of chemoprevention actively encouraged. If chemoprevention is to be adopted successfully, a holistic approach is required. This approach will involve multidisciplinary teams of healthcare providers and scientists with the big challenge particularly for medicinal chemists being to design and synthesise the ideal chemopreventative agent.
Collapse
Affiliation(s)
- Lewis K Penny
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | | |
Collapse
|
9
|
Küçükgüzel ŞG, Koç D, Çıkla-Süzgün P, Özsavcı D, Bingöl-Özakpınar Ö, Mega-Tiber P, Orun O, Erzincan P, Sağ-Erdem S, Şahin F. Synthesis of Tolmetin Hydrazide-Hydrazones and Discovery of a Potent Apoptosis Inducer in Colon Cancer Cells. Arch Pharm (Weinheim) 2015; 348:730-742. [PMID: 26287512 DOI: 10.1002/ardp.201500178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023]
Abstract
Tolmetin hydrazide and a novel series of tolmetin hydrazide-hydrazones 4a-l were synthesized in this study. The structures of the new compounds were determined by spectral (FT-IR, (1)H NMR) methods. N'-[(2,6-Dichlorophenyl)methylidene]-2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetohydrazide (4g) was evaluated in vitro using the MTT colorimetric method against the colon cancer cell lines HCT-116 (ATCC, CCL-247) and HT-29 (ATCC, HTB-38) to determine growth inhibition and cell viability at different doses. Compound 4g exhibited anti-cancer activity with an IC50 value of 76 μM against colon cancer line HT-29 (ATCC, HTB-38) and did not display cytotoxicity toward control NIH3T3 mouse embryonic fibroblast cells compared to tolmetin. In addition, this compound was evaluated for caspase-3, caspase-8, caspase-9, and annexin-V activation in the apoptotic pathway, which plays a key role in the treatment of cancer. We demonstrated that the anti-cancer activity of this compound was due to the activation of caspase-8 and caspase-9 involved in the apoptotic pathway. In addition, in this study, we investigated the catalytical effect of COX on the HT-29 cancer line, the apoptotic mechanism, and the moleculer binding of tolmetin and compound 4g on the COX enzyme active site.
Collapse
Affiliation(s)
- Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Derya Koç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Derya Özsavcı
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Özlem Bingöl-Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, İstanbul, Turkey
| | - Pınar Mega-Tiber
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük, İstanbul, Turkey
| | - Oya Orun
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük, İstanbul, Turkey
| | - Pınar Erzincan
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, Istanbul, Turkey
| | - Safiye Sağ-Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Kayışdağı, İstanbul, Turkey
| |
Collapse
|
10
|
Ding Z, Yang HW, Xia TS, Wang B, Ding Q. Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction. Int J Mol Med 2015; 36:473-84. [PMID: 26046131 DOI: 10.3892/ijmm.2015.2237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 01/30/2023] Open
Abstract
The RNA binding motif protein 38 (RBM38, also known as RNPC1) plays a pivotal role in regulating a wide range of biological processes, from cell proliferation and cell cycle arrest to cell myogenic differentiation. It was originally recognized as an oncogene, and was frequently found to be amplified in prostate, ovarian and colorectal cancer, chronic lymphocytic leukemia, colon carcinoma, esophageal cancer, dog lymphomas and breast cancer. In the present study, the complete RNPC1 gene was identified in a number of vertebrate genomes, suggesting that RNPC1 exists in all types of vertebrates, including fish, amphibians, birds and mammals. In the different genomes, the gene had a similar 4 exon/3 intron organization, and all the genetic loci were syntenically conserved. The phylogenetic tree demonstrated that the RNPC1 gene from the mammalian, bird, reptile and teleost lineage formed a species-specific cluster. A total of 34 functionally relevant single nucleotide polymorphisms (SNPs), including 14 SNPs causing missense mutations, 8 exonic splicing enhancer SNPs and 12 SNPs causing nonsense mutations, were identified in the human RNPC1 gene. RNPC1 was found to be expressed in bladder, blood, brain, breast, colorectal, eye, head and neck, lung, ovarian, skin and soft tissue cancer. In 14 of the 94 tests, an association between RNPC1 gene expression and cancer prognosis was observed. We found that the association between the expression of RNPC1 and prognosis varied in different types of cancer, and even in the same type of cancer from the different databases used. This suggests that the function of RNPC1 in these tumors may be multidimensional. The sex determining region Y (SRY)-box 5 (Sox5), runt-related transcription factor 3 (RUNX3), CCAAT displacement protein 1 (CUTL1), v-rel avian reticuloendotheliosis viral oncogene homolog (Rel)A, peroxisome proliferator-activated receptor γ isoform 2 (PPARγ2) and activating transcription factor 6 (ATF6) regulatory transcription factor binding sites were identified in the upstream (promoter) region of the RNPC1 gene, and may thus be involved in the effects of RNPC1 in tumors.
Collapse
Affiliation(s)
- Zhiming Ding
- Department of Neurosurgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Hai-Wei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Song Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bo Wang
- Department of Medical Oncology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
QU L, HE L, ZHAO X, XU W. Downregulation of miR-518a-3p activates the NIK-dependent NF-κB pathway in colorectal cancer. Int J Mol Med 2015; 35:1266-1272. [PMID: 25812680 PMCID: PMC4380201 DOI: 10.3892/ijmm.2015.2145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/11/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the biological role and underlying mechanisms of action of miR-518a-3p in the progression and invasion of colorectal cancer (CRC). Reverse transcription-quantitative PCR (RT-qPCR) was used to examine the mRNA expression levels of miR-518a-3p in 5 CRC cell lines (SW480, SW620, HCT116, HT29 and LoVo) in a normal colonic cell line, NCM460, as well as in tumor tissues with or without metastases. The biological effects of miR-518a-3p were assessed in the CRC cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis, and RT‑qPCR and western blot analyses were employed to evaluate the expression of miR-518a-3p targets. The regulation of NF-κB-inducing kinase (NIK) by miR-518a-3p was confirmed using luciferase activity assays. Our results revealed that miR-518a-3p was significantly downregulated in the CRC cell lines compared with the normal colonic cell line (P<0.05), as well as in the CRC tissues with distant metastases compared with the tissues without metastases. The downregulation of miR-518a-3p was associated with tumor size, distant metastasis and TNM stage in the patients with CRC. Moreover, the ectopic expression of miR-518a-3p and the inhibition of NIK by RNA interference markedly reduced cell proliferation and enhanced the apoptosis of CRC cells. Further experiments revealed that NIK, a regulator of NF-κB, was a downstream target of miR-518a-3p. The presents findings indicate that miR-518a-3p plays an important role in the progression of CRC by targeting NIK.
Collapse
Affiliation(s)
- L.L. QU
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - L. HE
- Department of Gastroenterology Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - X. ZHAO
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - W. XU
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|