1
|
Luo S, Bai Y, Wang B, Xu H, Zhang S, Guo G, Li X, Sun H, Cui X. HOXA1 Promotes Migration, Invasion and Cell Cycle, and Suppresses Cisplatin Sensitivity of Laryngeal Cancer Cells By Mediating AKT/mTOR Pathway. TOHOKU J EXP MED 2025; 265:161-171. [PMID: 39085122 DOI: 10.1620/tjem.2024.j073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Homeobox A1 (HOXA1) is implicated in the progression of various cancers, but its biological function in laryngeal cancer (LC) remains undefined, which is the foothold of our study. Bioinformatics analysis and survival analysis were performed to predict HOXA1 expression in LC tissues, and the prognostic relationship between high HOXA1 expression and LC. Whether high HOXA1 expression correlated with the clinical characteristics and prognosis of LC patients was analyzed. LC cell viability and sensitivity to cisplatin were determined by Methyl thiazolyl tetrazolium assay. The cell migration, invasion, and cell cycle after transfection were examined by Wound healing, Transwell, and flow cytometry assays, respectively. The corresponding mRNA and protein expressions were measured by quantitative real-time PCR or Western blot. A higher expression of HOXA1 was detected in LC tissues, which was found to be relevant to poor prognosis of LC patients. The association of high expression of HOXA1 with lymph node and clinical stage was also confirmed. Silencing of HOXA1 in LC cells enhanced the cell sensitivity to cisplatin, inhibited viability, migration, invasion and cell cycle, and reduced N-Cadherin, Vimentin, PCNA, p-AKT and p-mTOR expressions, while overexpression of HOXA1 had the opposite effects. Collectively, HOXA1 boosts migration, invasion and cell cycle, while suppressing cisplatin sensitivity of LC cells by mediating AKT/mTOR pathway, hinting that HOXA1 is a promising biomarker for diagnosis and prognosis of LC in clinical practice.
Collapse
Affiliation(s)
- Shaohao Luo
- Graduate School, Inner Mongolia Medical University
| | - Yunfei Bai
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Boqian Wang
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Haixia Xu
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Shu Zhang
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Gang Guo
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Xin Li
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Hongyang Sun
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| | - Xiaobo Cui
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Hospital of Inner Mongolia Medical University
| |
Collapse
|
2
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
3
|
Jiang L, Shen J, Darst BF, Haiman CA, Mancuso N, Conti DV. Hierarchical joint analysis of marginal summary statistics-Part II: High-dimensional instrumental analysis of omics data. Genet Epidemiol 2024; 48:291-309. [PMID: 38887957 DOI: 10.1002/gepi.22577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Instrumental variable (IV) analysis has been widely applied in epidemiology to infer causal relationships using observational data. Genetic variants can also be viewed as valid IVs in Mendelian randomization and transcriptome-wide association studies. However, most multivariate IV approaches cannot scale to high-throughput experimental data. Here, we leverage the flexibility of our previous work, a hierarchical model that jointly analyzes marginal summary statistics (hJAM), to a scalable framework (SHA-JAM) that can be applied to a large number of intermediates and a large number of correlated genetic variants-situations often encountered in modern experiments leveraging omic technologies. SHA-JAM aims to estimate the conditional effect for high-dimensional risk factors on an outcome by incorporating estimates from association analyses of single-nucleotide polymorphism (SNP)-intermediate or SNP-gene expression as prior information in a hierarchical model. Results from extensive simulation studies demonstrate that SHA-JAM yields a higher area under the receiver operating characteristics curve (AUC), a lower mean-squared error of the estimates, and a much faster computation speed, compared to an existing approach for similar analyses. In two applied examples for prostate cancer, we investigated metabolite and transcriptome associations, respectively, using summary statistics from a GWAS for prostate cancer with more than 140,000 men and high dimensional publicly available summary data for metabolites and transcriptomes.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jiayi Shen
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcu F Darst
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
6
|
Zeng F, Li D, Kang X, Wu Q, Song M, Ou Z, Yang Z, Yang J, Luo L. MALAT1 promotes FOXA1 degradation by competitively binding to miR-216a-5p and enhancing neuroendocrine differentiation in prostate cancer. Transl Oncol 2024; 39:101807. [PMID: 38235618 PMCID: PMC10628887 DOI: 10.1016/j.tranon.2023.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Prostate cancer (PC) is a leading cause of cancer-related death in males worldwide. Neuroendocrine differentiation (NED) is a feature of PC that often goes undetected and is associated with poor patient outcomes. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs/miRs), and messenger RNAs (mRNAs) play important roles in the development and progression of PC. METHODS In this study, we used transcriptome sequencing and bioinformatics analysis to identify key regulators of NED in PC. Specifically, we examined the expression of PC-related lncRNAs, miRNAs, and mRNAs in PC cells and correlated these findings with NED phenotypes. RESULTS Our data revealed that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and zinc finger protein 91 (ZFP91) were upregulated in PC, while miR-216a-5p was down-regulated. Ectopic expression of MALAT1 induced NED and promoted malignant phenotypes of PC cells. Furthermore, we found that MALAT1 competitively bound to miR-216a-5p, upregulated ZFP91, and promoted the degradation of forkhead box A1 (FOXA1), a key gene involved in NED of PC. CONCLUSION Taken together, these results suggest that MALAT1 plays an oncogenic role in NED and metastasis of PC via the miR-216a-5p/ZFP91/FOXA1 pathway. Our study highlights the potential of targeting this pathway as a novel therapeutic strategy for PC.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Qinghui Wu
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zhewen Ou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zuobing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Jing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Liumei Luo
- Department of Scientific Research, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan 570311, China.
| |
Collapse
|
7
|
Chen L, Luo C, Xu Y, Hu J, Chen H. Circ_0058063 regulates the development of esophageal cancer through miR-377-3p/HOXA1 axis. Anticancer Drugs 2023; 34:495-506. [PMID: 36729977 DOI: 10.1097/cad.0000000000001454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Esophageal cancer is one of the deadliest cancers. Circular RNA (CircRNA) can be used as a tumor marker. Therefore, this provides an important idea for our research. Real-time quantitative PCR (RT-qPCR) was used to analyze the expression of circ_0058063, miR-377-3p and homeobox protein Hox-A1 (HOXA1), western blot was used to analyze the protein levels of HOXA1 and cyclinD1, B cell leukemia/lymphoma 2 associated X (Bax). Cell Counting Kit-8 (CCK-8) assay, colony formation assay and wound healing assay were used to analyze cell proliferation and migration; apoptosis was analyzed by flow cytometry. Dual-luciferase reporter assays were performed to analyze the luciferase activities. Transwell assay was used to analyze the cell invasion. A glycolysis metabolism assay was used to analyze cell glycolysis ability. Xenograft models were used to validate the effect of circ_0009035 in the growth of esophageal cancer in vivo . Circ_0009035 and HOXA1 were upregulated, while miR-377 was downregulated in esophageal cancer.. Circ_0058063 targeted miR-377-3p, and HOX4 was a target of miR-377-3p. Knockdown of circ_0058063 inhibited migration, invasion and proliferation and promoted apoptosis of esophageal cancer cells. MiR-377-3p inhibition or HOXA1 overexpression could restore the effect of si-circ_0058063 on esophageal cancer cells. Knockdown of circ_0058063 repressed the growth of esophageal cancer tumors in vivo. Our study found that circ_0058063 could regulate the expression of HOXA1 by targeting miR-377-3p, thereby affecting the progress of esophageal cancer.
Collapse
Affiliation(s)
- Lisha Chen
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou Central People's Hospital, Huizhou, China
| | | | | | | | | |
Collapse
|
8
|
He L, Liang M, Guo W, Liu J, Yu Y. HOXA1 is a radioresistance marker in multiple cancer types. Front Oncol 2022; 12:965427. [PMID: 36119466 PMCID: PMC9478604 DOI: 10.3389/fonc.2022.965427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is an important therapeutic method for patients with cancer. However, radioresistance can cause treatment failure. Thus, there is an urgent need to investigate mechanisms of radioresistance and identity markers that could be used to predict radioresistance and prognosis of post-radiotherapy cancer patients. In the present study, we propose HOXA1 as a candidate biomarker of intrinsic radioresistance in multiple cancer types. By analyzing data from The Cancer Genome Atlas (TCGA), we found that HOXA1 was aberrantly upregulated in multiple cancers, and that elevated HOXA1 was significantly associated with poor prognosis of post-radiotherapy head and neck squamous cell carcinoma (HNSCC) and low-grade glioma (LGG) patients. Correlation analysis showed that HOXA1 expression was positively correlated with expression of EGFR, CDK6, and CAV1, which have been reported to enhance radioresistance. In addition, gene set enrichment analysis (GSEA) showed that the oxidative phosphorylation gene set was negatively enriched in HOXA1 high-expression samples in both HNSCC and LGG. Moreover, immunohistochemical assays indicated that high HOXA1 expression was significantly correlated with a high recurrence rate of nasopharyngeal carcinoma (NPC) after radiotherapy. Further in vitro experiments demonstrated that HOXA1 knockdown markedly attenuated the DNA repair capacity of NPC cells and sensibilized NPC cells to irradiation. Taken together, the results of this study demonstrate that HOXA1 has potential to be a predictive marker for radioresistance and post-radiotherapy prognosis that could help to guide individualized treatment in multiple cancer types.
Collapse
Affiliation(s)
- Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weisheng Guo
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| | - Yi Yu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| |
Collapse
|
9
|
Chen S, Shu G, Wang G, Ye J, Xu J, Huang C, Yang S. HOXA1 promotes proliferation and metastasis of bladder cancer by enhancing SMAD3 transcription. Pathol Res Pract 2022; 239:154141. [DOI: 10.1016/j.prp.2022.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
|
10
|
Zhang T, Su F, Lu YB, Ling XL, Dai HY, Yang TN, Zhang B, Zhao D, Hou XM. MYC/MAX-Activated LINC00958 Promotes Lung Adenocarcinoma by Oncogenic Transcriptional Reprogramming Through HOXA1 Activation. Front Oncol 2022; 12:807507. [PMID: 35223488 PMCID: PMC8864111 DOI: 10.3389/fonc.2022.807507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The role of the long non-coding RNA (lncRNA) LINC00958, which regulates the malignant behavior of multiple tumors, in LUAD has not been elucidated. METHODS Tissue microarray, FISH, and qRT-PCR were used to detect the expression of LINC00958. Plasmid and viral infections were used to manipulate gene expression. The role of LINC00958 in LUAD was studied by cell proliferation analysis, cell apoptosis analysis, cell migration and invasion analysis, and subcutaneous inoculation of animal models. At the same time, RNA-Seq, RNA pull-down, ChIRP, ChIP, and luciferase reporter gene assays were performed to clarify the mechanism. RESULTS The expression of LINC00958 in LUAD tissues was significantly upregulated when compared with that in adjacent tissues and could independently predict poor survival of patients with LUAD. LINC00958 knockdown significantly inhibited the growth and metastasis of lung cancer cells in vitro and in vivo. LINC00958 localized to the nucleus, regulated oncogenes and metabolism-related and immune response-related genes, and interacted with histones. The targets of LINC00958 were TRPV3, STAP2, and EDN2 promoters with motifs of HOXA1, NANOG, FOSL2, JUN, and ATF4. Moreover, HOXA1 overexpression mitigated the LINC00958 knockdown-induced oncogenic phenotype. MYC/MAX motif, which was detected at the cis-element of LINC00958, trans-activated the LINC00958 promoter. CONCLUSIONS MYC/MAX-trans-activated LINC00958 promotes the malignant behavior of LUAD by recruiting HOXA1 and inducing oncogenic reprogramming.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Bin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ling Ling
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huan-Yu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tian-Ning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
12
|
Feng C, Wang Q, Deng L, Peng N, Yang M, Wang X. Hsa_circ_0074032 promotes prostate cancer progression through elevating homeobox A1 expression by serving as a microRNA-198 decoy. Andrologia 2021; 54:e14312. [PMID: 34799875 DOI: 10.1111/and.14312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
It has been reported that circular RNA hsa_circ_0074032 (circ_0074032) has a higher level in prostate cancer (PCa) tissues. However, the role and regulatory mechanism of circ_0074032 in PCa are still unknown. Circ_0074032 was overexpressed in PCa, and high circ_0074032 level was associated with worse PCa-related prognosis. Functionally, circ_0074032 silencing decreased xenograft tumour growth in vivo and induced cell apoptosis, curbed cell proliferation, migration and invasion in PCa cells in vitro. Furthermore, circ_0074032 was identified as a miR-198 decoy, and miR-198 inhibition abolished circ_0074032 silencing-mediated effects on PCa cell proliferation, apoptosis, migration and invasion. In addition, miR-198 directly targeted homeobox A1 (HOXA1), and HOXA1 weakened miR-198 mimic-mediated impacts on PCa cell malignant phenotypes. Importantly, circ_0074032 regulated HOXA1 expression by sponging miR-198. Our findings uncovered a novel mechanism by which circ_0074032 promoted PCa progression via elevating HOXA1 expression through acting as a miR-198 sponge, providing a mechanism for circ_0074032 to affect the development of PCa.
Collapse
Affiliation(s)
- Chuanshun Feng
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| | - Qinjun Wang
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| | - Ling Deng
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| | - Naixiong Peng
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| | - Minlong Yang
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| | - Xisheng Wang
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen City, China
| |
Collapse
|
13
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Weidle UH, Nopora A. MicroRNAs Involved in Small-cell Lung Cancer as Possible Agents for Treatment and Identification of New Targets. Cancer Genomics Proteomics 2021; 18:591-603. [PMID: 34479913 DOI: 10.21873/cgp.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer, a neuro-endocrine type of lung cancers, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
15
|
Palmini G, Brandi ML. microRNAs and bone tumours: Role of tiny molecules in the development and progression of chondrosarcoma, of giant cell tumour of bone and of Ewing's sarcoma. Bone 2021; 149:115968. [PMID: 33892177 DOI: 10.1016/j.bone.2021.115968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The increasing interest on microRNAs (miRNAs), small non-coding RNA molecules containing about 22 nucleotides, about their biological functions led researchers to discover that they are actively involved in several biological processes. In the last decades, miRNAs become one of the most topic of cancer research. miRNAs, thanks to their function, are the perfect molecules to modulate multiple signaling pathways and gene expression in cancer, with the consequent capacity to modulate cancerous processes, such as cellular proliferation, invasion, metastasis and chemoresistance in various tumours. In the last years, several studies have demonstrated the role of miRNAs in their pathophysiology, but little we know about the underlying mechanism that lead to bone tumours like chondrosarcoma (COS), giant cell tumour of bone (GCTB) and Ewing sarcoma (EWS) to still be highly aggressive and resistant tumours. An exploration of the role of miRNAs in the biology of them will permit to researchers to find new molecular mechanisms that can be used to develop new and more effective therapies against these bone tumours. Here we present a comprehensive study of the latest discoveries which have been performed in relation to the role of miRNAs in the neoplastic processes which characterize COS, EWS and GCTB, demonstrating how these tiny molecules can act as tumour promoters or as tumour suppressors and how they can be used for improving therapeutic approaches.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Fondazione Italiana Ricerca sulle Malattie dell'Osso, F.I.R.M.O Onlus, Florence, Italy.
| |
Collapse
|
16
|
Liu G, Liu Z, Sun X, Xia X, Liu Y, Liu L. Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Front Cell Dev Biol 2021; 9:649168. [PMID: 33816499 PMCID: PMC8012915 DOI: 10.3389/fcell.2021.649168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenhao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiong Xia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Li H, Wang X, Zhang M, Wang M, Zhang J, Ma S. Identification of HOXA1 as a Novel Biomarker in Prognosis of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:602068. [PMID: 33763449 PMCID: PMC7982851 DOI: 10.3389/fmolb.2020.602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Hox genes, a highly conserved homolog in most animals, play vital functions in cell development and organ formation. In recent years, researchers have discovered that it can act as a tumor regulator, and its members can participate in tumorigenesis by regulating receptor signaling, cell differentiation, apoptosis, migration, EMT, and angiogenesis. Hox genes and which major members play a vital role in the progress of head and neck squamous cell carcinoma (HNSCC) is still unclear. After analyzing the expression differences and prognostic value of all Hox genes through the TCGA-HNSC database, we use histochemistry stains in 52 pairs of HNSCC slices to verify the expression level of the key member-HOXA1. In correlation analysis, we found that high HOXA1 expression is related to poor pathological grade (p = 0.0077), advanced T stage (p = 0.021) and perineural invasion (PNI) (p = 0.0019). Furthermore, we used Cox univariate and multivariate regression analysis to confirm the independent predictive power of HOXA1 expression. To explore the underlying mechanisms behind HOXA1, we ran GSVA and GSEA and found fourteen mutual signaling pathways, including neuroprotein secretion and transport, tumor-associated signaling pathways, cell adhere junction and metabolic reprogramming. Finally, we found that the high expression of HOXA1 is significantly related to the decrease of CD8+ T cell infiltration and the decline of DNA methylation level. Our findings demonstrated that HOXA1, as a notable member of the HOX family, maybe an independent prognostic indicator in HNSCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Abstract
Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.
Collapse
|
19
|
Lyv X, Wu F, Zhang H, Lu J, Wang L, Ma Y. Long Noncoding RNA ZFPM2-AS1 Knockdown Restrains the Development of Retinoblastoma by Modulating the MicroRNA-515/HOXA1/Wnt/β-Catenin Axis. Invest Ophthalmol Vis Sci 2021; 61:41. [PMID: 32561925 PMCID: PMC7415309 DOI: 10.1167/iovs.61.6.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The tumor-initiating function of long non-coding RNA (lncRNA), zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) was reported in lung cancer, yet the relevance of ZFPM2-AS1 in retinoblastoma (RB), a malignancy representing 2.5% to 4% incidence of cancers among children, has not been elucidated. Thus, we attempted to assess the effect of ZFPM2-AS1 and underlying mechanism in RB progression. Methods First, comparing the differentially expressed lncRNAs in normal retinal tissues as well as RB tissues, the target lncRNA ZFPM2-AS1 was screened out. We then assayed the ZFPM2-AS1 expression in three RB cell lines, and carried out methylthiazol tetrazolium (MTT), transwell assays, and flow cytometric analyses to examine the role of si-ZFPM2-AS1 on cell behaviors. Following online database predication, the correlations between ZFPM2-AS1 and microR-515 (miR-515) or homeobox A1 (HOXA1) were corroborated by dual-luciferase reporter gene assays. Quantitative real-time PCR along with Western blot assays was fulfilled to ascertain the expression of relevant genes. Results ZFPM2-AS1 was significantly overexpressed in RB tissues and cell lines, and ZFPM2-AS1 silencing curtailed the growth and metastasis of RB cells both in vitro and in vivo. Bioinformatic websites and dual-luciferase reporter gene assays disclosed that ZFPM2-AS1 might perform as a competing endogenous RNA for miR-515 and positively correlate with HOXA1 to activate the Wnt/β-catenin signaling pathway. Conclusions Altogether, these data demonstrated that ZFPM2-AS1 interacted with HOXA1 to promote RB development via mediating miR-515, establishing a promising therapeutic biomarker for RB and prognosis.
Collapse
|
20
|
Paço A, Aparecida de Bessa Garcia S, Leitão Castro J, Costa-Pinto AR, Freitas R. Roles of the HOX Proteins in Cancer Invasion and Metastasis. Cancers (Basel) 2020; 13:E10. [PMID: 33375038 PMCID: PMC7792759 DOI: 10.3390/cancers13010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis correspond to the foremost cause of cancer-related death, and the molecular networks behind these two processes are extremely complex and dependent on the intra- and extracellular conditions along with the prime of the premetastatic niche. Currently, several studies suggest an association between the levels of HOX genes expression and cancer cell invasion and metastasis, which favour the formation of novel tumour masses. The deregulation of HOX genes by HMGA2/TET1 signalling and the regulatory effect of noncoding RNAs generated by the HOX loci can also promote invasion and metastasis, interfering with the expression of HOX genes or other genes relevant to these processes. In this review, we present five molecular mechanisms of HOX deregulation by which the HOX clusters products may affect invasion and metastatic processes in solid tumours.
Collapse
Affiliation(s)
- Ana Paço
- BLC3—Biomassa Lenho-Celulósica de 3ª Geração, Campus of Technology and Innovation, 3405-169 Oliveira do Hospital, Portugal
| | - Simone Aparecida de Bessa Garcia
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Joana Leitão Castro
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Ana Rita Costa-Pinto
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
| | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal; (S.A.d.B.G.); (J.L.C.); (A.R.C.-P.); (R.F.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
lncRNA HotairM1 Depletion Promotes Self-Renewal of Cancer Stem Cells through HOXA1-Nanog Regulation Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:456-470. [PMID: 33230449 PMCID: PMC7554324 DOI: 10.1016/j.omtn.2020.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In cancer cells, a gain of stemness may have profound implications for tumor initiation, aggressiveness, and clinical outcome. However, the molecular mechanisms underlying the self-renewal maintenance of cancer stem-like cells (CSCs) remain elusive. Here, based on analysis of transcriptome sequencing, we identified a long noncoding RNA (lncRNA) named HotairM1, which is weakly expressed in human colorectal carcinoma and uveal melanoma, and a much lower expression in corresponding CSCs. Our results showed that HotairM1 depletion could promote CSC self-renewal and tumor propagation. Mechanistically, HotairM1 recruit EZH2 and SUZ12 to the promoter of its target gene HOXA1, leading to histone H3K27 trimethylation and epigenetic silencing of HOXA1. The silence of HOXA1 subsequently induces the H3K27 acetylation at the enhancer site of Nanog gene to upregulate its expression. The enrichment of Nanog could further inhibit HOXA1 expression, forming a reciprocal regulation loop augmenting the stemness maintaining effect. In summary, our results revealed a lncRNA-based regulatory loop that sustains self-renewal of CSCs, which highlights the critical role of HotairM1 in CSC development through the HOXA1-Nanog signaling loop.
Collapse
|
22
|
Xiong Z, Xia P, Zhu X, Geng J, Wang S, Ye B, Qin X, Qu Y, He L, Fan D, Du Y, Tian Y, Fan Z. Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis. J Exp Med 2020; 217:jem.20190974. [PMID: 31699823 PMCID: PMC7041701 DOI: 10.1084/jem.20190974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Xiong et al. show that CCP3 performs deglutamylation of BAP1 to stabilize BAP1, which eliminates H2AK119Ub from Hoxa1 promoter and initiates Hoxa1 expression, leading to enhanced HSC self-renewal. All hematopoietic lineages are derived from a limited pool of hematopoietic stem cells (HSCs). Although the mechanisms underlying HSC self-renewal have been extensively studied, little is known about the role of protein glutamylation and deglutamylation in hematopoiesis. Here, we show that carboxypeptidase CCP3 is most highly expressed in BM cells among CCP members. CCP3 deficiency impairs HSC self-renewal and hematopoiesis. Deubiquitinase BAP1 is a substrate for CCP3 in HSCs. BAP1 is glutamylated at Glu651 by TTLL5 and TTLL7, and BAP1-E651A mutation abrogates BAP1 glutamylation. BAP1 glutamylation accelerates its ubiquitination to trigger its degradation. CCP3 can remove glutamylation of BAP1 to promote its stability, which enhances Hoxa1 expression, leading to HSC self-renewal. Bap1E651A mice produce higher numbers of LT-HSCs and peripheral blood cells. Moreover, TTLL5 and TTLL7 deficiencies sustain BAP1 stability to promote HSC self-renewal and hematopoiesis. Therefore, glutamylation and deglutamylation of BAP1 modulate HSC self-renewal and hematopoiesis.
Collapse
Affiliation(s)
- Zhen Xiong
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Geng
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Qin
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Qu
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Han W, Ren X, Yang Y, Li H, Zhao L, Lin Z. microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer 2020; 11:1679-1688. [PMID: 32364673 PMCID: PMC7262897 DOI: 10.1111/1759-7714.13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading subtype in lung cancer, with high morbidities and mortalities worldwide. microRNA (miRNA) has appeared to play indispensable roles in a variety of solid carcinomas. The current study focused on the functions of miR-100 in NSCLC. METHODS qRT-PCR was performed to detect miR-100 and HOXA1 expressions in NSCLC tissues and cells. MTT and transwell assays were used to determine the functions of miR-100 in NSCLC cell proliferation, invasion and migration abilities. Western blot was used to measure related protein expressions. RESULTS qRT-PCR results showed that miR-100 expressions were dramatically decreased in NSCLC tissues. MTT assays indicated that miR-100 restoration inhibited NSCLC cell proliferation. Furthermore, transwell assay was performed to determine the impacts of miR-100 on NSCLC invasion and migration abilities. As expected, the invasion and migration capacities were significantly repressed. Direct interactions between HOXA1 and miR-100 were also verified via dual-luciferase reporter assays. Western blot analysis demonstrated that miR-100 exerted suppressive functions via regulating EMT and Wnt/β-catenin in NSCLC cells. CONCLUSIONS Our results showed that miR-100 served antitumor roles in NSCLC, providing new evidence of miR-100 as a promising therapeutic biomarker in NSCLC.
Collapse
Affiliation(s)
- Weizhong Han
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Ren
- Department of Cardiothoracic Surgey, Yantaishan Hospital, Yantai, China
| | - Yupeng Yang
- Department of General Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, China
| | - Haixia Li
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Lin Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, China
| | - Zhaoxia Lin
- Department of Clinical Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
24
|
Kim CY, Oh JH, Lee JY, Kim MH. The LncRNA HOTAIRM1 Promotes Tamoxifen Resistance by Mediating HOXA1 Expression in ER+ Breast Cancer Cells. J Cancer 2020; 11:3416-3423. [PMID: 32284737 PMCID: PMC7150441 DOI: 10.7150/jca.38728] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/26/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers in women worldwide. Approximately 40% of patients with breast cancer acquire endocrine resistance following therapy with tamoxifen. Many explanations for the development of endocrine resistance have been put forward, one of them being the dysregulation of long non-coding RNAs (lncRNAs). The lncRNA HOTAIRM1, known to be involved in myelopoiesis as well as transcriptional regulation of the HOXA genes in embryonic stem cells, is also expressed in breast cancer cells. This study explored the molecular mechanisms of HOTAIRM1 involved in acquired tamoxifen resistance. We showed that HOTAIRM1 and HOXA1 are concurrently up-regulated in tamoxifen-resistant MCF7 (TAMR) cells. Knockdown of HOTAIRM1 down-regulated HOXA1 expression and restored sensitivity to tamoxifen. In addition, the knockdown of HOXA1 showed similar effects, suggesting that the HOTAIRM1/HOXA1 axis regulates tamoxifen resistance. Furthermore, we showed that HOTAIRM1 directly interacts with EZH2 and prevents the PRC2 complex from binding and depositing H3K27me3 on the putative promoter of HOXA1. Together, our findings suggest that HOXA1 and its neighboring lncRNA, HOTAIRM1, might serve as potential therapeutic targets for ER+ breast cancer patients who have acquired tamoxifen resistance.
Collapse
Affiliation(s)
- Clara Yuri Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
25
|
Silencing of HOXB9 suppresses cellular proliferation, angiogenesis, migration and invasion of prostate cancer cells. J Biosci 2020. [DOI: 10.1007/s12038-020-0013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T, Tang S. miR-100 Inhibits Cell Growth and Proliferation by Targeting HOXA1 in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:593-602. [PMID: 32021301 PMCID: PMC6980857 DOI: 10.2147/ott.s228783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Increasing evidence indicates that the dysregulation of miRNAs plays a vital role in tumorigenesis and progression of nasopharyngeal carcinoma (NPC). Thus, it is necessary to further investigate the function and mechanism of miRNAs in NPC. Methods miR-100 expression was analyzed using publicly available databases and then tested using quantitative RT-PCR in NPC tissues and cell lines. MTT and colony formation assays and xenograft tumor model were used to test the NPC cell growth and proliferation abilities while modulating miR-100 expression. The target of miR-100 was predicted with TargetScan and validated with luciferase reporter assay, quantitative RT-PCR, and Western blot. Results The expression of miR-100 was significantly reduced in NPC tissues and cell lines. Overexpression of miR-100 obviously suppressed NPC cell growth and proliferation, whereas silencing miR-100 promoted NPC cell growth and proliferation in vitro. HOXA1 (homeobox A1) was validated as a direct target of miR-100, and restoring HOXA1 expression could reverse the inhibitive effect of miR-100 on NPC cell growth and proliferation. The mRNA and protein expression of HOXA1 was increased in NPC cell lines. Furthermore, ectopic expression of miR-100 inhibited xenograft tumor growth in vivo. Conclusion Taken together, our findings suggest that miR-100 could suppress NPC growth and proliferation through targeting HOXA1, providing a novel target for the miRNA-mediated therapy for patients with NPC in the future.
Collapse
Affiliation(s)
- Weifeng He
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Cheng Chuan Jiang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yuan Zhu
- People's Hospital of Changshou Chongqing, Chongqing 401220, People's Republic of China
| | - Ling Wang
- Yi Chang Central People's Hospital, Yichang 443000, Hubei Province, People's Republic of China
| | - Weiwei Zhang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Ting Zhou
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China.,Department of Clinical Pharmacy, College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, People's Republic of China
| | - Sanyuan Tang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| |
Collapse
|
27
|
Li X, Pang L, Yang Z, Liu J, Li W, Wang D. LncRNA HOTAIRM1/HOXA1 Axis Promotes Cell Proliferation, Migration And Invasion In Endometrial Cancer. Onco Targets Ther 2019; 12:10997-11015. [PMID: 31853186 PMCID: PMC6917485 DOI: 10.2147/ott.s222334] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) microarray screening previously identified that HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) was significantly upregulated in type I endometrial cancer (EC). The present study aimed to determine the potential role of HOTAIRM1 and its sense transcript HOXA1 in the development and progression of type I EC. Methods We detected the expression levels of HOTAIRM1 and HOXA1 in type I EC tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting and analyzed associated clinical data. Gain- or loss-of-function experiments were used to investigate the biological function of HOTAIRM1 and HOXA1 in type I EC, both in vitro and in vivo. Results The expression levels of HOTAIRM1 and HOXA1 were significantly upregulated in type I EC tissues. Furthermore, the expression of HOTAIRM1 and HOXA1 were both significantly correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and lymph node metastasis. The expression of HOTAIRM1 was significantly correlated with that of HOXA1. Knockdown of HOTAIRM1 significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) in vitro, while the over-expression of HOTAIRM1 led to the opposite effects. Moreover, we identified that HOTAIRM1 acts as a regulator for the expression of the HOXA1 gene in type I EC cells. As an oncogene, HOXA1 silencing also caused suppressive effects on tumors by inhibiting cell proliferation, migration and invasion. In addition, we also confirmed the role of HOTAIRM1 and HOXA1 in promoting tumor growth in vivo. Conclusion Our findings are the first to identify that HOTAIRM1 functions as an oncogene to promote cell proliferation, migration and invasion by regulating HOXA1 in type I EC. Therefore, the HOTAIRM1/HOXA1 axis is a novel potential prognostic biomarker and new potential therapeutic target for type I EC.
Collapse
Affiliation(s)
- Xianli Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhuo Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Weishan Li
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
28
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
29
|
Han Z, Guan Y, Liu B, Lin Y, Yan Y, Wang H, Wang H, Jing B. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 2019; 232:116664. [DOI: 10.1016/j.lfs.2019.116664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
30
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Elevated microRNA-145 inhibits the development of oral squamous cell carcinoma through inactivating ERK/MAPK signaling pathway by down-regulating HOXA1. Biosci Rep 2019; 39:BSR20182214. [PMID: 31138758 PMCID: PMC6591566 DOI: 10.1042/bsr20182214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Oral cancer is one of the most frequent solid cancers worldwide, and oral squamous cell carcinoma (OSCC) constitutes approximately 90% of oral cancers. The discovery of reliable prognostic indicators would be a potential strategy for OSCC treatment. In the present study, we aim to explore the underlying mechanism by which microRNA-145 (miR-145) affected OSCC. Methods: Forty-eight patients diagnosed with OSCC were enrolled to obtain the OSCC tissues and adjacent normal tissues. The targeting relationship between miR-145 and Homeobox A1 (HOXA1) was verified. In order to assess the effects of miR-145 in OSCC and the detailed regulatory mechanism, the SCC-9 cell line was adopted, in which expression of miR-145 and HOXA1 were altered by transfection. Then, a series of in vitro and in vivo experiments were performed to evaluate the cell viability, migration, invasion, and tumor growth. Results: miR-145 was poorly expressed and HOXA1 was highly expressed in OSCC. HOXA1 was verified as a target of miR-145 to mediate the activation of the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) signaling pathway. In the circumstance of miR-145 elevation or HOXA1 depletion, the SCC-9 cell line manifested with inhibited cell viability, invasion, and migration in vitro, coupled with reduced tumor growth in vivo, with a decreased expression of ERK/MAPK signaling pathway-related genes/proteins. Conclusion: These findings suggested that miR-145 can inhibit HOXA1 to inactivate the ERK/MAPK signaling pathway, thereby suppressing OSCC cell proliferation, migration, and invasion to further inhibit the development of OSCC, highlighting a novel therapeutic target for the OSCC treatment.
Collapse
|
32
|
Ji L, Jiang X, Mao F, Tang Z, Zhong B. miR‑589‑5p is downregulated in prostate cancer and regulates tumor cell viability and metastasis by targeting CCL‑5. Mol Med Rep 2019; 20:1373-1382. [PMID: 31173214 DOI: 10.3892/mmr.2019.10334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/13/2019] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is one of the most common human malignancies, which represents a serious threat to health, and microRNAs (miRNAs/miRs) have been reported to be closely associated with the progression and development of prostate cancer. The present study aimed to investigate the expression patterns, functions and underlying mechanisms of miR‑589‑5p in prostate cancer. The results demonstrated that the expression levels of miR‑589‑5p were downregulated in prostate cancer tissues and cell lines. Overexpression of miR‑589‑5p inhibited cell viability, migration and invasion in prostate cancer cells. Subsequently, chemokine (C‑C motif) ligand 5 (CCL‑5) was identified as a direct target gene of miR‑589‑5p, which was highly expressed at the mRNA and protein levels in prostate cancer tissues and cells. Furthermore, CCL‑5 mRNA was negatively correlated with miR‑589‑5p expression in prostate cancer tissues. Silencing CCL‑5 promoted the apoptosis, and inhibited the migration and invasion of prostate cancer cells. Taken together, these results indicated that miR‑589‑5p may act as a tumor suppressor in prostate cancer by targeting CCL‑5, thus suggesting that miR‑589‑5p may be a novel and reliable molecular marker for the diagnosis and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xi Jiang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Fei Mao
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhiwang Tang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
Tao C, Sun H, Sang W, Li S. miRNA-99a inhibits cell invasion and migration in liver cancer by directly targeting HOXA1. Oncol Lett 2019; 17:5108-5114. [PMID: 31186723 PMCID: PMC6507307 DOI: 10.3892/ol.2019.10199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Liver cancer is a malignant tumor that threatens human health worldwide. It has poor prognosis rates and ineffective therapeutic options. Recently, various miRNAs have been proven to exert promoting or inhibiting functions in different malignancies. However, the definitive mechanisms of miR-99a in liver cancer remain unclear. In the current study, we explored the relationships between the expression of miR-99a and HOXA1 in liver cancer tissues and cells to explore their combined effects on the occurrence and metastasis of liver cancer. The expression of miR-99a and HOXA1 in liver cancer tissue samples and cells was measured by RT-qPCR. Following transfection, transwell assays were conducted to assess the invasion and migration capacities of liver cancer cells. Subsequently, western blots and luciferase reporter assays were performed in liver cancer cells to identify the target of miR-99a. The data indicated that miRNA-99a expression was significantly reduced in both liver cancer tissue samples and cells compared with normal tissues and normal liver cells respectively. By contrast, the HOXA1 expression levels in liver cancer tissues and cells were significantly increased in contrast to the control group. The findings also revealed that the miR-99a expression was negatively correlated with HOXA1 expression in liver cancer tissue samples and miR-99a could suppress cell invasion and migration by targeting HOXA1 in liver cancer.
Collapse
Affiliation(s)
- Changming Tao
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Huiling Sun
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weiwei Sang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Shanshan Li
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
34
|
Mohanta S, Sekhar Khora S, Suresh A. Cancer Stem Cell based molecular predictors of tumor recurrence in Oral squamous cell carcinoma. Arch Oral Biol 2019; 99:92-106. [PMID: 30641296 DOI: 10.1016/j.archoralbio.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study aimed to identify the cancer stem cell specific biomarkers that can be effective candidate prognosticators of oral squamous cell carcinoma. DESIGN Microarray-based meta-analysis derived transcriptional profile of head and neck cancers was compared with the Cancer Stem Cell database to arrive at a subset of markers. This subset was further co-related with clinico-pathological parameters, recurrence and survival of oral cancer patients (n = 313) in The Cancer Genome Atlas database and in oral cancer (n = 28) patients. RESULTS Meta-analysis in combination with database comparison identified a panel of 221 genes specific to head and neck cancers. Correlation of expression levels of these markers in the oral cancer cohort of The Cancer Genome Atlas (n = 313) with treatment outcome identified 54 genes (p < 0.05 or fold change >2) associated with disease recurrence, 8 genes (NQO1, UBE2C, EDNRB, FKBP4, STAT3, HOXA1, RIT1, AURKA) being significant with high fold change. Assessment of the efficacy of the subset (n = 54) as survival predictors identified an additional 4 genes (CDK1, GINS2, PHF5 A, ERBB2) that co-related with poor disease-free survival (p < 0.05). CDK1 showed a significant association with the clinical stage, margin status and with advanced pathological parameters. Initial patient validation indicated that CDK1 and NQO1 significantly co-related with the poor disease-free and overall survival (p < 0.05). CONCLUSION This panel of oral cancer specific, cancer stem cell associated markers identified in this study, a subset of which was validated, will be of clinical benefit subject to large scale validation studies.
Collapse
Affiliation(s)
- Simple Mohanta
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Department of Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; School of Bio Sciences & Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Samanta Sekhar Khora
- School of Bio Sciences & Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Department of Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, 14263, New York, USA.
| |
Collapse
|
35
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
36
|
Liu J, Liu J, Lu X. HOXA1 upregulation is associated with poor prognosis and tumor progression in breast cancer. Exp Ther Med 2018; 17:1896-1902. [PMID: 30783466 DOI: 10.3892/etm.2018.7145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer-associated mortality among females worldwide. As a member of the homeobox (HOX) gene family, HOXA1 is involved in tumor progression and prognosis in several types of human cancer. However, the clinical significance and biological functions of HOXA1 in BC remains unknown. The current study assessed the expression of HOXA1 in BC tissues and cells via western blotting and reverse transcription-quantitative polymerase chain reaction. The association between HOXA1 expression and the clinicopathological features of patients with BC was analyzed using the Chi-square test. The overall survival of patients was calculated using the Kaplan-Meier method and examined using the log-rank test. Cell proliferation was examined via an MTT assay. Cell cycle distribution and cell apoptosis were analyzed using flow cytometry. The current study demonstrated that HOXA1 mRNA and protein expression was upregulated in BC. In addition, HOXA1 overexpression was associated with poor prognosis and advanced clinicopathological features in patients with BC. Furthermore, knockdown of HOXA1 significantly inhibited cell proliferation by enhancing cell apoptosis and cell cycle arrest in BC cells, which was accompanied with aberrant expression of cell cycle and apoptosis-associated proteins, cyclin D1, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4. Taken together, the results suggested that HOXA1 may serve as a novel prognostic marker and therapeutic target in BC.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Breast Surgery, Dalian Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinquan Liu
- Department of Clinical Medicine, Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Xinyi Lu
- Department of Breast Surgery, Dalian Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
37
|
Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:265. [PMID: 30376874 PMCID: PMC6208043 DOI: 10.1186/s13046-018-0941-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the common primary brain tumor classified the most malignant glioma. Long non-coding RNAs (LncRNAs) are important epigenetic regulators with critical roles in cancer initiation and progression. LncRNA HOTAIRM1 transcribes from the antisense strand of HOXA gene cluster which locus in chromosome 7p15.2. Recent studies have shown that HOTAIRM1 is involved in acute myeloid leukemia and colorectal cancer. Here we sought to investigate the role of HOTAIRM1 in GBM and explore its mechanisms of action. Methods The expressions of HOTAIRM1 and HOXA1 in GBM tissues and cells were determined by qRT-PCR, and the association between HOTAIRM1, HOXA1 transcription and tumor grade were analyzed. The biological function of HOTAIRM1 in GBM was evaluated both in vitro and in vivo. Chromatin immunoprecipitation (ChIP) assay and quantitative Sequenom MassARRAY methylation analysis were performed to explore whether HOTAIRM1 could regulate histone and DNA modification status of the HOXA1 gene transcription start sites (TSS) and activate its transcription. ChIP and RNA-ChIP were further performed to determine the molecular mechanism of HOTAIRM1 in epigenetic regulation of the HOXA1 gene. Results HOTAIRM1 was abnormally up-regulated in GBM tissues and cells, and this up-regulation was correlated with grade malignancy in glioma patients. HOTAIRM1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion, and inducing cell apoptosis. In vivo experiments showed knockdown of HOTAIRM1 lessened the tumor growth. Additionally, HOTAIRM1 action as regulating the expression of the HOXA1 gene. HOXA1, as an oncogene, it’s expression levels were markedly elevated in GBM tissues and cell lines. Mechanistically, HOTAIRM1 mediated demethylation of histone H3K9 and H3K27 and reduced DNA methylation levels by sequester epigenetic modifiers G9a and EZH2, which are H3K9me2 and H3K27me3 specific histone methyltransferases, and DNA methyltransferases (DnmTs) away from the TSS of HOXA1 gene. Conclusions We investigated the potential role of HOTAIRM1 to promote GBM cell proliferation, migration, invasion and inhibit cell apoptosis by epigenetic regulation of HOXA1 gene that can be targeted simultaneously to effectively treat GBM, thus putting forward a promising strategy for GBM treatment. Meanwhile, this finding provides an example of transcriptional control over the chromatin state of gene and may help explain the role of lncRNAs within the HOXA gene cluster. Electronic supplementary material The online version of this article (10.1186/s13046-018-0941-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
38
|
Hu S, Li L, Huang W, Liu J, Lan G, Yu S, Peng L, Xie X, Yang L, Nian Y, Wang Y. CAV3.1 knockdown suppresses cell proliferation, migration and invasion of prostate cancer cells by inhibiting AKT. Cancer Manag Res 2018; 10:4603-4614. [PMID: 30410396 PMCID: PMC6197829 DOI: 10.2147/cmar.s172948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Aberrant expression of CAV3.1, one of T-type Ca2+ channels, is reported to exert important functions in pathological processes, including carcinogenesis. However, its expression pattern and function in prostate cancer (PCa) remains unclear. Materials and methods The expression pattern of CAV3.1 was analyzed in multiple ways, including online analysis in Oncomine database, experimental analyses in cell lines, and collected clinical specimens using immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and Western blot. Then, CAV3.1 was downregulated in PCa cells to explore its functions. Results Upregulated CAV3.1 in PCa tissues and cells was confirmed by analyzing mRNA expression datasets from Oncomine and quantitative reverse transcription polymerase chain reaction detection, respectively. Accordingly, significantly higher CAV3.1 protein level in PCa tissues specimens than that in benign prostatic hyperplasia tissues was indicated by immunohistochemical staining. In addition, CAV3.1 upregulation was positively associated with metastasis. Depletion of CAV3.1 impaired the proliferation, migration, and invasion ability of PCa cells demonstrating by cell functional experiments, such as CCK-8, cell cycle distribution, plate clone formation, scratch wound healing, and transwell invasion assays. Mechanistically, due to constrained Akt activity, CAV3.1 knockdown resulted in decreased level of CCND1, N-cadherin, and Vimentin, and increased level of E-cadherin whose expressions could be reversed by ectopic Akt expression. Similarly, ectopic Akt expression also rescued the inhibitory effects of CAV3.1 knockdown on cell functions like proliferation and migration in PCa cells. Conclusion Upregulated CAV3.1 is positively associated with the development of PCa. CAV3.1 knockdown can inhibit PCa cell proliferation, migration, and invasion by suppressing AKT activity.
Collapse
Affiliation(s)
- Shanbiao Hu
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China, ;
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liu
- Department of Pathology, Changsha Central Hospital, Changsha, China
| | - Gongbin Lan
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longkai Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xubiao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Luoyan Yang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China, ;
| | - Yeqi Nian
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China, ;
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China, ;
| |
Collapse
|
39
|
Abstract
The prostate is a male exocrine gland that secretes components of the seminal fluid. In men, prostate tumors are one of the most prevalent cancers. Studies on the development of the prostate have given a better understanding of the processes and genes that are important in the formation of this organ and have provided insights into the mechanisms of prostate tumorigenesis. These developmental studies have provided evidence that some of the genes and signaling pathways involved in development are reactivated or deregulated during prostate cancer. The prostate goes through a number of different stages during organogenesis, which include organ specification, epithelial budding, branching morphogenesis, canalization, and cytodifferentiation. During development, these processes are tightly regulated, many of which are controlled by the male hormone androgens. The majority of prostate tumors remain hormone regulated, and antiandrogen therapy is a first-line therapy, highlighting the important link between prostate organogenesis and cancer. In this review, we describe some of the data on genes that have important roles during prostate development that also have strong evidence linking them to prostate cancer.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
40
|
Zhang Y, Li XJ, He RQ, Wang X, Zhang TT, Qin Y, Zhang R, Deng Y, Wang HL, Luo DZ, Chen G. Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis. Int J Oncol 2018; 53:73-86. [PMID: 29658571 PMCID: PMC5958640 DOI: 10.3892/ijo.2018.4372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non-small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR-181b-5p, miR-28-5p and miR-181d-5p) targeting HOXA1 were each predicted by 10 algorithms; miR-181b and miR-181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR-181b (r=−0.205, P<0.001) and miR-181d (r=−0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR-181b-5p or miR-181d-5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography-Computed Tomography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology,, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tong-Tong Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
41
|
Ning ZQ, Lu HL, Chen C, Wang L, Cai W, Li Y, Cao TH, Zhu J, Shu YQ, Shen H. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2018; 8:4572-4581. [PMID: 27992364 PMCID: PMC5354855 DOI: 10.18632/oncotarget.13944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in variousbiological processes,including malignancy. Here, we demonstrated that miR-30e levels were markedly reduced in human lung carcinoma specimens in comparisonwith adjacent normal tissues. In addition, miR-30eamounts were starkly lower in the resistant PC9/gefitinib (PC9G) cancer cells compared with PC9 cells. Meanwhile, miR-30eoverexpression inPC9G cells resulted in reduced cell proliferation and migration,reversing drug resistance to gefitinib.Conversely,miR-30e silencing in PC9 cells increased proliferation as well as migration, and conferred resistance to gefitinib.Moreover, HOXA1, which was identified asa new miR-30etarget, plays important roles in regulating cell fate, early developmental patterns and organogenesis.Importantly, miR-30ealso inhibited PC9G growth in vivo. Taken together, these findings demonstrated that miR-30eshould be considered a tumor suppressor miRNA, which could be used in treatinghuman lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ning
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Hai-Lin Lu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Chao Chen
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Lin Wang
- Institute of Medcine, University of Zhengzhou, Henan Province, 450000, China
| | - Wei Cai
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yan Li
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Ting-Hua Cao
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Jing Zhu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
42
|
Chen L, Hu N, Wang C, Zhao H, Gu Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle 2018; 17:319-329. [PMID: 29228867 DOI: 10.1080/15384101.2017.1407893] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer all over the world. Long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) has been reported to play important roles in the development and progression of multiple human malignancies. However, little is known about its functional role and molecular mechanism in MM. The aim of this study was to investigate the clinical and biological significance of CCAT1 in MM. Our data showed that the relative expression levels of CCAT1 were significantly upregulated in MM tissues and cell lines compared with healthy donors and normal plasma cells (nPCs). High expression of CCAT1 was correlated shorter overall survival of MM patients. CCAT1 knockdown significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in vitro, and suppressed tumor growth in vivo. MiR-181a-5p was a direct target of CCAT1, and repression of miR-181a-5p could rescue the inhibition of CCAT1 knockdown on MM progression. In addition, CCAT1 positively regulated HOXA1 expression through sponging miR-181a-5p in MM cells.taken together, lncRNA CCAT1 exerted an oncogenic role in MM by acting as a ceRNA of miR-181a-5p. These results suggest that CCAT1 may serve as a novel diagnostic marker and therapeutic target for MM.
Collapse
Affiliation(s)
- Li Chen
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Ning Hu
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Chao Wang
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Hongmian Zhao
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Yueli Gu
- b Department of Hematology , The First People's Hospital of Shangqiu , Shangqiu 476100 , Henan China
| |
Collapse
|
43
|
von Heyking K, Roth L, Ertl M, Schmidt O, Calzada-Wack J, Neff F, Lawlor ER, Burdach S, Richter GH. The posterior HOXD locus: Its contribution to phenotype and malignancy of Ewing sarcoma. Oncotarget 2018; 7:41767-41780. [PMID: 27363011 PMCID: PMC5173095 DOI: 10.18632/oncotarget.9702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Microarray analysis revealed genes of the posterior HOXD locus normally involved in bone formation to be over-expressed in primary Ewing sarcoma (ES). The expression of posterior HOXD genes was not influenced via ES pathognomonic EWS/ETS translocations. However, knock down of the dickkopf WNT signaling pathway inhibitor 2 (DKK2) resulted in a significant suppression of HOXD10, HOXD11 and HOXD13 while over-expression of DKK2 and stimulation with factors of the WNT signaling pathway such as WNT3a, WNT5a or WNT11 increased their expression. RNA interference demonstrated that individual HOXD genes promoted chondrogenic differentiation potential, and enhanced expression of the bone-associated gene RUNX2. Furthermore, HOXD genes increased the level of the osteoblast- and osteoclast-specific genes, osteocalcin (BGLAP) and platelet-derived growth factor beta polypeptide (PDGFB), and may further regulate endochondral bone development via induction of parathyroid hormone-like hormone (PTHLH). Additionally, HOXD11 and HOXD13 promoted contact independent growth of ES, while in vitro invasiveness of ES lines was enhanced by all 3 HOXD genes investigated and seemed mediated via matrix metallopeptidase 1 (MMP1). Consequently, knock down of HOXD11 or HOXD13 significantly suppressed lung metastasis in a xeno-transplant model in immune deficient mice, providing overall evidence that posterior HOXD genes promote clonogenicity and metastatic potential of ES.
Collapse
Affiliation(s)
- Kristina von Heyking
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Laura Roth
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Miriam Ertl
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Oxana Schmidt
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Elizabeth R Lawlor
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stefan Burdach
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Guenther Hs Richter
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| |
Collapse
|
44
|
Xu X, Bao Z, Liu Y, Ji J, Liu N. MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3. Cell Mol Neurobiol 2017; 37:1359-1371. [PMID: 28124208 PMCID: PMC11482209 DOI: 10.1007/s10571-017-0466-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The extraordinary invasion of human GBM into adjacent normal brain tissues contributes to treatment failure. However, the mechanisms that control this process remain poorly understood. Increasing evidence has demonstrated that microRNAs are strongly implicated in the migration and invasion of GBM. In this study, we found that microRNA-98 (miR-98) was markedly downregulated in human glioma tissues and cell lines. Functional experiments indicated that restored expression of miR-98 attenuated glioma cell invasion and migration, whereas depletion of miR-98 promoted glioma cell invasion and migration. Subsequent investigation showed that pre-B-cell leukemia homeobox 3 (PBX3), an important transcription factor that controls tumor invasion, was a direct and functional target of miR-98 in GBM cells. Consistently, an orthotopic mouse model also demonstrated the suppressive effects of miR-98 overexpression on tumor invasion and PBX3 expression. Silencing of PBX3 using small interfering RNA inhibited the migratory and invasive capacities of glioma cells, whereas reintroduction of PBX3 into glioma cells reversed the anti-invasive function of miR-98. Furthermore, depletion of PBX3 phenocopied the effects of miR-98 overexpression in vivo. Finally, quantitative real-time polymerase chain reaction results showed that miR-98 was negatively correlated with PBX3 expression in 24 glioma tissues. Thus, we propose that PBX3 modulation by miR-98 has an important role in regulating GBM invasion and may serve as therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
45
|
An Y, Wang S, Li S, Zhang L, Wang D, Wang H, Zhu S, Zhu W, Li Y, Chen W, Ji S, Guo X. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment. BMC Cancer 2017; 17:639. [PMID: 28893210 PMCID: PMC5594508 DOI: 10.1186/s12885-017-3568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Uterine leiomyosarcoma (ULMS) is an aggressive form of soft tissue tumors. The molecular heterogeneity and pathogenesis of ULMS are not well understood. Methods Expression profiling data were used to determine the possibility and optimal number of ULMS molecular subtypes. Next, clinicopathological characters and molecular pathways were analyzed in each subtype to prospect the clinical applications and progression mechanisms of ULMS. Results Two distinct molecular subtypes of ULMS were defined based on different gene expression signatures. Subtype I ULMS recapitulated low-grade ULMS, the gene expression pattern of which resembled normal smooth muscle cells, characterized by overexpression of smooth muscle function genes such as LMOD1, SLMAP, MYLK, MYH11. In contrast, subtype II ULMS recapitulated high-grade ULMS with higher tumor weight and invasion rate, and was characterized by overexpression of genes involved in the pathway of epithelial to mesenchymal transition and tumorigenesis, such as CDK6, MAPK13 and HOXA1. Conclusions We identified two distinct molecular subtypes of ULMS responding differently to chemotherapy treatment. Our findings provide a better understanding of ULMS intrinsic molecular subtypes, and will potentially facilitate the development of subtype-specific diagnosis biomarkers and therapy strategies for these tumors. Electronic supplementary material The online version of this article (10.1186/s12885-017-3568-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang An
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shuzhen Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Songlin Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Lulu Zhang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Dayong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Haojie Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shibai Zhu
- Department of Orthopedic Surgery, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Yongqiang Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China.
| | - Xiangqian Guo
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China. .,Department of Preventive Medicine, Medical School, Henan University, Kaifeng, 475004, China. .,Institute of Environmental Medicine, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
46
|
Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 2017; 8:95332-95345. [PMID: 29221131 PMCID: PMC5707025 DOI: 10.18632/oncotarget.20521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Homeobox A5(Hoxa5), a member of the Hox family, plays a important role in the regulation of proliferation and apoptosis in cancer cells. The dysregulation of the adipocyte apoptosis in vivo leads to obesity and metabolic disorders. However, the effects of Hoxa5 on adipocyte apoptosis are still unknown. In this study, palmitic acid (PA) significantly increased the mRNA level of Hoxa5 and triggered white adipocyte apoptosis in vivo and in vitro. Further analysis revealed that Hoxa5 enhanced the early and late apoptotic cells and fragmentation of genomic DNA in adipocytes from inguinal white adipose tissue (iWAT) of mice. Moreover, Hoxa5 aggravated white adipocyte apoptosis through mitochondrial pathway rather than endoplasmic reticulum stress (ERS)-induced or death receptor (DR)-mediated pathway. Our data also confirmed that Hoxa5 promoted mitochondrial apoptosis pathway by elevating the transcription activity of Bax and inhibiting the protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In summary, these findings revealed a novel mechanism that linked Hoxa5 to white adipocyte apoptosis, which provided some potential possibilities to prevent and treat obesity and some metabolic diseases.
Collapse
|
47
|
Wang Y, Yao B, Li H, Zhang Y, Gao H, Gao Y, Peng R, Tang J. Assessment of Tumor Stiffness With Shear Wave Elastography in a Human Prostate Cancer Xenograft Implantation Model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:955-963. [PMID: 28258646 DOI: 10.7863/ultra.16.03066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/08/2016] [Indexed: 05/19/2023]
Abstract
OBJECTIVES To investigate the stiffness of human prostate cancer in a xenograft implantation model using shear wave elastography and compare the pathologic features of tumors with varying elasticity. METHODS Human prostate cancer DU-145 cells were injected into 24 nude male mice. The mice were divided into 3 groups according to the time of transplantation (6, 8, and 10 weeks). The volume, elasticity, and Young modulus of tumors were recorded by 2-dimensional sonography and shear wave elastography. The tumors were collected for pathologic analyses: hematoxylin-eosin staining, Ponceau S, and aniline staining were used to stain collagen and elastic fibers, and picric acid-sirius red staining was used to indicate type I and III collagen. The area ratios of collagen I/III were calculated. The correlation between the Young modulus of the tumor and area ratio of collagen I/III were evaluated. Immunohistochemistry of vimentin and α-smooth muscle actin was performed. RESULTS Nineteen tumors in 3 groups were collected. The volume and mean Young modulus increased with the time of transplantation. There were more collagen fibers in the stiff tumors, and there were significant differences in the area ratios of collagen I/III between groups 1 (mean ± SD, 0.50 ± 0.17) and 3 (1.97 ± 0.56; P < .01). The Young modulus of the tumors showed a very significant correlation with the area ratios of collagen I/III (r = 0.968; P < .05). The expression level of α-smooth muscle actin protein was higher in group 3 than in the other groups, but differences in vimentin expression were barely seen. CONCLUSIONS Shear wave elastography is a novel useful technology for showing the elasticity of human prostate cancer xenograft implantation tumors. Collagen fibers, especially collagen type I, play a crucial role in the elasticity in the human prostate cancer xenograft implantation model.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongfei Li
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hanjing Gao
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yabin Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
48
|
Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsöhazy R. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res 2016; 44:7331-49. [PMID: 27382069 PMCID: PMC5009750 DOI: 10.1093/nar/gkw606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 11/14/2022] Open
Abstract
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.
Collapse
Affiliation(s)
- Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Amandine Draime
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Barbara Lambert
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Julie Vandeputte
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nathan Nguyen
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Patricia Renard
- Cellular Biology Research Unit, Université de Namur, Namur 5000, Belgium
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - René Rezsöhazy
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
49
|
Liu FT, Ou YX, Zhang GP, Qiu C, Luo HL, Zhu PQ. HOXB7 as a promising molecular marker for metastasis in cancers: a meta-analysis. Onco Targets Ther 2016; 9:2693-9. [PMID: 27274269 PMCID: PMC4869646 DOI: 10.2147/ott.s104000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Numerous studies on carcinoma have revealed that the expression level of HOXB7 in cancerous tissues was significantly higher than that in noncancerous tissues. Elevated expression of HOXB7 is associated with the susceptibility to lymph node metastasis and distant metastasis in various tumors. In this study, a meta-analysis was performed to involve majority of relevant articles and explore the association of HOXB7 expression level with metastasis in cancer patients. Literature retrieval was conducted by searching in a number of electronic databases (up to December 1, 2015). The meta-analysis was conducted with RevMan 5.3 software and Stata SE12.0. A total of 1,532 patients with carcinoma from 14 studies were included in analysis. The results of meta-analysis demonstrated that lymph node metastasis was observed more frequently in the patients group with high expression level of HOXB7 than in the patients group with low expression level of HOXB7 (odds ratio =2.17, 95% CI: 1.74–2.71, P<0.00001, fixed-effects model). In addition, a similar result was observed in the association between HOXB7 expression and distant metastasis; the odds ratio was 1.77 (95% CI: 1.09–2.88, P=0.02, fixed-effects model). This meta-analysis demonstrated that the overexpression of HOXB7 was significantly associated with metastasis in cancer patients, which may be served as a common molecular marker for indicating cancer metastasis.
Collapse
Affiliation(s)
- Fang-Teng Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Yang-Xi Ou
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Guan-Ping Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Cheng Qiu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Pei-Qian Zhu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
50
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|