1
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Bi Y, Li H, Yi D, Sun Y, Bai Y, Zhong S, Song Y, Zhao G, Chen Y. Cordycepin Augments the Chemosensitivity of Human Glioma Cells to Temozolomide by Activating AMPK and Inhibiting the AKT Signaling Pathway. Mol Pharm 2018; 15:4912-4925. [PMID: 30336060 DOI: 10.1021/acs.molpharmaceut.8b00551] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most commonly encountered subtype of deadly brain cancer in human adults. It has a high recurrence rate and shows aggressive proliferation. The novel cytotoxic agent temozolomide (TMZ) is now frequently applied as the first-line chemotherapeutic treatment for GBM; however, a considerable number of patients treated with TMZ turn out to be refractory to this drug. Hence, a more effective therapeutic approach is urgently required to overcome this critical issue. Accumulating evidence has shown that both AMPK and AKT are activated by TMZ, while only AMPK contributes to apoptosis via mammalian target of rapamycin (mTOR) inhibition. Accordingly, AKT increases the tumorigenicity and chemoresistance of various tumor cells. In addition, AKT overexpression increases the resistance of glioma cells to TMZ. Cordycepin, a major bioactive component in Cordyceps militaris, exhibits immunomodulatory, anticancer, antioxidant, and anti-inflammatory activities, among other therapeutic effects. To date, whether GBM sensitivity to TMZ can be enhanced by cordycepin largely remains unknown. In the present study, we evaluated the effect of the combined use of cordycepin and TMZ in the treatment of GBM and explored the molecular mechanisms. Notably, we found that treatment with cordycepin led to inhibition of cellular proliferation, migration, and invasion as well as cellular apoptosis and cell cycle arrest in glioma cell lines in vitro. Likewise, the combined treatment with both cordycepin and TMZ synergistically resulted in inhibition of cellular growth, migration, and tumor metastasis as well as induction of cellular apoptosis and cell cycle arrest. Moreover, we also demonstrated that cordycepin effectively enhanced the activation of AMPK and suppressed the activity of AKT, whose activation was only induced by TMZ. Furthermore, there was an apparent reduction in the expression levels of p-mTOR, p-p70S6K, matrix metalloproteinase (MMP)-2, and MMP-9 in the group treated with both cordycepin and TMZ, in comparison with those in the groups treated with either cordycepin or TMZ alone. In vivo, the combination therapy also obviously reduced the tumor volume as well as prolonged the median survival time of xenograft models. In brief, our results suggested that cordycepin augments TMZ sensitivity in human glioma cells at least partially through activation of AMPK and suppression of the AKT signaling pathway. Overall, the combination therapy of cordycepin and TMZ potentially provides a novel option for a better prognosis of patients with GBM in clinical practice.
Collapse
Affiliation(s)
- Yiming Bi
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Han Li
- Department of Respiratory Medicine , The Second Hospital of Jilin University , 130000 Changchun , China
| | - Dazhuang Yi
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Yuxue Sun
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Yang Bai
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Sheng Zhong
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Yang Song
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Gang Zhao
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| | - Yong Chen
- Department of Neurosurgery , The First Hospital of Jilin University , 130000 Changchun , China
| |
Collapse
|
3
|
Ferrucci M, Biagioni F, Lenzi P, Gambardella S, Ferese R, Calierno MT, Falleni A, Grimaldi A, Frati A, Esposito V, Limatola C, Fornai F. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells. Oncotarget 2018; 8:29574-29599. [PMID: 28418837 PMCID: PMC5444688 DOI: 10.18632/oncotarget.15906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | - Stefano Gambardella
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Rosangela Ferese
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Maria Teresa Calierno
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alfonso Grimaldi
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Vincenzo Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy.,Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy.,Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
4
|
Liu X, Mangla R, Tian W, Qiu X, Li D, Walter KA, Ekholm S, Johnson MD. The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma. J Neurooncol 2017; 135:553-560. [PMID: 28889246 DOI: 10.1007/s11060-017-2602-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
The radiogenomics association of neovascularization is important for overall survival (OS) in glioblastoma patients and remains unclear. The purpose of this study is to assess the association between MR perfusion imaging derived parameters and genomic biomarkers of glioblastoma, and to evaluate their prognostic value. This retrospective study enrolled 41 patients with newly diagnosed glioblastoma. The mean and maximal relative cerebral blood volume (rCBV) ratio (rCBVmean and rCBVmax), derived from MR perfusion weighted imaging, of the enhancing tumor, as well as maximal rCBV ratio of peri-enhancing tumor area (rCBVperi-tumor) were measured. The ki-67 labeling index, mammalian target of rapamycin (mTOR) activation, epidermal growth factor receptor (EGFR) amplification, isocitrate dehydrogenase (IDH) mutation and TP53 were assessed. There was a significant correlation between rCBVmax and mTOR based on Pearson's correlations with Benjamini-Hochberg adjustment for controlling false discovery rate, p = 0.047. The rCBVperi-tumor showed significant correlation with mTOR (p = 0.0183) after adjustment of gender and EGFR status. The mean rCBVperi-tumor value of the patients with OS shorter than 14 months was significantly higher than patients with OS longer than 14 months, p = 0.002. The rCBVperi-tumor and age were the two strongest predictors of OS (hazard ratio = 1.29 and 1.063 respectively) by Cox regression analysis. This study showed that hemodynamic abnormalities of glioblastoma were associated with genomics activation status of mTOR-EGFR pathway, however, the radiogenomics associations are different in enhancing and peri-enhancing area of glioblastoma. The rCBVperi-tumor has better prognostic value than genomic biomarkers alone.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA.
| | - Rajiv Mangla
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Wei Tian
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Clinical and Translational Research and Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin A Walter
- Department of Neurosurgey, University of Rochester Medical Center, Rochester, NY, USA
| | - Sven Ekholm
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Mahlon D Johnson
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Shen L, Sun C, Li Y, Li X, Sun T, Liu C, Zhou Y, Du Z. MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway. Tumour Biol 2015; 36:6929-38. [PMID: 25854175 PMCID: PMC4644202 DOI: 10.1007/s13277-015-3409-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/29/2015] [Indexed: 12/30/2022] Open
Abstract
Glioma has been investigated for decades, but the prognosis remains poor because of rapid proliferation, its aggressive potential, and its resistance to chemotherapy or radiotherapy. The mammalian target of rapamycin (mTOR) is highly expressed and regulates cellular proliferation and cell growth. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene transcription and translation via up-regulating or down-regulating the levels of miRNAs. This study was conducted to explore the molecular functions of miR-199a-3p in glioma. We detected the expression of miR-199a-3p in glioma samples by quantitative PCR (qPCR). Then, we transfected the U87 and U251 cell lines with miR-199a-3p. Cellular proliferation, invasion, and apoptosis were assessed to explain the function of miR-199a-3p. PCR confirmed that the expression of miR-199a-3p was lower in glioma samples combined with normal brain tissues. The over-expression of miR-199a-3p might target mTOR and restrained cellular growth and proliferation but not invasive and apoptosis capability. Results indicated that cellular proliferation was inhibited to regulate the AKT/mTOR signaling pathway by elevating levels of miR-199a-3p. MiR-199a-3p in glioma cell lines has effects similar to the tumor suppressor gene on cellular proliferation via the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Liang Shen
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Chunming Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xuetao Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Chuanjin Liu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China.
| | - Ziwei Du
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, People's Republic of China
| |
Collapse
|