1
|
Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D. Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients. Bioengineering (Basel) 2023; 10:1187. [PMID: 37892917 PMCID: PMC10604230 DOI: 10.3390/bioengineering10101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types-bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)-highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions.
Collapse
Affiliation(s)
- Max Baron
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Philip Drohat
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Brooke Crawford
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Oliinyk D, Eigenberger A, Felthaus O, Haerteis S, Prantl L. Chorioallantoic Membrane Assay at the Cross-Roads of Adipose-Tissue-Derived Stem Cell Research. Cells 2023; 12:cells12040592. [PMID: 36831259 PMCID: PMC9953848 DOI: 10.3390/cells12040592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
With a history of more than 100 years of different applications in various scientific fields, the chicken chorioallantoic membrane (CAM) assay has proven itself to be an exceptional scientific model that meets the requirements of the replacement, reduction, and refinement principle (3R principle). As one of three extraembryonic avian membranes, the CAM is responsible for fetal respiration, metabolism, and protection. The model provides a unique constellation of immunological, vascular, and extracellular properties while being affordable and reliable at the same time. It can be utilized for research purposes in cancer biology, angiogenesis, virology, and toxicology and has recently been used for biochemistry, pharmaceutical research, and stem cell biology. Stem cells and, in particular, mesenchymal stem cells derived from adipose tissue (ADSCs) are emerging subjects for novel therapeutic strategies in the fields of tissue regeneration and personalized medicine. Because of their easy accessibility, differentiation profile, immunomodulatory properties, and cytokine repertoire, ADSCs have already been established for different preclinical applications in the files mentioned above. In this review, we aim to highlight and identify some of the cross-sections for the potential utilization of the CAM model for ADSC studies with a focus on wound healing and tissue engineering, as well as oncological research, e.g., sarcomas. Hereby, the focus lies on the combination of existing evidence and experience of such intersections with a potential utilization of the CAM model for further research on ADSCs.
Collapse
Affiliation(s)
- Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| | - Andreas Eigenberger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between osteosarcoma and other cells in the bone microenvironment: From mechanism to clinical applications. Front Cell Dev Biol 2023; 11:1123065. [PMID: 37206921 PMCID: PMC10189553 DOI: 10.3389/fcell.2023.1123065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is a primary bone tumor with a high mortality rate. The event-free survival rate has not improved significantly in the past 30 years, which brings a heavy burden to patients and society. The high heterogeneity of osteosarcoma leads to the lack of specific targets and poor therapeutic effect. Tumor microenvironment is the focus of current research, and osteosarcoma is closely related to bone microenvironment. Many soluble factors and extracellular matrix secreted by many cells in the bone microenvironment have been shown to affect the occurrence, proliferation, invasion and metastasis of osteosarcoma through a variety of signaling pathways. Therefore, targeting other cells in the bone microenvironment may improve the prognosis of osteosarcoma. The mechanism by which osteosarcoma interacts with other cells in the bone microenvironment has been extensively investigated, but currently developed drugs targeting the bone microenvironment have poor efficacy. Therefore, we review the regulatory effects of major cells and physical and chemical properties in the bone microenvironment on osteosarcoma, focusing on their complex interactions, potential therapeutic strategies and clinical applications, to deepen our understanding of osteosarcoma and the bone microenvironment and provide reference for future treatment. Targeting other cells in the bone microenvironment may provide potential targets for the development of clinical drugs for osteosarcoma and may improve the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Khan Ayesha
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Shijie Chen,
| |
Collapse
|
5
|
Sarhadi VK, Daddali R, Seppänen-Kaijansinkko R. Mesenchymal Stem Cells and Extracellular Vesicles in Osteosarcoma Pathogenesis and Therapy. Int J Mol Sci 2021; 22:11035. [PMID: 34681692 PMCID: PMC8537935 DOI: 10.3390/ijms222011035] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.
Collapse
|
6
|
Chang X, Ma Z, Zhu G, Lu Y, Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol 2021; 29:100372. [PMID: 34258182 PMCID: PMC8254115 DOI: 10.1016/j.jbo.2021.100372] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with significant potential for regenerative medicine. The tumorigenesis of osteosarcoma is an intricate system and MSCs act as an indispensable part of this, interacting with the tumor microenvironment (TME) during the process. MSCs link to cells by acting on each component in the TME via autocrine or paracrine extracellular vesicles for cellular communication. Because of their unique characteristics, MSCs can be modified and processed into good biological carriers, loaded with drugs, and transfected with anticancer genes for the targeted treatment of osteosarcoma. Previous high-quality reviews have described the biological characteristics of MSCs; this review will discuss the effects of MSCs on the components of the TME and cellular communication and the prospects for clinical applications of MSCs.
Collapse
Key Words
- 3TSR, Three type 1 repeats
- 5 FC, 5-fluorocytosine
- AD-MSCs, Adipose-derived MSCs
- AQP1, Aquaporin-1
- BMSC-derived exosomes, BMSC-Exos
- BMSCs, Bone marrow mesenchymal stem cells
- CAFs, Carcinoma-associated-fibroblasts
- CRC, Colorectal cancer
- CSF, Colony-stimulating factor
- Cellular communication
- Clinical application
- DOX, Doxorubicin
- DP-MSCs, Dental pulp-derived MSCs, hUC-MSCs, Human umbilical cord MSCs
- ECM, Extracellular matrix
- ESCs, embryonic stem cells
- EVs, Extracellular vesicles
- GBM, Glioblastoma
- HCC, hepatocellular carcinoma
- LINE-1, Long interspersing element 1
- MCP-1, Monocyte chemoattractant protein-1
- MSC-Exos, MSC-derived exosomes
- MSC-MVs, MSC microvesicles
- MSCs
- MSCs, Mesenchymal stem cells
- OPG, osteoprotegerin
- OS, osteosarcoma
- Osteosarcoma
- PDGFRα, Platelet derived growth factor receptor α
- PDGFRβ, Platelet derived growth factor receptor β
- PDGFα, Platelet derived growth factor α
- S TRAIL, Secretable variant of the TNF-related apoptosis-inducing ligand
- SD-MSCs, stressed MSCs
- SDF-1, Stromal cell-derived factor 1
- TGF, Transforming growth factor
- TME
- TME, Tumor microenvironment
- TNF, Tumor necrosis factor
- TRA2B, Transformer 2β
- VEGF, Vascular endothelial growth factor
- hASCs, human adipose stem cells
- iPSCs, induced pluripotent stem cells
- yCD::UPRT, Yeast cytosine deaminase::uracil phosphoribosyl transferase
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
7
|
Wang Y, Chu Y, Li K, Zhang G, Guo Z, Wu X, Qiu C, Li Y, Wan X, Sui J, Zhang D, Xiang H, Chen B. Exosomes Secreted by Adipose-Derived Mesenchymal Stem Cells Foster Metastasis and Osteosarcoma Proliferation by Increasing COLGALT2 Expression. Front Cell Dev Biol 2020; 8:353. [PMID: 32523950 PMCID: PMC7262406 DOI: 10.3389/fcell.2020.00353] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Homosapien collagen beta (1-O) galactosyl transferase 2 (COLGALT2) is an important enzyme during collagen glycosylation, yet its biological functions in cancer are incompletely understood. Our previous study revealed that in the osteosarcoma microenvironment, adipose-derived mesenchymal stem cells (ADSCs) demonstrate cancer-promoting effects, but the exact mechanisms remain unclear. The aim of this study was to investigate the role of COLGALT2 in the osteosarcoma-fostering effects of ADSCs. Materials and Methods In this study, we compared COLGALT2 expression between primary and metastatic osteosarcoma tissues and found that metastatic tissues expressed significantly higher COLGALT2 levels. Then, we isolated and identified exosomes secreted by ADSCs. Additionally, we assessed the roles of ADSC exosomes and COLGALT2 in the osteosarcoma-promoting effects of ADSCs. Results Our results showed that ADSC exosomes could foster the invasion, migration, and proliferation of osteosarcoma cells, together with increasing COLGALT2 expression. COLGALT2 inhibition in MG63 cells suppressed the ADSC exosome-mediated fostering of osteosarcoma cell invasion, migration and proliferation in vitro. Conversely, COLGALT2 overexpression promoted U-2OS cell invasion, migration and proliferation in vitro. Additionally, COLGALT2 inhibition attenuated metastasis and tumor growth, and ADSC exosomes promoted tumor progression, as demonstrated in a nude mouse model of osteosarcoma. Conclusion According to these data, ADSC exosomes foster osteosarcoma progression by increasing COLGALT2 expression in osteosarcoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Zhu Guo
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Xiaolin Wu
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Chensheng Qiu
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Wan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Sui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Zhang
- Department of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Bohua Chen
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| |
Collapse
|
8
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|