1
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
2
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Papaioannou M, Chorti AG, Chatzikyriakidou A, Giannoulis K, Bakkar S, Papavramidis TS. MicroRNAs in Papillary Thyroid Cancer: What Is New in Diagnosis and Treatment. Front Oncol 2022; 11:755097. [PMID: 35186709 PMCID: PMC8851242 DOI: 10.3389/fonc.2021.755097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Papillary thyroid cancer (PTC) accounts for up to 80% of thyroid malignancies. New diagnostic and therapeutic options are suggested including innovative molecular methods. MicroRNAs (miRNAs) are nonprotein coding single-stranded RNAs that regulate many cell processes. The aim of the present study is to review the deregulated miRNAs associated with PTCs. Methods A bibliographic research was conducted, resulting in 272 articles referred to miRNAs and PTC. Regarding our exclusion criteria, 183 articles were finally included in our review. Results A remarkably large number of miRNAs have been found to be deregulated during PTC manifestation in the literature. The deregulated miRNAs are detected in tissue samples, serum/plasma, and FNA samples of patients with PTC. These miRNAs are related to several molecular pathways, involving genes and proteins responsible for important biological processes. MiRNA deregulation is associated with tumor aggressiveness, including larger tumor size, multifocality, extrathyroidal extension, lymphovascular invasion, lymph node and distant metastasis, and advanced tumor node metastasis stage. Conclusion MiRNAs are proposed as new diagnostic and therapeutic tools regarding PTC. They could be essential biomarkers for PTC diagnosis applied in serum and FNA samples, while their contribution to prognosis is of great importance.
Collapse
Affiliation(s)
- Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki G. Chorti
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleanthis Giannoulis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sohail Bakkar
- Department of Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Theodosios S. Papavramidis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Theodosios S. Papavramidis,
| |
Collapse
|
4
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
5
|
Lu Y, Tian M, Liu J, Wang K. LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J Biochem Mol Toxicol 2021; 35:e22848. [PMID: 34328678 DOI: 10.1002/jbt.22848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Temozolomide (TMZ) is the first-line chemotherapy drug for glioblastoma (GBM) but acquired TMZ resistance is frequently observed. Thus, a TMZ resistant GBM cell line U87-R was established to search for potential long noncoding RNAs (lncRNAs) used in TMZ resistance. In our study, LINC00511 was identified as a TMZ resistance-associated lncRNA in U87-R cells by transcriptome RNA sequencing. The potential functions of LINC00511 were evaluated by quantitative real-time polymerase chain reaction, cell viability assay, colony formation assay, western blot, soft agar assay, flow cytometry, tumor xenograft model, immunofluorescence, sphere formation assay, fluorescent in situ hybridization, luciferase reporter assay, and RNA pull-down assay. We found that LINC00511 was upregulated in U87-R cells and GBM samples, and correlated with poor prognosis of GBM patients. Silencing LINC00511 impaired TMZ tolerance of U87-R cells, while LINC00511 overexpression increased TMZ resistance of sensitive GBM cells. Wnt/β-catenin signaling was activated in U87-R cells, and inhibiting Wnt/β-catenin signaling enhanced TMZ sensitivity. Furthermore, LINC00511 was mainly distributed in the cytoplasm of GBM cells and regulated Wnt/β-catenin activation by acting as a molecular sponge for miR-126-5p. Multiple genes of Wnt/β-catenin signaling such as DVL3, WISP1, and WISP2 were targeted by miR-126-5p. MiR-126-5p restoration impaired TMZ resistance of GBM cells. In conclusion, our results provided a novel insight into acquired TMZ resistance of GBM cells and suggested LINC00511 as a potential biomarker or therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Yan Lu
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan province, China
| | - Meng Tian
- Department of Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiongbo Liu
- Department of Neurology, The Second People's Hospital of Xinxiang, Xinxiang, Henan province, China
| | - Kuanhong Wang
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan province, China
| |
Collapse
|
6
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
8
|
Min WP, Wei XF. Silencing SIX1 inhibits epithelial mesenchymal transition through regulating TGF-β/Smad2/3 signaling pathway in papillary thyroid carcinoma. Auris Nasus Larynx 2020; 48:487-495. [PMID: 33077306 DOI: 10.1016/j.anl.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the sineoculis homeobox homolog 1 (SIX1) affect the epithelial mesenchymal transition (EMT) in papillary thyroid carcinoma (PTC) through regulating TGF-β/Smad2/3 signaling pathway. METHODS The SIX1 expression in cytological specimens, tissues or PTC cell lines was detected by qRT-PCR, western blotting or immunohistochemistry. A series of vitro experiments including flow cytometry, CCK-8, wound-healing and Transwell were used to evaluate the biological characteristics in a PTC cell line (NPA cells), which were divided into Blank, Negative control (NC), SIX1, SIX1-siRNA, LY-364947 (TGF-β/Smad2/3 pathway inhibitor) and SIX1 + LY-364947 groups. TGF-β/Smad2/3 pathway and EMT related protein expression were measured by qRT-PCR and western blotting. RESULTS SIX1 mRNA expression was increased in cytological specimens from PTC patients as compared with the non-toxic nodular goitre (NTG) patients. Moreover, compared with adjacent normal tissues, expressions of SIX1, N-cadherin and Vimentin were higher while E-cadherin was lower in PTC tissues; and SIX1 was positively correlated with N-cadherin and Vimentin but was negatively correlated with E-cadherin. Furthermore, the SIX1 expression was associated with histopathology, extrathyroidal extension (ETE), lymph node metastasis (LNM), pT stage, TNM stage, and distant metastasis. In addition, the expressions of TGFβ1, p-SMAD2/3, N-cadherin and Vimentin were downregulated in NPA cells after LY-364947 treatment with upregulated E-cadherin, decreased cell proliferation and metastasis, and enhanced cell apoptosis, which was reversed by SIX1 overexpression. CONCLUSION Silencing SIX1 can inhibit TGF-β/Smad2/3 pathway, thereby suppressing EMT in PTC, which may be a novel avenue for the treatment of PTC.
Collapse
Affiliation(s)
- Wen-Pu Min
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Xiao-Feng Wei
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China.
| |
Collapse
|
9
|
Zhang Y, Qin X, Jiang J, Zhao W. MicroRNA-126 exerts antitumor functions in ovarian cancer by targeting EGFL7 and affecting epithelial-to-mesenchymal transition and ERK/MAPK signaling pathway. Oncol Lett 2020; 20:1327-1335. [PMID: 32724375 PMCID: PMC7377137 DOI: 10.3892/ol.2020.11687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/13/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer (OC) is a common gynecological malignant carcinoma worldwide. Accumulating research has revealed that multiple microRNAs (miRNAs) are abnormally expressed at different levels in various malignancies, playing vital roles in tumorigenesis. This study investigated the regulatory functions and potential mechanism of miR-126 in OC proliferation, invasion and migration. It was found that miR-126 was prominently downregulated in OC. Moreover, the decrease of miR-126 promoted the aggressive phenotypes and indicated poor prognosis of OC patients. Functional assays demonstrated that restoration of miR-126 dramatically repressed OC cell proliferation, migration and invasion. Furthermore, luciferase reporter assay was conducted to verify putative binding sites of miR-126 in the epidermal growth factor-like domain 7 (EGFL7) 3 untranslated region (3'UTR), indicating that EGFL7 was a target gene of miR-126 in OC cells. It was further discovered that miR-126 exerts its function on regulating ERK/MAPK pathway and epithelial-to-mesenchymal transition (EMT) in OC cells. The above findings suggested that miR-126 served as a cancer suppressor in OC, suggesting a promising application of miR-126 in the clinical diagnosis and therapeutics of OC.
Collapse
Affiliation(s)
- Yuhua Zhang
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaobo Qin
- Department of Obstetrics and Gynecology, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Juan Jiang
- Department of Nursing, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Wenjie Zhao
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
10
|
Fuziwara CS, Kimura ET. How does microRNA modulate Wnt/β-catenin signaling in thyroid oncogenesis? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:266. [PMID: 32355710 PMCID: PMC7186644 DOI: 10.21037/atm.2020.02.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers. Cancers (Basel) 2019; 11:cancers11081162. [PMID: 31412666 PMCID: PMC6721565 DOI: 10.3390/cancers11081162] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, liver, breast and pancreatic cancers.
Collapse
|
12
|
Yan G, Li C, Zhao Y, Yue M, Wang L. Downregulation of microRNA‑629‑5p in colorectal cancer and prevention of the malignant phenotype by direct targeting of low‑density lipoprotein receptor‑related protein 6. Int J Mol Med 2019; 44:1139-1150. [PMID: 31257454 DOI: 10.3892/ijmm.2019.4245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of numerous microRNAs (miRNAs/miRs) in colorectal cancer (CRC) significantly affects disease progression. Recently, miR‑629‑5p (miR‑629) was identified as a tumor‑promoting miRNA in the malignant processes of a number of human cancers. However, few studies have been conducted regarding expression profiles and detailed roles of miR‑629 in CRC. In the present study, reverse transcription‑quantitative polymerase chain reaction was used to assess miR‑629 expression in CRC tissues and cell lines. Cell Counting Kit‑8 assay, flow cytometry and Transwell assays were performed to determine the in vitro effects of miR‑629 on CRC cell proliferation, apoptosis, and metastasis, respectively. Xenograft models were employed to determine the in vivo effects of miR‑629 on tumor growth in nude mice. Molecular mechanisms underlying the activity of miR‑629 in CRC cells were explored. miR‑629 expression decreased in CRC tissues and cell lines. The decreased aberrant miR‑629 expression was significantly associated with tumor size, lymphatic metastasis and tumor‑node‑metastasis stage of CRC, and was a predictor of poor prognosis. Restoring miR‑629 expression attenuated CRC cell proliferation, migration and invasion; promoted cell apoptosis in vitro; and inhibited tumor growth in vivo. Low‑density lipoprotein receptor‑related protein 6 (LRP6) was a direct target gene of miR‑629 in CRC cells. Furthermore, the effect of LRP6 knockdown was similar to that of miR‑629 overexpression in CRC cells. Restoration of LRP6 expression neutralized the effects of miR‑629 in CRC cells. miR‑629 suppressed the activation of the Wnt/β‑catenin pathway through LRP6 regulation both in vitro and in vivo. In conclusion, miR‑629 suppressed the development and progression of CRC by directly targeting LRP6 and inhibiting the Wnt/β‑catenin pathway both in vitro and in vivo. Therefore, miR‑629 may be a novel prognostic biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chenyao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuhang Zhao
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma. Biosci Rep 2019; 39:BSR20190425. [PMID: 31101684 PMCID: PMC6549096 DOI: 10.1042/bsr20190425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Hydroxysteroid dehydrogenase like 2 (HSDL2) can regulate lipid metabolism and take part in cell proliferation. The purpose of the present study was to explore functional role of HSDL2 gene in PTC. The expression of HSDL2 protein in PTC tissues was estimated using immunohistochemistry analysis (IHC). HSDL2 mRNA level was detected through quantitative real-time polymerase chain reaction (qRT-PCR). Effects of HSDL2 gene on cell proliferation and apoptosis were assessed using the shRNA method for both in vitro and in vivo experiments. Potential target genes of HSDL2 were determined via bioinformatics analyses and Western blotting. HSDL2 was up-regulated in PTC tissues and cell lines compared with the controls (all P<0.05). Inhibiting HSDL expression could suppress PTC cell proliferation and cycle, and promote apoptosis in vitro. In vivo, the knockdown of HSDL2 gene could significantly suppress tumor growth (all P<0.05). Furthermore, AKT3, NFATc2 and PPP3CA genes might be potential targets of HSDL2 in PTC. HSDL2 expression was increased in PTC tissues and cells, which could promote tumor progression in vitro and in vivo.
Collapse
|
14
|
Chengfeng X, Gengming C, Junjia Z, Yunxia L. MicroRNA signature predicts survival in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17050-17058. [PMID: 31099134 DOI: 10.1002/jcb.28966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022]
Abstract
Papillary thyroid cancer (PTC) accounts for the majority of malignant thyroid tumors. Recently, several microRNA (miRNA) expression profiling studies have used bioinformatics to suggest miRNA signatures as potential prognostic biomarkers in various malignancies. However, a prognostic miRNA biomarker has not yet been established for PTC. The aim of the present study was to identify miRNAs with prognostic value for the overall survival (OS) of patients with PTC by analyzing high-throughput miRNA data and their associated clinical characteristics downloaded from The Cancer Genome Atlas database. From our dataset, 150 differentially expressed miRNAs were identified between tumor and nontumor samples; of these miRNAs, 118 were upregulated and 32 were downregulated. Among the 150 differentially expressed miRNAs, a four miRNA signature was identified that reliably predicts OS in patients with PTC. This miRNA signature was able to classify patients into a high-risk group and a low-risk group with a significant difference in OS (P < .01). The prognostic value of the signature was validated in a testing set ( P < .01). The four miRNA signature was an independent prognostic predictor according to the multivariate analysis and demonstrated good performance in predicting 5-year disease survival with an area under the receiver operating characteristic curve area under the curve (AUC) score of 0.886. Thus, this signature may serve as a novel biomarker for predicting the survival of patients with PTC.
Collapse
Affiliation(s)
- Xiong Chengfeng
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cai Gengming
- Department of Otolaryngology-Head Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Zhang Junjia
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lv Yunxia
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Tao L, Yang L, Tian P, Guo X, Chen Y. Knockdown of circPVT1 inhibits progression of papillary thyroid carcinoma by sponging miR-126. RSC Adv 2019; 9:13316-13324. [PMID: 35520785 PMCID: PMC9066352 DOI: 10.1039/c9ra01820d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Recent studies have reported that circular RNAs (circRNAs) play essential roles in human cancers, including PTC. However, the roles of circRNA plasmacytoma variant translocation 1 (PVT1) in PTC progression and its potential mechanism remain largely unknown. Methods: The expressions of circPVT1 and microRNA-126 (miR-126) were measured in PTC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, apoptosis, migration and invasion were detected in PTC cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, Western blot or trans-well assays, respectively. The interaction between circPVT1 and miR-126 was explored by bioinformatics analysis, luciferase activity assay and RNA immunoprecipitation. A mouse xenograft model was established to investigate the role of circPVT1 in PTC progression in vivo. Results: High expression of circPVT1 was shown in PTC tissues and cells and was associated with poor outcomes of patients. Knockdown of circPVT1 suppressed viability, migration and invasion but induced apoptosis in PTC cells. miR-126 was bound to circPVT1 and reduced in PTC tissues and cells. Moreover, inhibition of miR-126 reversed the regulatory effect of the circPVT1 interference on viability, apoptosis, migration and invasion in PTC cells. Besides, circPVT1 knockdown attenuated tumor growth via up-regulating miR-126 in vivo. Conclusion: CircPVT1 knockdown inhibited PTC progression by sponging miR-126. This may indicate circPVT1 as a novel target for treatment of PTC. Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Recent studies have reported that circular RNAs (circRNAs) play essential roles in human cancers, including PTC.![]()
Collapse
Affiliation(s)
- Ling Tao
- Institute of Inspection Technology, Xinyang Vocational and Technical College, Key Laboratory of Geriatric Diseases of Xinyang Xinyang 464000 China
| | - Li Yang
- Institute of Inspection Technology, Xinyang Vocational and Technical College, Key Laboratory of Geriatric Diseases of Xinyang Xinyang 464000 China
| | - Ping Tian
- Institute of Inspection Technology, Xinyang Vocational and Technical College, Key Laboratory of Geriatric Diseases of Xinyang Xinyang 464000 China
| | - Xiangyang Guo
- Department of Endocrinology, Xinyang Central Hospital Xinyang 464000 China
| | - Yanping Chen
- Department of Laboratory, Qingdao Women and Children's Hospital No. 6 Tongfu Road, Shibei District Qingdao 266000 China +86-0532-68661155
| |
Collapse
|
16
|
Fang M, Huang W, Wu X, Gao Y, Ou J, Zhang X, Li Y. MiR-141-3p Suppresses Tumor Growth and Metastasis in Papillary Thyroid Cancer via Targeting Yin Yang 1. Anat Rec (Hoboken) 2018; 302:258-268. [PMID: 30290400 DOI: 10.1002/ar.23940] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/17/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
MicroR-141-3p has been found to be downregulated in papillary thyroid carcinoma (PTC), while little is known about the cellular functions and precise signals elicited by miR-141-3p in PTC. The results of this study indicated that the expression of miR-141-3p was aberrantly down-regulated in PTC tissues and cell lines, compared with the adjacent normal tissues and normal thyroid epithelial cells. Furthermore, the miR-141-3p expression level was negatively associated with TNM stage and lymph node metastasis in PTC. Expression of miR-141-3p effectively inhibited cell growth, promoted apoptosis, and suppressed invasion in PTC cells. Meanwhile, miR-141-3p knockdown with miR-141-3p inhibitor reversed these effects. Consistent with the in vitro study, miR-141-3p also exhibited anti-neoplastic activity in vivo. Moreover, the results revealed that miR-141-3p directly recognized the 3' untranslated region (3'UTR) of Yin Yang 1 (YY1) and negatively regulated the expression of YY1 at both protein and mRNA levels. Ectopic expression of YY1 could effectively abrogate the anti-metastatic and proapoptotic effects of miR-141-3p. In summary, the findings suggested that miR-141-3p can act as a tumor suppressor in PTC and may be a potential therapeutic target for PTC treatment. Anat Rec, 302:258-268, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Fang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Wenlong Huang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Xinchi Wu
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Yuan Gao
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Jing Ou
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Xiaolan Zhang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| | - Yanyun Li
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital, School of Medicine, Southeast University, Jiangyin, 214400, China
| |
Collapse
|
17
|
Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, Deng Z. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther 2018; 19:1139-1152. [PMID: 30207869 DOI: 10.1080/15384047.2018.1480888] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To identify the significantly altered circRNAs and mRNAs in thyroid cancer, investigate their target miRNAs and determine their biological functions. METHODS The differentially expressed circRNAs, mRNAs and pathways in thyroid cancer were identified by microarray analysis and gene set enrichment analysis (GSEA). The correlative circRNAs and mRNAs were found out through Pearson correlative analysis. The common target miRNAs of circNEK6 and FZD8 related to thyroid cancer was screened out through Targetscan, miRanda and HMDD analysis. The mRNA and protein expressions in thyroid cancer tissues and cells were detected by qRT-PCR and western blot. CircRNA was confirmed by the RNase R digestion and nucleic acid electrophoresis. The target relationships were verified by the dual luciferase reporter assay. Cell viability, invasion and apoptosis were determined by MTT assay, Transwell assay and flow cytometry, respectively. RESULTS CircNEK6 and FZD8 were significantly up-regulated in thyroid cancer, with strong correlations. The Wnt signaling pathway was activated in thyroid cancer. MiR-370-3p was the common target miRNA of circNEK6 and FZD8, and it was down-regulated in thyroid cancer. Overexpression of circNEK6 and FZD8 could promote the growth and invasion of thyroid cancer cells, while up-regulation of miR-370-3p could suppress thyroid cancer progression and inhibit the Wnt signaling pathway. MiR-370-3p's effect on thyroid cancer cells could be rescued by circNEK6 or FZD8. CONCLUSION CircNEK6 promoted the progression of thyroid cancer through up-regulating FZD8 and activating Wnt signaling pathway by targeting miR-370-3p.
Collapse
Affiliation(s)
- Fukun Chen
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Zhiping Feng
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Jialun Zhu
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Pengjie Liu
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Chuanzhou Yang
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Rongkai Huang
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Zhiyong Deng
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| |
Collapse
|
18
|
Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018; 41:269-283. [PMID: 28762013 DOI: 10.1007/s40618-017-0735-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.
Collapse
Affiliation(s)
- S Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - M Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - M Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - E Baldini
- Department of Surgical Sciences, University of Rome, Rome, Italy.
| | - S Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Abstract
MiR-221 is frequently upregulated in papillary thyroid cancer (PTC) tissues and cell lines, and this study was designed to validate the association of miR-221 with PTC proliferation, apoptosis, and migration. We observed that miR-221 suppressed TIMP3 expression by binding to 3' untranslated region of TIMP3 mRNA, and TIMP3 expression was increased with the presence of miR-221 inhibitors; TIMP3 siRNA could reverse the effects of miR-221 inhibitors on PTC cells. The results indicated that miR-221 exacerbated PTC by downregulating the expression of TIMP3. The effects of miR-221 and TIMP3 in vivo were also confirmed by human PTC-bearing mice models which suggest consistent results with those in vitro studies. In summary, miR-221 could aggravate cell proliferation and invasion of PTC by targeting TIMP3.
Collapse
|
20
|
Feng R, Beeharry MK, Lu S, Sah BK, Yuan F, Yan M, Liu B, Li C, Zhu Z. Down-regulated serum miR-126 is associated with aggressive progression and poor prognosis of gastric cancer. Cancer Biomark 2018; 22:119-126. [PMID: 29562500 DOI: 10.3233/cbm-171099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND miR-126 functions as a tumor suppressor in gastric cancer (GC), however, the clinical significance of serum miR-126 in GC remains unclear. OBJECTIVE To investigate the associations of serum miR-126 level with the clinicopathological characteristics and prognosis of GC patients. METHODS Quantitative real-time polymerase chain reaction was performed to examine the expression levels of miR-126 in 338 GC patients' tissues and sera, and 50 healthy controls' sera. The associations of serum miR-126 with clinicopathological characteristics and clinical outcome were evaluated. RESULTS Compared with the matched adjacent non-tumor tissues and normal sera, miR-126 expression was significantly down-regulated in both tumor tissues and sera of GC patients. Importantly, there was a positive correlation between tissue and serum levels of miR-126 in GC patients. A reduced serum miR-126 level statistically correlated with aggressive clinicopathological characteristics, such as larger tumor size, deeper local invasion, more lymph node metastasis, advanced TNM stage, and poorer prognosis. Notably, multivariate analysis identified reduced serum miR-126 level as an independent predictor for the unfavorable prognosis of GC. CONCLUSIONS These results indicate for the first time that serum miR-126 may serve as a novel prognostic biomarker in GC.
Collapse
Affiliation(s)
- Runhua Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Maneesh K Beeharry
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Birendra K Sah
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Lin Y, Cheng K, Wang T, Xie Q, Chen M, Chen Q, Wen Q. miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother 2017; 95:1718-1724. [PMID: 28962076 DOI: 10.1016/j.biopha.2017.09.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The aims of this study were to test the influence of miR-217 on the proliferation, invasion, migration of thyroid cancer and the relevant mechanism. METHOD miR-217 expression levels in thyroid cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR).Cell Counting Kit-8, flow cytometer, wound healing, transwell invasion assays were applied to evaluate the effect of miR-217 on proliferation, apoptosis, migration and invasion of thyroid cells. The luciferase reporter assay, qRT-PCR, and western blot were used to identify target of miR-217. Relative relationship of expression level between miR-217 and AKT3 was analyzed in thyroid cancer tissues. Xenograft transplantation was performed to test effect of miR-217 in vivo. RESULTS We found that the expression of miR-217 was significantly decreased in thyroid cancer tissues cell lines. Significantly, decreased miR-217 expression were associated with the clinical stage and lymph node metastasis. Function studies revealed that miR-217 overexpression in thyroid cancer cells inhibited proliferation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Subsequently, AKT3 was identified as a target of miR-217 in thyroid cancer. AKT3 expression was upregulated in thyroid cancer tissues, was inversely correlated with miR-217expression. Besides, overexpression of AKT3 efficiently abrogates suppressive effect on proliferation, migration and invasion in thyroid cancer cells caused by overexpression of miR-217. CONCLUSION These data demonstrated a tumor suppressor role for miR-217 in thyroid cancer development and progression by targeting AKT3, suggesting miR-217 might be a potential target for thyroid cancer.
Collapse
Affiliation(s)
- Yuanqiang Lin
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Kailiang Cheng
- Department of Radiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Tongtong Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Qian Xie
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Minglong Chen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Qianqian Chen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China.
| | - Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China.
| |
Collapse
|
23
|
Ma J, Lu W, Chen D, Xu B, Li Y. Role of Wnt Co-Receptor LRP6 in Triple Negative Breast Cancer Cell Migration and Invasion. J Cell Biochem 2017; 118:2968-2976. [PMID: 28247948 PMCID: PMC10928515 DOI: 10.1002/jcb.25956] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 03/14/2024]
Abstract
The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential Wnt co-receptor of the Wnt/β-catenin signaling pathway. Although studies have shown an increased expression of LRP6 in several types of cancer, its function in tumor development and progression remains to be elucidated. We herein demonstrated that LRP6 expression is up-regulated in human triple negative breast cancer (TNBC) patients and human TNBC cell lines, and that knockdown of LRP6 expression and treatment of recombinant Mesd protein (a specific inhibitor of LRP6) significantly decreased cell migration and invasion of TNBC MDA-MB-231 and BT549 cells. Interestingly, the effects of LRP6 knockdown and Mesd treatment on TNBC cell migration and invasion were more prominent than on TNBC cell proliferation/viability. Mechanistically, LRP6 knockdown and Mesd treatment inhibited Wnt/β-catenin signaling and decreased the expression of S100A4, a mediator of cancer metastasis and a specific target of Wnt/β-catenin signaling, in TNBC cells. Together, our data suggest that LRP6 promotes TNBC cell migration and invasion by regulating the expression and function of S100A4 via the Wnt/β-catenin signaling pathway. J. Cell. Biochem. 118: 2968-2976, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Wenyan Lu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Dongquan Chen
- Division of Preventive Medicine and Comprehensive Cancer Center; Department of Medicine; University of Alabama at Birmingham; Birmingham, AL USA
| | - Bo Xu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Yonghe Li
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| |
Collapse
|
24
|
Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer. J Hum Genet 2016; 62:87-96. [PMID: 27734836 DOI: 10.1038/jhg.2016.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction. Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact, GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs) are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.
Collapse
|
25
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
26
|
Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by miR-29b in intestinal epithelial cells. Biochem J 2016; 473:1641-9. [PMID: 27089893 PMCID: PMC4888462 DOI: 10.1042/bcj20160057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) control gene expression by binding to their target mRNAs for degradation and/or translation repression and are implicated in many aspects of cellular physiology. Our previous study shows that miR-29b acts as a biological repressor of intestinal mucosal growth, but its exact downstream targets remain largely unknown. In the present study, we found that mRNAs, encoding Wnt co-receptor LRP6 (low-density lipoprotein-receptor-related protein 6) and RNA-binding protein (RBP) HuR, are novel targets of miR-29b in intestinal epithelial cells (IECs) and that expression of LRP6 and HuR is tightly regulated by miR-29b at the post-transcriptional level. miR-29b interacted with both Lrp6 and HuR mRNAs via their 3′-UTRs and inhibited LRP6 and HuR expression by destabilizing Lrp6 and HuR mRNAs and repressing their translation. Studies using heterologous reporter constructs revealed a greater repressive effect of miR-29b through a single binding site in the Lrp6 or HuR 3′-UTR, whereas deletion mutation of this site prevented miR-29b-induced repression of LRP6 and HuR expression. Repression of HuR by miR-29b in turn also contributed to miR-29b-induced LRP6 inhibition, since ectopic overexpression of HuR in cells overexpressing miR-29b restored LRP6 expression to near normal levels. Taken together, our results suggest that miR-29b inhibits expression of LRP6 and HuR post-transcriptionally, thus playing a role in the regulation of IEC proliferation and intestinal epithelial homoeostasis.
Collapse
|
27
|
Jiang Q, He M, Ma MT, Wu HZ, Yu ZJ, Guan S, Jiang LY, Wang Y, Zheng DD, Jin F, Wei MJ. MicroRNA-148a inhibits breast cancer migration and invasion by directly targeting WNT-1. Oncol Rep 2015; 35:1425-32. [PMID: 26707142 DOI: 10.3892/or.2015.4502] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling pathway influences embryonic development, cell polarity and adhesion, apoptosis and tumorigenesis. MicroRNAs (miRNAs) function as important regulators of the tumorigenesis and metastasis. In the present study, we aimed to find novel targets and mechanisms of microRNA-148a (miR-148a) in regulating the migration and invasion of breast cancer cells. In the present study, miR-148a was found downregulated in human breast cancer tissues and cell lines. The ectopic miR-148a expression inhibited the migration and invasion of MCF-7 and MDA-MB-231 breast cancer cells. Furthermore, we demonstrated that WNT-1, one of the ligands of Wnt/β-catenin signaling pathway, was a direct target of miR-148a. The overexpression of miR-148a reduced the mRNA and protein expression levels of WNT-1, also decreased the expression levels of the key components of Wnt/β-catenin pathway, including β-catenin, metalloproteinase-7 (MMP-7) and T-cell factor-4 (TCF-4) in MCF-7 and MDA-MB-231 cells. In addition, the data showed that the expression of WNT-1 was significantly higher in human breast cancer tissues compared with the adjacent normal tissues and the expression of miR-148a was negatively correlated with the WNT-1 expression in human breast cancer tissues. Taken together, our results suggest that miR-148a can suppress the migration and invasion of breast cancer cells by targeting WNT-1 and inhibiting Wnt/β-catenin signaling pathway and this will provide new insights into the molecular mechanisms of breast cancer metastasis.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Meng-Tao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hui-Zhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhao-Jin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shu Guan
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Long-Yang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Da-Di Zheng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Feng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|