1
|
Xie W, Xu H, Cheng Y, Lin X, Zeng J, Sun Y. Calcium-sensing Receptor, a Potential Biomarker Revealed by Large-scale Public Databases and Experimental Verification in Metastatic Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241254219. [PMID: 38780484 PMCID: PMC11119385 DOI: 10.1177/15330338241254219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) is a common cancer characterized by a high molecular heterogeneity. Therefore, understanding its biological properties and developing effective treatments for patients with different molecular features is imperative. Calcium-sensing receptor (CaSR) has been implicated in several regulatory functions in various types of human cancers. However, its underlying pathological mechanism in BC progression remains elusive. METHODS We utilized The Cancer Genome Atlas and Gene Expression Omnibus databases to explore the function of CaSR in the metastasis of BC. Gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Gene Set Enrichment Analysis of biological processes and cell signaling pathways revealed that CaSR could be activated or inhibited. Importantly, quantitative reverse transcriptase-polymerase chain reaction and western blotting were used to verify the gene expression of the CaSR. Wound healing and transwell assays were conducted to assess the effect of CaSR on the migration of BC cells. RESULTS We demonstrated that CaSR expression in metastatic BC was higher than that in non-metastatic BC. It is the first time that database information has been used to reveal the biological process and molecular mechanism of CaSR in BC. Moreover, the CaSR expression in normal breast epithelial cells was notably less compared to that in BC cells. The activation of CaSR by Cinacalcet (a CaSR agonist) significantly enhanced the migration of BC cells, whereas NPS-2143 (a CaSR antagonist) treatment dramatically inhibited these effects. CONCLUSION AND FUTURE PERSPECTIVE Bioinformatics techniques and experiments demonstrated the involvement of CaSR in BC metastasis. Our findings shed new light on the receptor therapy and molecular pathogenesis of BC, and emphasize the crucial function of CaSR, facilitating the metastasis of BC.
Collapse
Affiliation(s)
- Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
vahidi M, Houshmand M, Banoei M, Heidari F. The association between TIPARP gene polymorphisms rs2665390 and ovarian cancer susceptibility. Gynecol Oncol Rep 2023; 47:101175. [PMID: 37091214 PMCID: PMC10113771 DOI: 10.1016/j.gore.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Ovarian cancer is taken as the most typical malignancy among women and the ninth most typical cancer in Iran. Predictive tools are of great importance as ovarian cancer is usually detected in patients at later stages of the disease. In other countries, the TIPARP gene rs2665390 has been reported to be pertinent to ovarian cancer as a risk factor. This study aims to examine if this polymorphism pertains to the risk of ovarian cancer to diagnose suitable biomarkers in the Iranian population. Method: In the present case-control piliot study, peripheral blood samples were gathered from 60 control subjects and 60 patients with ovarian cancer. The gene was determined by Tetra ARMS PCR after DNA extraction. Tetra ARMS PCR is a flexible, rapid, and cost-effective method to detect allele-specific DNA polymorphisms. The data were analyzed by chi-square test. Results: The results indicated that there was a significant association between the T/T and C/C genotypes distribution and C and T allele in ovarian cancer for rs2665390 polymorphism in the two populations. In addition, significant correlations were observed in patients with the (T/T) genotype (p = 0.0048) as frequencies of ovarian cancer decreased. Discussion & Conclusions: Based on the results, rs2665390 polymorphism of TiPARP gene might be pertained to the susceptibility of ovarian cancer in the Iranian pilot population, which can be used as a suitable biomarker for the population and help physicians with their predictions. However, more studies need to be conducted in this area to broaden our horizons on this issue.
Collapse
|
3
|
Zhao HY, Li Q, Tian Y, Chen YH, Alvi HAK, Yuan XG. CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data. BIOLOGY 2021; 10:biology10070584. [PMID: 34202028 PMCID: PMC8301091 DOI: 10.3390/biology10070584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary In this study, we propose a copy number variation (CNV) detection method called CIRCNV, which is based on a circular profile of the read depth from sequencing data. The proposed method is an extended version of our previously developed method CNV-LOF. The main difference of CIRCNV from CNV-LOF lies in its two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation to generate a meaningful two-dimensional dataset for CNV analysis and promote fairness between the ends and middle part of the genome, and (2) it performs two rounds of CNV declaration via estimating tumor purity and recovering the truth circular RD profile. We test and evaluate the performance of CIRCNV via conducting simulation studies and real sequencing tumor sample applications. The experimental results show that CIRCNV outperforms peer methods with respect to sensitivity, precision, and the F1-score. The experiments prove that the proposed method is a reliable and effective tool in the field of variation analysis of tumor genomes. Abstract Copy number variation (CNV) is a common type of structural variation in the human genome. Accurate detection of CNVs from tumor genomes can provide crucial information for the study of tumor genesis and cancer precision diagnosis. However, the contamination of normal genomes in tumor genomes and the crude profiles of the read depth make such a task difficult. In this paper, we propose an alternative approach, called CIRCNV, for the detection of CNVs from sequencing data. CIRCNV is an extension of our previously developed method CNV-LOF, which uses local outlier factors to predict CNVs. Comparatively, CIRCNV can be performed on individual tumor samples and has the following two new features: (1) it transfers the read depth profile from a line shape to a circular shape via a polar coordinate transformation, in order to improve the efficiency of the read depth (RD) profile for the detection of CNVs; and (2) it performs a second round of CNV declaration based on the truth circular RD profile, which is recovered by estimating tumor purity. We test and validate the performance of CIRCNV based on simulation and real sequencing data and perform comparisons with several peer methods. The results demonstrate that CIRCNV can obtain superior performance in terms of sensitivity and precision. We expect that our proposed method will be a supplement to existing methods and become a routine tool in the field of variation analysis of tumor genomes.
Collapse
Affiliation(s)
- Hai-Yong Zhao
- School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China;
| | - Qi Li
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Ye Tian
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Yue-Hui Chen
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Ji’nan 250022, China;
| | - Haque A. K. Alvi
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
| | - Xi-Guo Yuan
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Q.L.); (Y.T.); (H.A.K.A.)
- Correspondence:
| |
Collapse
|
4
|
Singh P, Bhadada SK, Dahiya D, Arya AK, Saikia UN, Sachdeva N, Kaur J, Brandi ML, Rao SD. Reduced Calcium Sensing Receptor (CaSR) Expression Is Epigenetically Deregulated in Parathyroid Adenomas. J Clin Endocrinol Metab 2020; 105:3015-3024. [PMID: 32609827 PMCID: PMC7500582 DOI: 10.1210/clinem/dgaa419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Reduced calcium sensing receptor (CaSR) expression has been implicated in parathyroid tumorigenesis, but the underlying mechanism remains elusive. Accordingly, we aimed to explore the epigenetic changes (DNA methylation and histone modifications) involved in CaSR regulation in sporadic parathyroid adenomas and correlate epigenetic state with disease indices. EXPERIMENTAL DESIGN Forty sporadic parathyroid adenomas and 10 control parathyroid tissues were studied. Real-time quantitative PCR (qPCR) for mRNA and immunohistochemistry for protein expression of CaSR were performed. The methylation status of the CaSR promoter 2 was determined by bisulphite sequencing analysis of sodium bisulphite-converted DNA. To determine the role of histone modifications in the CaSR regulation, chromatin immunoprecipitation-qPCR assay was performed. RESULTS Real-time qPCR revealed reduced CaSR mRNA expression with a fold reduction of 0.12 (P < 0.0001) in parathyroid adenomas. Immunohistochemistry revealed reduced protein expression of CaSR in 90% (36/40) of adenomas. The promoter 2 region of CaSR displayed significant hypermethylation in 45% (18/40) of the adenomas compared with the controls (6.7%; 1 of 10) (P < 0.002). Bisulphite sequencing analysis revealed maximum methylated CpG at glial cell missing 2 binding site on the CaSR promoter 2 compared to other CpG sites. The methylation status of CaSR correlated directly with plasma intact parathyroid hormone levels in patients with parathyroid adenoma. With chromatin immunoprecipitation-qPCR analysis, H3K9me3 levels showed increased enrichment by 10-fold in adenomas and correlated with CaSR-mRNA expression (r = 0.61; P < 0.003). Treatment with 5-aza-2'deoxycytidine restored the expression of CaSR in a parathyroid cell line. CONCLUSION Our data suggest that hypermethylation and increased H3K9me3 of the CaSR promoter 2 are involved in silencing CaSR expression in sporadic parathyroid adenoma.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | | |
Collapse
|
5
|
Das S, Clézardin P, Kamel S, Brazier M, Mentaverri R. The CaSR in Pathogenesis of Breast Cancer: A New Target for Early Stage Bone Metastases. Front Oncol 2020; 10:69. [PMID: 32117726 PMCID: PMC7013091 DOI: 10.3389/fonc.2020.00069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Ca2+-sensing receptor (CaSR) is a class-C G protein-coupled receptor which plays a pivotal role in calciotropic processes, primarily in regulating parathyroid hormone secretion to maintain systemic calcium homeostasis. Among its non-calciotropic roles, where the CaSR sits at the intersection of myriad processes, it has steadily garnered attention as an oncogene or tumor suppressor in different organs. In maternal breast tissues the CaSR promotes lactation but in breast cancer it acts as an oncoprotein and has been shown to drive the pathogenesis of skeletal metastases from breast cancer. Even though research has made great strides in treating primary breast cancer, there is an unmet need when it comes to treatment of metastatic breast cancer. This review focuses on how the CaSR leads to the pathogenesis of breast cancer by contrasting its role in healthy tissues and tumorigenesis, and by drawing brief parallels with the tissues where it has been implicated as an oncogene. A class of compounds called calcilytics, which are CaSR antagonists, have also been surveyed in the instances where they have been used to target the receptor in cancerous tissues and constitute a proof of principle for repurposing them. Current clinical therapies for treating bone metastases from breast cancer are limited to targeting osteoclasts and a deeper understanding of the CaSR signaling nexus in this context can bolster them or lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Souvik Das
- MP3CV, EA7517, CURS, University of Picardie Jules Verne, Amiens, France
| | - Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Said Kamel
- MP3CV, EA7517, CURS, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, Amiens-Picardie University Hospital, Amiens, France
- Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Michel Brazier
- MP3CV, EA7517, CURS, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, Amiens-Picardie University Hospital, Amiens, France
- Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Romuald Mentaverri
- MP3CV, EA7517, CURS, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, Amiens-Picardie University Hospital, Amiens, France
- Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
6
|
Huang H, Li T, Liao D, Zhu Z, Dong Y. Quantitative assessment of the clinical susceptibility of calcium-sensing receptor polymorphisms in cancer patients. Cancer Manag Res 2018; 10:755-763. [PMID: 29695932 PMCID: PMC5903842 DOI: 10.2147/cmar.s147751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Accumulating evidence has suggested a relationship between calcium-sensing receptor (CASR) polymorphisms and cancer risk in different types of cancer; however, the findings from epidemiologic studies have been conflicting. The purpose of this meta-analysis was to assess the clinical susceptibility of CASR polymorphisms in cancer patients. Materials and methods This study systematically searched MEDLINE and EMBASE databases for eligible articles through March 2017. The strength of association was expressed as odds ratio and 95% CI. Publication bias, heterogeneity, sensitivity analysis, and subgroup analyses were also examined. Results Fourteen related case–control studies were finally identified to be included in the present analysis. The pooled result showed that no significant associations were found among CASR rs1801725, rs1042636, rs12485716, rs4678174, rs1801726, rs17251221, rs10934578, and rs2270916 polymorphisms and cancer risk under all genetic models (P>0.05). The relationship between CASR rs1801725 polymorphism and risk of cancer was consistent in the subgroup analyses, and robust in sensitivity analysis. No publication bias was presented in our pooled-analysis. Conclusion The current evidence for our pooled analysis suggests that the CASR polymorphisms are not associated with an increased risk of cancer. Further larger studies are still necessary to warrant and validate the findings in the current meta-analysis.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Science and Education, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Tao Li
- Department of Medical Oncology, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Dan Liao
- Department of Gynaecology & Obstetrics, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.,China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhu Zhu
- China-American Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yong Dong
- Department of Cancer Center, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
7
|
Campos-Verdes LM, Costa-Silva DR, da Silva-Sampaio JP, Barros-Oliveira MDC, Escórcio-Dourado CS, Martins LM, Sampaio FA, Revoredo C, Alves-Ribeiro FA, da Silva BB. Review of Polymorphism of the Calcium-Sensing Receptor Gene and Breast Cancer Risk. Cancer Invest 2018; 36:1-7. [PMID: 29504802 DOI: 10.1080/07357907.2018.1430817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymorphism of the calcium-sensing receptor gene (CaSR or CaR) has been associated with an increased risk for breast cancer. This receptor plays an important role in calcium homeostasis, and has also been detected in several tissues that are unrelated to calcium metabolism, such as the skin, brain, and breast. The calcium-sensing receptor on cellular level, it regulates cell differentiation, proliferation, cell death, and gene expression. In breast cancer cells, CaSR seems to stimulate secretion of the parathyroid hormone-related protein (PTHrP), which stimulates cellular proliferation. Likewise, some studies have supported not only an association between calcium receptor gene polymorphism and breast cancer risk, but also a higher aggressiveness and unfavorable outcomes in breast cancer, which led us to make a survey in Pubmed on the subject in the last 10 years. Thus, in the literature there is a paucity of studies on the subject and the aim of this review was to show the role of calcium-sensing receptor and its association with breast cancer risk.
Collapse
Affiliation(s)
- Larysse Maira Campos-Verdes
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil
| | - Danylo Rafhael Costa-Silva
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - João Paulo da Silva-Sampaio
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil
| | | | - Carla Solange Escórcio-Dourado
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Luana Mota Martins
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Fabiane Araújo Sampaio
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Camila Revoredo
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Francisco Adelton Alves-Ribeiro
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Benedito Borges da Silva
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil.,b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| |
Collapse
|
8
|
Assis J, Pereira C, Nogueira A, Pereira D, Carreira R, Medeiros R. Genetic variants as ovarian cancer first-line treatment hallmarks: A systematic review and meta-analysis. Cancer Treat Rev 2017; 61:35-52. [PMID: 29100168 DOI: 10.1016/j.ctrv.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND The potential predictive value of genetic polymorphisms in ovarian cancer first-line treatment is inconsistently reported. We aimed to review ovarian cancer pharmacogenetic studies to update and summarize the available data and to provide directions for further research. METHODS A systematic review followed by a meta-analysis was conducted on cohort studies assessing the involvement of genetic polymorphisms in ovarian cancer first-line treatment response retrieved through a MEDLINE database search by November 2016. Studies were pooled and summary estimates and 95% confidence intervals (CI) were calculated using random or fixed-effects models as appropriate. RESULTS One hundred and forty-two studies gathering 106871 patients were included. Combined data suggested that GSTM1-null genotype patients have a lower risk of death compared to GSTM1-wt carriers, specifically in advanced stages (hazard ratio (HR), 0.68; 95% CI, 0.48-0.97) and when submitted to platinum-based chemotherapy (aHR, 0.61; 95% CI, 0.39-0.94). ERCC1 rs11615 and rs3212886 might have also a significant impact in treatment outcome (aHR, 0.67; 95% CI, 0.51-0.89; aHR, 1.28; 95% CI, 1.01-1.63, respectively). Moreover, ERCC2 rs13181 and rs1799793 showed a distinct ethnic behavior (Asians: aHR, 1.41; 95% CI, 0.80-2.49; aHR, 1.07; 95% CI, 0.62-1.86; Caucasians: aHR, 0.10; 95% CI, 0.01-0.96; aHR, 0.18; 95% CI, 0.05-0.68, respectively). CONCLUSION(S) The definition of integrative predictive models should encompass genetic information, especially regarding GSTM1 homozygous deletion. Justifying additional pharmacogenetic investigation are variants in ERCC1 and ERCC2, which highlight the DNA Repair ability to ovarian cancer prognosis. Further knowledge could aid to understand platinum-treatment failure and to tailor chemotherapy strategies.
Collapse
Affiliation(s)
- Joana Assis
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; CINTESIS, Center for Health Technology and Services Research, FMUP, Porto, Portugal
| | - Augusto Nogueira
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| | - Rafael Carreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal; SilicoLife, Lda, Braga, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology, Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal; CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal.
| |
Collapse
|
9
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
10
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|