1
|
Li C, Wang X, Tian M, Zhang M, Zhang X, Fu Q, Liu L, Zhang L, Wang H. The JNK-associated leucine zipper protein exerts a protective effect on renal parenchymal injury by limiting the inflammatory secretome in tubular cells. Cell Signal 2024; 124:111428. [PMID: 39307375 DOI: 10.1016/j.cellsig.2024.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
JNK-associated leucine zipper protein (JLP) is a newly identified renal endogenous anti-fibrotic factor that is selectively enriched in renal tubular epithelial cells (TECs). The loss of JLP by TECs is a landmark event that heralds the progression of kidney fibrosis. JLP deficiency ensues a series of pathogenetic cellular processes that are conducive to fibrotic injury. Inflammatory injury is functionally relevant in fibrotic kidneys, and TECs play an essential role in fueling inflammation through aberrant secretions. It is speculated that the loss of JLP in TECs is associated with the relentless inflammation during the development of kidney fibrosis. This study examined the alteration of a panel of inflammatory signatures in TECs under kidney fibrotic circumstances using a Jlp gene-modified unilateral ureteral obstruction (UUO) mouse model or cultured HK-2 cells. It was found that a deficiency of JLP in TECs led to a significant increase in the secretion of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), overactivation of the nuclear factor (NF)-κB/c-Jun N-terminal kinase (JNK) pathway, as well as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis in response to pro-fibrotic damage. Additionally, the absence of JLP resulted in enhanced macrophage migration and fibroblast activation as paracrine effects elicited by injured TECs. In conclusion, the loss of JLP in TECs catalyses inflammatory injuries in the development of kidney fibrosis.
Collapse
Affiliation(s)
- Chen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maoqing Tian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Fu
- Paediatric Department, Central Hospital of Jingzhou City, Jingzhou, China
| | - Lunzhi Liu
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Minda Hospital of Hubei Minzu University, Enshi, China.
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Aouabdi S, Nedjadi T, Alsiary R, Mouffouk F, Ansari HR. Transcriptomics Demonstrates Significant Biological Effect of Growing Stem Cells on RGD-Cotton Scaffold. Tissue Eng Part A 2024. [PMID: 38666698 DOI: 10.1089/ten.tea.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Stem cell therapy provides a viable alternative treatment for degenerated or damaged tissue. Stem cells have been used either alone or in conjunction with an artificial scaffold. The latter provides a structural advantage by enabling the cells to thrive in three-dimensional (3D) settings, closely resembling the natural in vivo environments. Previously, we disclosed the development of a 3D scaffold made from cotton, which was conjugated with arginyl-glycyl-aspartic acid (RGD), to facilitate the growth and proliferation of mesenchymal stem cells (MSCs). This scaffold allowed the MSCs to adhere and proliferate without compromising their viability or their stem cell markers. A comprehensive analysis investigation of the molecular changes occurring in MSCs adhering to the cotton fibers will contribute to the advancement of therapy. The objective of this study is to analyze the molecular processes occurring in the growth of MSCs on a cotton-RGD conjugated-based scaffold by examining their gene expression profiles. To achieve this, we conducted an experiment where MSCs were seeded with and without the scaffold for a duration of 48 h. Subsequently, cells were collected for RNA extraction, cDNA synthesis, and whole-transcriptomic analysis performed on both populations. Our analysis revealed several upregulated and downregulated differently expressed genes in the MSCs adhering to the scaffold compared with the control cells. Through gene ontology analysis, we were able to identify enriched biological processes, molecular functions, pathways, and protein-protein interactions in these differentially expressed genes. Our data suggest that the scaffold may have the potential to enhance osteogenesis in the MSCs. Furthermore, our results indicate that the scaffold does not induce oxidative stress, inflammation, or aging in the MSCs. These findings provide valuable insights for the application of MSCs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, Kuwait, Kuwait
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Qiao L, Zhang L, Wang H. SPAG9 Expression Predicts Good Prognosis in Patients with Clear-Cell Renal Cell Carcinoma: A Bioinformatics Analysis with Experimental Validation. Genes (Basel) 2023; 14:944. [PMID: 37107702 PMCID: PMC10138117 DOI: 10.3390/genes14040944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common and aggressive type of renal-cell carcinoma (RCC). Sperm-associated antigen 9 (SPAG9) has been reported to promote the progression of a variety of tumors and is thus a potential prognostic marker. This study combined a bioinformatics analysis with an experimental validation, exploring the prognostic value of SPAG9 expression in ccRCC patients and the possible underlying mechanisms. The SPAG9 expression was associated with a poor prognosis in pan-cancer patients, but with a good prognosis and slow tumor progression in ccRCC patients. To explore the underlying mechanism, we investigated the roles of SPAG9 in ccRCC and bladder urothelial carcinoma (BLCA). The latter was chosen for comparison with ccRCC to represent the tumor types in which SPAG9 expression suggests a poor prognosis. The overexpression of SPAG9 increased the expression of autophagy-related genes in 786-O cells but not in HTB-9 cells, and SPAG9 expression was significantly correlated with a weaker inflammatory response in ccRCC but not in BLCA. Through an integrated bioinformatics analysis, we screened out seven key genes (AKT3, MAPK8, PIK3CA, PIK3R3, SOS1, SOS2, and STAT5B) in this study. The correlation between SPAG9 expression and ccRCC prognosis depends on the expression of key genes. Since most of the key genes were PI3K-AKT-pathway members, we used the PI3K agonist 740Y-P to stimulate the 786-O cells, to mimic the effect of key-gene overexpression. Compared with the Ov-SPAG9 786-O cells, the 740Y-P further increased the expression of autophagy-related genes by more than twofold. Moreover, we constructed a nomogram based on SPAG9/key genes and other clinical features, which was proven to have some predictive value. Our study found that SPAG9 expression predicted opposite clinical outcomes in pan-cancer and ccRCC patients, and we speculated that SPAG9 suppresses tumor progression by promoting autophagy and inhibiting inflammatory responses in ccRCC. We further found that some genes might cooperate with SPAG9 to promote autophagy, and that these were highly expressed in the tumor stroma and could be represented by key genes. The SPAG9-based nomogram can help to estimate the long-term prognosis of ccRCC patients, indicating that SPAG9 is a potential prognostic marker for ccRCC.
Collapse
Affiliation(s)
| | | | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.Q.)
| |
Collapse
|
4
|
The Contributions of Cancer-Testis and Developmental Genes to the Pathogenesis of Keratinocyte Carcinomas. Cancers (Basel) 2022; 14:cancers14153630. [PMID: 35892887 PMCID: PMC9367444 DOI: 10.3390/cancers14153630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In addition to mutations, ectopically-expressed genes are emerging as important contributors to cancer development. Efforts to characterize the expression patterns in cancers of gamete-restricted cancer-testis antigens and developmentally-restricted genes are underway, revealing these genes to be putative biomarkers and therapeutic targets for various malignancies. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are two highly-prevalent non-melanoma skin cancers that result in considerable burden on patients and our health system. To optimize disease prognostication and treatment, it is necessary to further classify the molecular complexity of these malignancies. This review describes the expression patterns and functions of cancer-testis antigens and developmentally-restricted genes in BCC and cSCC tumors. A large number of cancer-testis antigens and developmental genes exhibit substantial expression levels in BCC and cSCC. These genes have been shown to contribute to several aspects of cancer biology, including tumorigenesis, differentiation, invasion and responses to anti-cancer therapy. Abstract Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50–65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.
Collapse
|
5
|
Uncovering the anti-angiogenic effect of semisynthetic triterpenoid CDDO-Im on HUVECs by an integrated network pharmacology approach. Comput Biol Med 2021; 141:105034. [PMID: 34802714 DOI: 10.1016/j.compbiomed.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023]
Abstract
AIM To reveal the molecular mechanism of anti-angiogenic activity of semisynthetic triterpenoid CDDO-Im. MATERIALS AND METHODS Using re-analysis of cDNA microarray data of CDDO-Im-treated human vascular endothelial cells (HUVECs) (GSE71622), functional annotation of revealed differentially expressed genes (DEGs) and analysis of their co-expression, the key processes induced by CDDO-Im in HUVECs were identified. Venn diagram analysis was further performed to reveal the common DEGs, i.e. genes both susceptible to CDDO-Im and involved in the regulation of angiogenesis. A list of probable protein targets of CDDO-Im was prepared based on Connectivity Map/cheminformatics analysis and chemical proteomics data, among which the proteins that were most associated with the angiogenesis-related regulome were identified. Finally, identified targets were validated by molecular docking and text mining approaches. KEY FINDINGS The effect of CDDO-Im in HUVECs can be divided into two main phases: the short early phase (0.5-3 h) with an acute FOXD1/CEBPA/JUNB-regulated pro-angiogenic response induced by xenobiotic stress, and the second anti-angiogenic step (6-24 h) with massive suppression of various angiogenesis-related processes, accompanied by the activation of cytoprotective mechanisms. Our analysis showed that the anti-angiogenic activity of CDDO-Im is mediated by its inhibition of the expression of PLAT, ETS1, A2M, SPAG9, RASGRP3, FBXO32, GCNT1 and HDGFRP3 and its direct interactions with EGFR, mTOR, NOS2, HSP90AA1, MDM2, SYK, IRF3, ATR and KIF14. SIGNIFICANCE Our findings provide valuable insights into the understanding of the molecular mechanisms of the anti-angiogenic activity of cyano enone-bearing triterpenoids and revealed a range of novel promising therapeutic targets to control pathological neovascularization.
Collapse
|
6
|
Xenograft-derived mRNA/miR and protein interaction networks of systemic dissemination in human prostate cancer. Eur J Cancer 2020; 137:93-107. [PMID: 32750503 DOI: 10.1016/j.ejca.2020.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Distant metastasis formation is the major clinical problem in prostate cancer (PCa) and the underlying mechanisms remain poorly understood. Our aim was to identify novel molecules that functionally contribute to human PCa systemic dissemination based on unbiased approaches. METHODS We compared mRNA, microRNA (miR) and protein expression levels in established human PCa xenograft tumours with high (PC-3), moderate (VCaP) or weak (DU-145) spontaneous micrometastatic potential. By focussing on those mRNAs, miRs and proteins that were differentially regulated among the xenograft groups and known to interact with each other we constructed dissemination-related mRNA/miR and protein/miR networks. Next, we clinically and functionally validated our findings. RESULTS Besides known determinants of PCa progression and/or metastasis, our interaction networks include several novel candidates. We observed a clear role of epithelial-to-mesenchymal transition (EMT) pathways for PCa dissemination, which was additionally confirmed by an independent human PCa model (ARCAP-E/-M). Two converging nodes, CD46 (decreasing with metastatic potential) and DDX21 (increasing with metastatic potential), were used to test the clinical relevance of the networks. Intriguingly, both network nodes consistently added prognostic information for patients with PCa whereas CD46 loss predicted poor outcome independent of established parameters. Accordingly, depletion of CD46 in weakly metastatic PCa cells induced EMT-like properties in vitro and spontaneous micrometastasis formation in vivo. CONCLUSIONS The clinical and functional relevance of the dissemination-related interaction networks shown here could be successfully validated by proof-of-principle experiments. Therefore, we suggest a direct pro-metastatic, clinically relevant role for the multiple novel candidates included in this study; these should be further exploited by future studies.
Collapse
|
7
|
Yan Q, Zhu K, Zhang L, Fu Q, Chen Z, Liu S, Fu D, Nakazato R, Yoshioka K, Diao B, Ding G, Li X, Wang H. A negative feedback loop between JNK-associated leucine zipper protein and TGF-β1 regulates kidney fibrosis. Commun Biol 2020; 3:288. [PMID: 32504044 PMCID: PMC7275040 DOI: 10.1038/s42003-020-1008-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
Renal fibrosis is controlled by profibrotic and antifibrotic forces. Exploring anti-fibrosis factors and mechanisms is an attractive strategy to prevent organ failure. Here we identified the JNK-associated leucine zipper protein (JLP) as a potential endogenous antifibrotic factor. JLP, predominantly expressed in renal tubular epithelial cells (TECs) in normal human or mouse kidneys, was downregulated in fibrotic kidneys. Jlp deficiency resulted in more severe renal fibrosis in unilateral ureteral obstruction (UUO) mice, while renal fibrosis resistance was observed in TECs-specific transgenic Jlp mice. JLP executes its protective role in renal fibrosis via negatively regulating TGF-β1 expression and autophagy, and the profibrotic effects of ECM production, epithelial-to-mesenchymal transition (EMT), apoptosis and cell cycle arrest in TECs. We further found that TGF-β1 and FGF-2 could negatively regulate the expression of JLP. Our study suggests that JLP plays a central role in renal fibrosis via its negative crosstalk with the profibrotic factor, TGF-β1.
Collapse
Affiliation(s)
- Qi Yan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qiang Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Fu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ryota Nakazato
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuji Yoshioka
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaogang Li
- Department of Internal Medicine, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Pan J, Yu H, Guo Z, Liu Q, Ding M, Xu K, Mao L. Emerging role of sperm-associated antigen 9 in tumorigenesis. Biomed Pharmacother 2018; 103:1212-1216. [DOI: 10.1016/j.biopha.2018.04.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/15/2022] Open
|
9
|
Ren B, Wei X, Zou G, He J, Xu G, Xu F, Huang Y, Zhu H, Li Y, Ma G, Yu P. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol Rep 2016; 35:2599-605. [PMID: 26934841 PMCID: PMC4811394 DOI: 10.3892/or.2016.4645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer testis antigen sperm-associated antigen 9 (SPAG9) is highly expressed in many types of cancers. In the present study, to obtain a better understanding of the relevance of SPAG9 in cancer diagnosis and treatment, the expression of SPAG9 mRNA and protein in lung cancer specimens was evaluated by RT-PCR, western blotting and immunohistochemistry. ELISA was used to quantify the SPAG9 autoantibody in the peripheral blood of lung cancer patients. The results showed that the expression of SPAG9 mRNA and protein in the lung cancer tissues was significantly higher than that in the adjacent non-cancerous tissues (P<0.01). The level of the SPAG9 autoantibody in the serum of lung cancer patients was significantly higher than the level in the healthy controls (P<0.001), and the level of the SPAG9 autoantibody in the serum of untreated patients was significantly higher than that in treated patients (P=0.002). SPAG9 IgG antibody levels were significantly lower in treated adenocarcinoma and small cell lung cancer patients than these levels in the untreated patients (P=0.006, P=0.026, respectively), while no statistical difference was found between treated and untreated squamous cell carcinoma patients. Our results suggest that the SPAG9 antibody in serum is a promising marker for the diagnosis of lung cancer, and the level of the humoral immune response to this antigen appears to be related to the type of lung cancer.
Collapse
Affiliation(s)
- Biqiong Ren
- Department of Immunology, Basic Medical College of Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiaobin Wei
- Department of Immunology, Basic Medical College of Central South University, Changsha, Hunan 410078, P.R. China
| | - Guoying Zou
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Junyu He
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Guofeng Xu
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Fei Xu
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yiran Huang
- Department of Laboratory of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Haowen Zhu
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Li
- Laboratory of The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Guoan Ma
- Department of Immunology, Basic Medical College of Central South University, Changsha, Hunan 410078, P.R. China
| | - Ping Yu
- Department of Immunology, Basic Medical College of Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
10
|
Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, Liu Y, Dong X. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther 2016; 9:1067-75. [PMID: 27042099 PMCID: PMC4780205 DOI: 10.2147/ott.s98727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Sperm-associated antigen 9 (SPAG9) is upregulated in several malignancies and its overexpression is positively correlated with cancer cell malignancies. However, the specific biological roles of SPAG9 in hepatocellular carcinoma (HCC) are less understood. Methods We analyzed SPAG9 and ETS-like gene 1, tyrosine kinase (ELK1) expression in 50 paired HCC specimens and adjacent noncancerous liver specimens using immunohistochemistry. SPAG9 small interfering RNA (siRNA) was used to knockdown SPAG9 expression in HCCLM3 and HuH7 cell lines. We used plasmids to upregulate ELK1 expression and siRNA to downregulate ELK1 expression in HuH7 cells. Quantitative real-time polymerase chain reaction and Western blot were used to evaluate the expression of SPAG9 and ELK1 at the mRNA and protein level, respectively. Wound healing, matrigel migration, and invasion analyses were performed to determine the effect of SPAG9 and ELK1 on HCC metastasis. Results SPAG9 and ELK1 were overexpressed in HCC tissue specimens and their expressions were higher in HCCLM3 and HuH7 cells compared to the low-metastatic HepG2 cells. Overexpression of SPAG9 was positively associated with tumor-node-metastasis staging (P=0.032), metastasis parameters (P=0.018) of HCC patients, and ELK1 expression (r=0.422, P<0.001) in HCC tissue specimens. In addition, knockdown of SPAG9 in HCCLM3 and HuH7 cells using siRNA significantly suppressed cell migration and invasion. Furthermore, we observed inhibition of ELK1 expression and p38 signaling. However, ELK1 overexpression reversed the inhibitory effects of SPAG9 siRNA on HCC cell metastasis and ELK1 depletion inhibited HuH7 cell migration and invasion. Conclusion SPAG9 overexpression was positively correlated with HCC metastasis and SPAG9-induced migration and invasion were partially dependent on ELK1 expression in HCC cell lines. These results suggest that SPAG9 may be a potential anti-metastasis target effective in HCC therapy.
Collapse
Affiliation(s)
- Qiuyue Yan
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Qian
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Bo Qin
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Xiuping Xu
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanan Wang
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejun Dong
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Lou G, Dong X, Xia C, Ye B, Yan Q, Wu S, Yu Y, Liu F, Zheng M, Chen Z, Liu Y. Direct targeting sperm-associated antigen 9 by miR-141 influences hepatocellular carcinoma cell growth and metastasis via JNK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:14. [PMID: 26790956 PMCID: PMC4721207 DOI: 10.1186/s13046-016-0289-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aberrant expression of sperm-associated antigen 9 (SPAG9) is associated with numerous cancers, including hepatocellular carcinoma (HCC). The exploration of molecules and mechanisms regulating SPAG9 expression may provide new options for HCC therapy. METHODS MiRNA target prediction programs were used to explore SPAG9-targeted miRNAs. SPAG9 and miR-141 expression were detected in HCC tissues and cell lines by Western blot and real-time PCR. Dual-luciferase reporter assay was utilized to validate SPAG9 as a direct target gene of miR-141. Cell proliferation, invasion, and migration assays were used to determine whether miR-141-mediated regulation of SPAG9 could affect HCC progression. RESULTS An inverse correlation was observed between SPAG9 and miR-141 expression in HCC tissues and cell lines. Dual-luciferase reporter assay further showed that SPAG9 was a direct target gene of miR-141. The ectopic expression of miR-141 could markedly suppress SPAG9 expression in HCC cells. MiR-141 overexpression also resulted in significantly reduced cell proliferation, invasion, and migration, and imitation of the SPAG9 knockdown effects on HCC cells. Furthermore, SPAG9 restoration in miR-141-expressing cells sufficiently attenuated the tumor-suppressive effects of miR-141. Finally, JNK activity was found to be reduced by miR-141 overexpression the same way as by SPAG9 silencing. The overexpression of SPAG9 lacking its 3'-UTR significantly restored JNK activity and its downstream genes in miR-141-transfected HCC cells. CONCLUSION MiR-141 suppression may cause aberrant expression of SPAG9 and promote HCC tumorigenesis via JNK pathway.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Xuejun Dong
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Caixia Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Qiuyue Yan
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Ye Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Feifei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Suri A, Jagadish N, Saini S, Gupta N. Targeting cancer testis antigens for biomarkers and immunotherapy in colorectal cancer: Current status and challenges. World J Gastrointest Oncol 2015; 7:492-502. [PMID: 26691579 PMCID: PMC4678396 DOI: 10.4251/wjgo.v7.i12.492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer ranks third among the estimated cancer cases and cancer related mortalities in United States in 2014. Early detection and efficient therapy remains a significant clinical challenge for this disease. Therefore, there is a need to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens have emerged as a potential targets for developing novel clinical biomarkers and immunotherapy for various malignancies. These germ cell specific proteins exhibit aberrant expression in cancer cells and contribute in tumorigenesis. Owing to their unique expression profile and immunogenicity in cancer patients, cancer testis antigens are clinically referred as the most promising tumor associated antigens. Several cancer testis antigens have been studied in colorectal cancer but none of them could be used in clinical practice. This review is an attempt to address the promising cancer testis antigens in colorectal cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
|