1
|
Wang Z, Hou R, Wang S, Chen M, Zheng D, Zhang Z, Bai L, Chang C, Zhou S. FGFBP1 promotes triple-negative breast cancer progression through the KLK10-AKT axis. Biochem Biophys Res Commun 2025; 763:151763. [PMID: 40233428 DOI: 10.1016/j.bbrc.2025.151763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Triple-negative breast cancer (TNBC) is highly malignant, with rapid tumor growth and metastasis. Due to ER-, PR- and HER2-of TNBC, FGFR pathway play a pivotal role in the progression of TNBC. Its ligand FGFs is mostly released from the extracellular matrix by fibroblast growth factor binding protein 1 (FGFBP1). However, little is known about the role of FGFBP1 in TNBC. In this study, we found that overexpression of FGFBP1 significantly promoted the proliferation, migration and invasion of TNBC cells in vitro and in vivo and vice versa. Mechanistically, overexpression of FGFBP1 upregulated the expression of KLK10, thereby activating AKT, which led to proliferation, migration and invasion of TNBC cells. After knocking down FGFBP1, the expression of KLK10 was reduced and the AKT pathway was inhibited. In addition, knocking down KLK10 or inhibiting AKT pathway impaired the promotion effect of overexpression of FGFBP1 on the proliferation and invasion of TNBC cells. These results suggest that FGFBP1 may promote the proliferation, migration and invasion of TNBC cells through the KLK10-AKT axis. Targeting FGFBP1 may serve as a new therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Ruoqing Hou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Shiyu Wang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Min Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New Area, Shanghai, 200127, China
| | - Dongdong Zheng
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Zhiming Zhang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Lu Bai
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Cai Chang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Awad AM, Dabous E, Alalem M, Alalem N, Nasr ME, Elawdan KA, Nasr GM, Said W, El Khashab K, Basiouny MS, Guirgis AA, Khalil H. MicroRNA-141-regulated KLK10 and TNFSF-15 gene expression in hepatoblastoma cells as a novel mechanism in liver carcinogenesis. Sci Rep 2024; 14:13492. [PMID: 38866875 PMCID: PMC11169620 DOI: 10.1038/s41598-024-63223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Liver cancer is one of the most pivotal global health problems, leading hepatocellular carcinoma (HCC) with a significant increase in cases worldwide. The role of non-coding-RNA in cancer proliferation and carcinogenesis has attracted much attention in the last decade; however, microRNAs (miRNAs), as non-coding RNA, are considered master mediators in various cancer progressions. Yet the role of miR-141 as a modulator for specific cellular processes in liver cancer cell proliferation is still unclear. This study identified the role of miR-141 and its potential functions in liver carcinogenesis. The level of miR-141 in HepG2 and HuH7 cells was assessed using quantitative real-time PCR (qRT-PCR) and compared with its expression in normal hepatocytes. A new miR-141 construct has been performed in a CMV promoter vector tagged with GFP. Using microarray analysis, we identified the potentially regulated genes by miR-141 in transfected HepG2 cells. The protein profile of the kallikrein-related peptidase 10 (KLK10) and tumor necrosis factor TNFSF-15 was investigated in HepG2 cells transfected with either an inhibitor, antagonist miR-141, or miR-141 overexpression vector using immunoblotting and flow cytometry assay. Finally, ELISA assay has been used to monitor the produced inflammatory cytokines from transfected HepG2 cells. Our findings showed that the expression of miR-141 significantly increased in HepG2 and HuH7 cells compared to the normal hepatocytes. Transfection of HepG2 cells with an inhibitor, antagonist miR-141, showed a significant reduction of HepG2 cell viability, unlike the transfection of miR-141 overexpression vector. The microarray data of HepG2 cells overexpressed miR-141 provided a hundred downregulated genes, including KLK10 and TNFSF-15. Furthermore, the expression profile of KLK10 and TNFSF-15 markedly depleted in HepG2 cells transfected with miR-141 overexpression accompanied by a decreasing level of interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), indicating the role of miR-141 in HepG2 cell proliferation and programmed cell death. Interestingly, the experimental rats with liver cancer induced by Diethylnitrosamine injection further confirmed the upregulation of miR-141 level, IL-10, and TNF-α and the disturbance in KLK10 and TNFSF-15 gene expression compared with their expression in normal rats. The in-silico online tools, IntaRNA and miRWalk were used to confirm the direct interaction and potential binding sites between miR-141 and identified genes. Thus, the seeding regions of potential targeted sequences was cloned upstream of luciferase reporter gene in pGL3 control vector. Interestingly, the luciferase activities of constructed vectors were significantly decreased in HepG2 cells pre-transfected with miR-141 overexpression vector, while increasing in cells pre-transfected with miR-141 specific inhibitor. In summary, these data suggest the crucial role of miR-141 in liver cancer development via targeting KLK10 and TNFSF-15 and provide miR-141 as an attractive candidate in liver cancer treatment and protection.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mahmoud E Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Walid Said
- Microbiology and Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Kareem El Khashab
- Medical Laboratory Department, High Technology Institute of Applied Health Science, Badr Academy for Science and Technology, Badr City, Egypt
| | - Mohamed S Basiouny
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 32897, Sadat City, Egypt.
- Department of Molecular Diagnosis, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
4
|
Luo YC, Lv YL, He RX, Shi XX, Jiang T. Kallikrein-related peptidase 10 predicts prognosis and mediates tumor immunomodulation in colorectal cancer. Biochem Biophys Res Commun 2023; 689:149217. [PMID: 37972446 DOI: 10.1016/j.bbrc.2023.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.
Collapse
Affiliation(s)
- Yi-Chao Luo
- Hunan Hospital of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yuan-Lin Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruo-Xu He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-Xia Shi
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li D, Gao W, Zhao W, Zhao Y, Zhang Y, Liu Y, Li Y, Ji S, Chen P, Li D. Molecular subtypes identified by multiomics analysis based on cuproptosis-related genes precisely predict response to immunotherapy and chemotherapy in colorectal cancer. Mol Carcinog 2023; 62:1755-1769. [PMID: 37530469 DOI: 10.1002/mc.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
Cuproptosis is a newly reported type of programmed cell death that is involved in the progression of various diseases. Some studies have reported its potential significance in multiple tumors. Colorectal cancer (CRC) is one of the malignant tumors with high incidence and mortality. The purpose of this study was to further explore the importance of cuproptosis in the CRC development and treatment. We analyzed the expression, alterations, and promoter methylation of cuproptosis-related genes (CRGs) in patients with CRC. Three machine learning methods was used to determine cuproptosis-related feature genes and a diagnostic model was built based on them. Using the unsupervised clustering, patients with CRC were classified into distinct clusters. Then, the LASSO method was used to establish a cuproptosis risk model. We analyzed the association of risk scores with outcomes, immune microenvironment, response to immunotherapy, and sensitivity to chemotherapeutic drugs. The results showed that the expression of CRGs was dysregulated in CRC. The diagnostic model based on cuproptosis-related feature genes showed great clinical value. The patients in two clusters displayed different prognosis and microenvironment. Furthermore, the risk score was correlated with clinical characteristics, immune infiltration and response to immunotherapy and chemotherapy. Above all, the present findings revealed the involvement of cuproptosis in CRC development and provided a diagnostic tool to evaluate CRC occurrence risk. The immune infiltration and drug sensitivity analysis results helped to predict the response of patients in different subtypes of CRC to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Dingling Li
- Graduate School of Qinghai University, Xining, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yingjie Zhao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanfei Zhang
- Graduate School of Qinghai University, Xining, China
| | - Ying Liu
- Graduate School of Qinghai University, Xining, China
| | - Yuying Li
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shuaifei Ji
- Medical School of Chinese PLA, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Liu Y, Gong W, Preis S, Dorn J, Kiechle M, Reuning U, Magdolen V, Dreyer TF. A Pair of Prognostic Biomarkers in Triple-Negative Breast Cancer: KLK10 and KLK11 mRNA Expression. Life (Basel) 2022; 12:life12101517. [PMID: 36294951 PMCID: PMC9605449 DOI: 10.3390/life12101517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with poor patient prognosis and limited therapeutic options. A lack of prognostic biomarkers and therapeutic targets fuels the need for new approaches to tackle this severe disease. Extracellular matrix degradation, release, and modulation of the activity of growth factors/cytokines/chemokines, and the initiation of signaling pathways by extracellular proteolytic networks, have been identified as major processes in the carcinogenesis of breast cancer. Members of the kallikrein-related peptidase (KLK) family contribute to these tumor-relevant processes, and are associated with breast cancer progression and metastasis. In this study, the clinical relevance of mRNA expression of two members of this family, KLK10 and KLK11, has been evaluated in TNBC. For this, their expression levels were quantified in tumor tissue of a large, well-characterized patient cohort (n = 123) via qPCR. Although, in general, the overall expression of both factors are lower in tumor tissue of breast cancer patients (encompassing all subtypes) compared to normal tissue of healthy donors, in the TNBC subtype, expression is even increased. In our cohort, a significant, positive correlation between the expression levels of both KLKs was detected, indicating a coordinate expression mode of these proteases. Elevated KLK10 and KLK11 mRNA levels were associated with poor patient prognosis. Moreover, both factors were found to be independent of other established clinical factors such as age, lymph node status, or residual tumor mass, as determined by multivariable Cox regression analysis. Thus, both proteases, KLK10 and KLK11, may represent unfavorable prognostic factors for TNBC patients and, furthermore, appear as promising potential targets for therapy in TNBC.
Collapse
Affiliation(s)
- Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 519041, China
| | - Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou 519041, China
| | - Sarah Preis
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Tobias F. Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-7408
| |
Collapse
|
7
|
miR-194-3p represses the docetaxel resistance in colon cancer by targeting KLK10. Pathol Res Pract 2022; 236:153962. [DOI: 10.1016/j.prp.2022.153962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
|
8
|
Wang B, Hao X, Li X, Liang Y, Li F, Yang K, Chen H, Lv F, Gao Y. Long noncoding RNA HEIH depletion depresses esophageal carcinoma cell progression by upregulating microRNA-185 and downregulating KLK5. Cell Death Dis 2020; 11:1002. [PMID: 33223519 PMCID: PMC7680792 DOI: 10.1038/s41419-020-03170-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Numerous studies have reported the association of long non-coding RNAs (lncRNAs) in cancers, yet the function of lncRNA high expressed in hepatocellular carcinoma (HEIH) in esophageal carcinoma (EC) has seldom been explored. Here, we aimed to explore the mechanism of HEIH on EC via microRNA-185 (miR-185)/kallikrein-related peptidase 5 (KLK5) modulation. Cancer and non-tumoral tissues were collected, in which HEIH, miR-185 and KLK5 expression were detected, as well as their correlations. Also, the relation between the prognosis of EC patients and HEIH/miR-185/KLK5 expression was clarified. EC cells (KYSE-30 and TE-1) were screened for subsequent gain- and loss-of-function assays and their biological functions were further monitored. Tumor volume and weight in EC mice were also measured. Results from this study indicated that HEIH and KLK5 were elevated and miR-185 was declined in EC. The positive correlation was seen in HEIH and KLK5 expression, while the negative correlation was observed in HEIH or KLK5 and miR-185 expression. High HEIH and KLK5 indicated worse prognosis and high miR-185 suggested better prognosis of EC patients. Depleting HEIH or restoring miR-185 suppressed the malignant phenotypes of EC cells, and delayed tumor growth in EC mice. HEIH was found to bind with miR-185 to regulate KLK5 expression. Overexpressing KLK5 alone promoted EC cell progression while up-regulating miR-185 reversed such effects on EC cells. Collectively, we reveal that HEIH depletion dampens EC progression by upregulating miR-185 and downregulating KLK5, which provides novel treatments for EC.
Collapse
Affiliation(s)
- Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hengqi Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
9
|
Lin CL, Ying TH, Yang SF, Wang SW, Cheng SP, Lee JJ, Hsieh YH. Transcriptional Suppression of miR-7 by MTA2 Induces Sp1-Mediated KLK10 Expression and Metastasis of Cervical Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:699-710. [PMID: 32402941 PMCID: PMC7218230 DOI: 10.1016/j.omtn.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
MTA2 is involved in tumor proliferation and metastasis. However, the role of MTA2 in cervical cancer thus far has not been identified. In this study, we report that elevated expression of MTA2 negatively correlates with Kallikrein-10 (KLK10) expression and poor prognosis of cervical cancer patients. Knockdown of MTA2 substantially inhibited tumor cell migration and invasion, and it enhanced KLK10 expression of the cervical cancer cells in vitro and in vivo. Functionally, shMTA2-mediated suppression of cell mobility was significantly restored by knockdown of KLK10. We also found that Sp1 (transcription factor specificity protein 1) is critical for shMTA2-induced transcriptional upregulation of KLK10 and subsequent biological functions. Furthermore, we found that the expression of miR-7 is elevated by MTA2 silencing and then by direct inhibition of Sp1 expression. Knockdown of Sp1 additively enhanced KLK10 expression in MTA2-knocked down cervical cancer cells, suggesting that the miR-7/Sp1 axis acts as an effector of MTA2 to impact KLK10 levels and mobility of cervical cancer cells. Taken together, our findings provide new insights into the physiological relationship between MTA2 and KLK10 via regulating the miR-7/Sp1 axis, and they provide a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Chia-Liang Lin
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
11
|
Fujishima H, Fumoto S, Shibata T, Nishiki K, Tsukamoto Y, Etoh T, Moriyama M, Shiraishi N, Inomata M. A 17-molecule set as a predictor of complete response to neoadjuvant chemotherapy with docetaxel, cisplatin, and 5-fluorouracil in esophageal cancer. PLoS One 2017; 12:e0188098. [PMID: 29136005 PMCID: PMC5685591 DOI: 10.1371/journal.pone.0188098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Recently, neoadjuvant chemotherapy with docetaxel/cisplatin/5-fluorouracil (NAC-DCF) was identified as a novel strong regimen with a high rate of pathological complete response (pCR) in advanced esophageal cancer in Japan. Predicting pCR will contribute to the therapeutic strategy and the prevention of surgical invasion. However, a predictor of pCR after NAC-DCF has not yet been developed. The aim of this study was to identify a novel predictor of pCR in locally advanced esophageal cancer treated with NAC-DCF. Patients and methods A total of 32 patients who received NAC-DCF followed by esophagectomy between June 2013 and March 2016 were enrolled in this study. We divided the patients into the following 2 groups: pCR group (9 cases) and non-pCR group (23 cases), and compared gene expressions between these groups using DNA microarray data and KeyMolnet. Subsequently, a validation study of candidate molecular expression was performed in 7 additional cases. Results Seventeen molecules, including transcription factor E2F, T-cell-specific transcription factor, Src (known as “proto-oncogene tyrosine-protein kinase of sarcoma”), interferon regulatory factor 1, thymidylate synthase, cyclin B, cyclin-dependent kinase (CDK) 4, CDK, caspase-1, vitamin D receptor, histone deacetylase, MAPK/ERK kinase, bcl-2-associated X protein, runt-related transcription factor 1, PR domain zinc finger protein 1, platelet-derived growth factor receptor, and interleukin 1, were identified as candidate molecules. The molecules were mainly associated with pathways, such as transcriptional regulation by SMAD, RB/E2F, and STAT. The validation study indicated that 12 of the 17 molecules (71%) matched the trends of molecular expression. Conclusions A 17-molecule set that predicts pCR after NAC-DCF for locally advanced esophageal cancer was identified.
Collapse
Affiliation(s)
- Hajime Fujishima
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
- * E-mail:
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kohei Nishiki
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Norio Shiraishi
- Comprehensive Surgery for Community Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| |
Collapse
|
12
|
Clinical relevance of kallikrein-related peptidase 9, 10, 11, and 15 mRNA expression in advanced high-grade serous ovarian cancer. PLoS One 2017; 12:e0186847. [PMID: 29095848 PMCID: PMC5667830 DOI: 10.1371/journal.pone.0186847] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022] Open
Abstract
KLK9, 10, 11, and 15 may represent potential cancer biomarkers for evaluating ovarian cancer prognosis. In the present study, we selected a homogeneous cohort including 139 patients of advanced high-grade serous ovarian cancer (FIGO stage III/IV) and assessed the mRNA levels of KLK9, 10, 11, and 15 in tumor tissue by quantitative PCR. No significant associations of KLK9, 10, 11, and 15 mRNA with established clinical parameters (residual tumor mass, ascitic fluid volume) were found. Pronounced correlations between KLK10/KLK11 (rs = 0.647) and between KLK9/KLK15 (rs = 0.716) mRNA, but not between other combinations, indicate coordinate expression of distinct pairs of peptidases. In univariate Cox regression analysis, elevated KLK11 mRNA levels were significantly linked with prolonged overall survival (OS; p = 0.021) and progression-free survival (PFS; p = 0.008). KLK15 mRNA levels showed a trend towards significance in case of OS (p = 0.06); KLK9 and KLK10 mRNA expression levels were not associated with patients' outcome. In multivariable Cox analysis, KLK11 mRNA expression levels, apart from residual tumor mass, remained an independent predictive marker for OS (p = 0.007) and PFS (p = 0.015). Here, elevated KLK15 mRNA expression levels turned out to be significantly related to prolonged OS (p = 0.025) as well. High KLK11 but not the other KLK mRNA levels can be considered as strong independent favorable prognostic factor in this major ovarian cancer subtype.
Collapse
|