1
|
Turhal G, Demirkan B, Baslilar IN, Yuncu NS, Baytas SN, Demiroglu-Zergeroglu A. Preliminary evaluation of antiproliferative and apoptotic activities of novel indolin-2-one derivatives. Drug Dev Res 2024; 85:e22229. [PMID: 38958104 DOI: 10.1002/ddr.22229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Indole-based agents are frequently used in targeted or supportive therapy of several cancers. In this study, we investigated the anticancer properties of originally synthesized novel indolin-2-one derivatives (6a-d) against Malignant Mesothelioma, Breast cancer, and Colon Cancer cells. Our results revealed that all derivatives were effectively delayed cell proliferation by inhibiting the ERK1/2, AKT, and STAT3 signaling pathways in a concentration-dependent manner. Additionally, these variants induced cell cycle arrest in the S phase, accompanied by elevated levels of p21 and p27 expressions. Derivatives also initiated mitochondrial apoptosis through the upregulation of Bax and downregulation of Bcl-2 proteins, leading to the activation of caspase 3 and PARP cleavage in exposed cells. Remarkably, three of the indolin-2-one derivatives displayed significant selectivity towards Breast and Colon Cancer cells, with compound 6d promising as the most potent and wide spectral one for all cancer cell lines.
Collapse
Affiliation(s)
- Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Busra Demirkan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Izel Nermin Baslilar
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Nimet Sule Yuncu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
2
|
Prasad A, Roy AC, Priya K, Meena R, Ghosh I. Effect of differential deprivation of nutrients on cellular proliferation, oxidative stress, mitochondrial function, and cell migration in MDA-MB-231, HepG2, and HeLa cells. 3 Biotech 2023; 13:339. [PMID: 37705865 PMCID: PMC10495304 DOI: 10.1007/s13205-023-03759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Cancerous cells display metabolic engineering through enhanced utilization of nutrients to support their increased requirements for proliferation, bioenergetics, biosynthesis, redox homeostasis, and cell signaling. To investigate the extent to which malignant cells rely on glycolysis and glutaminolysis, the effects of differential deprivation of nutrients such as d-glucose, l-glutamine, and pyruvate on proliferation, morphology, cell cycle, oxidative stress, mitochondrial function, autophagic vacuole formation, and migration in MDA-MB-231, HepG2, and HeLa cells were investigated in this study. Cell viability assay, cell morphology, and ATP assay showed higher dependence of MDA-MB-231 and HepG2 cells on glucose and glutamine, respectively, for cell survival, growth, ATP production, and proliferation, while HeLa cells were equally dependent on both. However, the combination of all three nutrients displayed maximum proliferation. Differential deprivation of glucose in the absence of glutamine resulted in G0/G1 plus G2/M arrest in MDA-MB-231, whereas G0/G1 arrest in HepG2 and S-phase arrest in HeLa cells occurred at 48 h. Although the differential withdrawal of nutrients revealed a varying degree of effect dependent on cell type, nutrient type, nutrient concentrations, and deprivation time, a general trend of increased oxidative stress, loss of mitochondrial membrane potential, and ATP and antioxidant (GSH) depletion led to mitochondrial dysfunction in all three cell lines and inhibition of cell migration in MDA-MB-231 and HeLa cells at 48 h. Extreme deprivation of nutrients formed autophagic vacuoles. Importantly, normal cells (HEK293) remained unaffected under most of the nutrient-deprived conditions examined. This study enhances our understanding of the impact of differential nutrient deprivation on critical characteristics of cancer cells, contributing to the development of metabolism-based effective anticancer strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03759-w.
Collapse
Affiliation(s)
- Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashim Chandra Roy
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Komal Priya
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ramovatar Meena
- Nanotoxicology Laboratory, Lab. # 312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
3
|
J591 functionalized paclitaxel-loaded PLGA nanoparticles successfully inhibited PSMA overexpressing LNCaP cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
5
|
Subramani M, Ramamoorthy G, Hemaiswarya S, Waidha K, Brindha J, Balamurali MM, Doble M, Rajendran S. Hydroxy Piperlongumines: Synthesis, Antioxidant, Cytotoxic Effect on Human Cancer Cell Lines, Inhibitory Action and ADMET Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Muthuraman Subramani
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - Gayathri Ramamoorthy
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Shanmugam Hemaiswarya
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Kamran Waidha
- Amity Institute of Biotechnology Amity University Uttar Pradesh, Sector-125 Noida 201303 India
| | - J. Brindha
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - M. M. Balamurali
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| | - Mukesh Doble
- Department of Biotechnology Indian Institute of Technology Madras Tamilnadu 600036 India
| | - Saravanakumar Rajendran
- Chemistry division School of Advanced Sciences Vellore Institute of Technology Chennai 600127 Tamilnadu India
| |
Collapse
|
6
|
Chakraborty S, Dlie ZY, Mukherjee B, Besra SE, Sengupta S, Sen R, Mukherjee A. A Comparative Investigation of the Ability of Various Aptamer-Functionalized Drug Nanocarriers to Induce Selective Apoptosis in Neoplastic Hepatocytes: In Vitro and In Vivo Outcome. AAPS PharmSciTech 2020; 21:89. [PMID: 32026264 DOI: 10.1208/s12249-020-1629-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Aptamers offer a significant promise to target various cancers including hepatocellular carcinoma (HCC), for their high affinity and ability to reach the target site(s), non-immunogenicity, and low cost. The targeting ability to neoplastic hepatocytes by the aptamer, TLS 9a with phosphorothioate backbone modification (designated as L5), has not been explored yet. Hence, we investigated the comparative potential of L5 with some other previously reported liver cancer cell-specific aptamers, conjugated on the surface of drug-nanocarriers. Various in vitro studies such as cytotoxicity, in vitro cellular uptake, cell cycle analysis, and investigations related to apoptosis were performed. In vivo studies carried out here include macroscopic and microscopic hepatic alterations in chemically induced hepatocarcinogenesis in rats, upon experimental treatments. The outcome of the investigations revealed that L5-functionalized drug-nanocarrier (PTX-NPL5) had the highest apoptotic potential compared with the other aptamer-conjugated experimental formulations. Further, its maximum internalization by neoplastic hepatocytes and minimum internalization by normal hepatocytes indicate that it had the potential to preferentially target the neoplastic hepatocytes. Data of in vivo studies revealed that PTX-NPL5 reduced tumor incidences and tumor progress. Superior potency of PTX-NPL5 may be due to the maximum affinity of L5 towards neoplastic hepatocytes resulting in maximum permeation of drug-nanocarrier in them. An effective site-specific targeting of neoplastic hepatocytes can be achieved by L5 for preferential delivery of therapeutics. Further, investigations are needed to identify the target protein(s) on neoplastic hepatocytes responsible for ligand-receptor interaction of L5.
Collapse
|
7
|
Chakraborty S, Dlie ZY, Chakraborty S, Roy S, Mukherjee B, Besra SE, Dewanjee S, Mukherjee A, Ojha PK, Kumar V, Sen R. Aptamer-Functionalized Drug Nanocarrier Improves Hepatocellular Carcinoma toward Normal by Targeting Neoplastic Hepatocytes. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:34-49. [PMID: 32146417 PMCID: PMC7063179 DOI: 10.1016/j.omtn.2020.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Site-specific delivery of chemotherapeutics specifically to neoplastic hepatocytes without affecting normal hepatocytes should be a focus for potential therapeutic management of hepatocellular carcinoma (HCC). The aptamer TLS 9a with phosphorothioate backbone modifications (L5) has not been explored so far for preferential delivery of therapeutics in neoplastic hepatocytes to induce apoptosis. Thus, the objective of the present investigation was to compare the therapeutic potential of L5-functionalized drug nanocarrier (PTX-NPL5) with those of the other experimental drug nanocarriers functionalized by previously reported HCC cell-targeting aptamers and non-aptamer ligands, such as galactosamine and apotransferrin. A myriad of well-defined investigations such as cell cycle analysis, TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) assay, and studies related to apoptosis, histopathology, and immunoblotting substantiated that PTX-NPL5 had the highest potency among the different ligand-attached experimental formulations in inducing selective apoptosis in neoplastic hepatocytes via a mitochondrial-dependent apoptotic pathway. PTX-NPL5 did not produce any notable toxic effects in healthy hepatocytes, thus unveiling a new and a safer option in targeted therapy for HCC. Molecular modeling study identified two cell-surface biomarker proteins (tumor-associated glycoprotein 72 [TAG-72] and heat shock protein 70 [HSP70]) responsible for ligand-receptor interaction of L5 and preferential internalization of PTX-NPL5 via clathrin-mediated endocytosis in neoplastic hepatocytes. The potential of PTX-NPL5 has provided enough impetus for its rapid translation from the pre-clinical to clinical domain to establish itself as a targeted therapeutic to significantly prolong survival in HCC.
Collapse
Affiliation(s)
- Samrat Chakraborty
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Zewdu Yilma Dlie
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Somdyuti Chakraborty
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Somdatta Roy
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Shila Elizabeth Besra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Alankar Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Ramkrishna Sen
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
8
|
The Bispidinone Derivative 3,7-Bis-[2-( S)-amino-3-(1 H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one Dihydrochloride Induces an Apoptosis-Mediated Cytotoxic Effect on Pancreatic Cancer Cells In Vitro. Molecules 2019; 24:molecules24030524. [PMID: 30709047 PMCID: PMC6384835 DOI: 10.3390/molecules24030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a complex, heterogeneous disease with a dismal prognosis. Current therapies have failed to improve survival outcomes, urging the need for discovery of novel targeted treatments. Bispidinone derivatives have yet to be investigated as cytotoxic agents against PC cells. The cytotoxic effect of four bispidinone derivatives (BisP1: 1,5-diphenyl-3,7-bis(2-hydroxyethyl)-3,7-diazabicyclo[3.3.1]nonan-9-one; BisP2: 3,7-bis-(2-(S)-amino-4-methylsulfanylbutyryl)-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride; BisP3: [2-{7-[2-(S)-tert-butoxycarbonylamino-3-(1H-indol-3-yl)-propionyl]-9-oxo-1,5-diphenyl-3,7-diazabicyclo[3.3.1]non-3-yl}-1-(S)-(1H-indol-3-ylmethyl)-2-oxoethyl]-carbamic acid tertbutyl ester; BisP4: 3,7-bis-[2-(S)-amino-3-(1H-indol-3-yl)-propionyl]-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one dihydrochloride) was assessed against PC cell lines (MiaPaca-2, CFPAC-1 and BxPC-3). Cell viability was assessed using a Cell Counting Kit-8 (CCK-8) colorimetric assay, while apoptotic cell death was confirmed using fluorescence microscopy and flow cytometry. Initial viability screening revealed significant cytotoxic activity from BisP4 treatment (1 µM–100 µM) on all three cell lines, with IC50 values for MiaPaca-2, BxPC-3, and CFPAC-1 16.9 µM, 23.7 µM, and 36.3 µM, respectively. Cytotoxic treatment time-response (4 h, 24 h, and 48 h) revealed a 24 h treatment time was sufficient to produce a cytotoxic effect on all cell lines. Light microscopy evaluation (DAPI staining) of BisP4 treated MiaPaca-2 PC cells revealed dose-dependent characteristic apoptotic morphological changes. In addition, flow cytometry confirmed BisP4 induced apoptotic cell death induction of activated caspase-3/-7. The bispidinone derivative BisP4 induced an apoptosis-mediated cytotoxic effect on MiaPaca-2 cell lines and significant cytotoxicity on CFPAC-1 and BxPC-3 cell lines. Further investigations into the precise cellular mechanisms of action of this class of compounds are necessary for potential development into pre-clinical trials.
Collapse
|
9
|
Design, synthesis, and biological evaluation of indole carboxylic acid esters of podophyllotoxin as antiproliferative agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2266-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Wu S, Chou H, Yuh C, Mekuria SL, Kao Y, Tsai H. Radiation-Sensitive Dendrimer-Based Drug Delivery System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700339. [PMID: 29610720 PMCID: PMC5827102 DOI: 10.1002/advs.201700339] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Indexed: 05/13/2023]
Abstract
Combination of chemotherapy and radiotherapy is used to enhance local drug delivery while reducing off-target tissue effects. Anticancer drug doxorubicin (DOX) is loaded into l-cysteine modified G4.5 dendrimer (GC/DOX) and released at different pH values in the presence and absence of γ-radiation. Presence of γ-radiation significantly improves DOX release from the GC/DOX under acidic pH conditions, suggesting that GC dendrimer is a radiation-sensitive drug delivery system. GC/DOX is further evaluated by determining cytotoxicity in uterine cervical carcinoma HeLa cells. GC/DOX shows high affinity for cancer cells and effective drug release following an external stimulus (radiation exposure), whereas an in vivo zebrafish study confirms that l-cysteine acts as a radiosensitizer. GC/DOX treatment combined with radiotherapy synergistically and successfully inhibits cancer cell growth.
Collapse
Affiliation(s)
- Szu‐Yuan Wu
- Department of Radiation OncologyWan Fang HospitalTaipei Medical University116TaipeiTaiwan
- Department of Internal MedicineSchool of MedicineCollege of MedicineTaipei Medical University110TaipeiTaiwan
| | - Hsiao‐Ying Chou
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Chiou‐Hwa Yuh
- Institute of Molecular and Genomic MedicineNational Health Research Institutes350ZhunanMiaoliTaiwan
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua University300HsinchuTaiwan
- Department of Biological Science and TechnologyNational Chiao Tung University300HsinchuTaiwan
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Yu‐Chih Kao
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology106TaipeiTaiwan
| |
Collapse
|