1
|
Rohan P, dos Santos EC, Abdelhay E, Binato R. High Expression of THY1 in Intestinal Gastric Cancer as a Key Factor in Tumor Biology: A Poor Prognosis-Independent Marker Related to the Epithelial-Mesenchymal Transition Profile. Genes (Basel) 2023; 15:28. [PMID: 38254918 PMCID: PMC10815053 DOI: 10.3390/genes15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Gastric cancer (GC) is an important cancer-related death worldwide. Among its histological subtypes, intestinal gastric cancer (IGC) is the most common. A previous work showed that increased expression of the THY1 gene was associated with poor overall survival in IGC. Furthermore, it was shown that IGC tumor cells with high expression of THY1 have a greater capacity for tumorigenesis and metastasis in vitro. This study aimed to identify molecular differences between IGC with high and low expression of THY1. Using a feature selection method, a group of 35 genes were found to be the most informative gene set for THY1high IGC tumors. Through a classification model, these genes differentiate THY1high from THY1low tumors with 100% of accuracy both in the test subset and the independent test set. Additionally, this group of 35 genes correctly clustered 100% of the samples. An extensive validation of this potential molecular signature in multiple cohorts successfully segregated between THY1high and THY1low IGC tumors (>95%), proving to be independent of the gene expression quantification methodology. These genes are involved in central processes to tumor biology, such as the epithelial-mesenchymal transition (EMT) and remodeling of the tumor tissue composition. Moreover, patients with THY1high IGC demonstrated poor survival and a more advanced clinicopathological staging. Our findings revealed a molecular signature for IGC with high THY1 expression. This signature showed EMT and remodeling of the tumor tissue composition potentially related to the biology of IGC. Altogether, our results indicate that THY1high IGC tumors are a particular subset of tumors with a specific molecular and prognosis profile.
Collapse
Affiliation(s)
| | | | | | - Renata Binato
- Correspondence: ; Tel.: +55-21-3207-1874; Fax: +55-21-2509-2121
| |
Collapse
|
2
|
Shen K, Chen B, Yang L, Gao W. KYNU as a Biomarker of Tumor-Associated Macrophages and Correlates with Immunosuppressive Microenvironment and Poor Prognosis in Gastric Cancer. Int J Genomics 2023; 2023:4662480. [PMID: 37954130 PMCID: PMC10635752 DOI: 10.1155/2023/4662480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Kynureninase (KYNU) is a potential prognostic marker for various tumor types. However, no reports on the biological effects and prognostic value of KYNU in gastric cancer (GC) exist. Methods GC-associated single-cell RNA sequencing and bulk RNA sequencing (bulk-seq) data were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. The differential expression of KYNU between GC and normal gastric tissues was first analyzed based on the bulk-seq data, followed by an exploration of the relationship between KYNU and various clinicopathological features. The Kaplan-Meier survival and Cox regression analyses were performed to determine the prognostic value of KYNU. The relationship between KYNU expression and immune cell infiltration and immune checkpoints was also explored. The biological function of KYNU was further examined at the single-cell level, and in vitro experiments were performed to examine the effect of KYNU on GC cell proliferation and invasion. Results KYNU expression was significantly elevated in GC samples. Clinical features and survival analysis indicated that high KYNU expression was associated with poor clinical phenotypes and prognosis, whereas Cox analysis showed that KYNU was an independent risk factor for patients with GC. Notably, high expression of KYNU induced a poor immune microenvironment and contributed to the upregulation of immune checkpoints. KYNU-overexpressing macrophages drove GC progression through unique ligand-receptor pairs and transcription factors and were associated with adverse clinical phenotypes in GC. KYNU was overexpressed in GC cells in vitro, and KYNU knockout significantly inhibited GC cell proliferation and invasion. Conclusion High KYNU expression promotes an adverse immune microenvironment and low survival rates in GC. KYNU and KYNU-related macrophages may serve as novel molecular targets in the treatment of GC.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
3
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Zhao Y, Weng Z, Zhou X, Xu Z, Cao B, Wang B, Li J. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med 2023; 21:219. [PMID: 36966336 PMCID: PMC10040136 DOI: 10.1186/s12967-023-04063-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the prevailing sarcomas of the gastrointestinal tract. Tyrosine kinase inhibitors (TKIs) therapy, exemplified by Imatinib mesylate (IM), constitutes the established adjuvant therapy for GISTs. Nevertheless, post-treatment resistance poses a challenge that all patients must confront. The presence of tumor heterogeneity and secondary mutation mechanisms fail to account for some instances of acquired drug resistance. Certain investigations suggest a strong association between tumor drug resistance and mesenchymal stromal cells (MSC) in the tumor microenvironment, but the underlying mechanism remains obscure. Scarce research has explored the connection between GIST drug resistance and the tumor microenvironment, as well as the corresponding mechanism. METHODS Immunofluorescence and fluorescence-activated cell sorting (FACS) methodologies were employed to detect the presence of MSC in GIST samples. The investigation encompassed the examination of MSC migration towards tumor tissue and the impact of MSC on the survival of GIST cells under IM treatment. Through ELISA, western blotting, and flow cytometry analyses, it was confirmed that Transforming Growth Factor Beta 2 (TGF-β2) triggers the activation of the PI3K-AKT pathway by MSC, thereby facilitating drug resistance in GIST. RESULTS Our findings revealed a positive correlation between a high proportion of MSC and both GIST resistance and a poor prognosis. In vitro studies demonstrated the ability of MSC to migrate towards GIST. Additionally, MSC were observed to secrete TGF-β2, consequently activating the PI3K-AKT pathway and augmenting GIST resistance. CONCLUSIONS Our investigation has revealed that MSC within GISTs possess the capacity to augment drug resistance, thereby highlighting their novel mechanism and offering a promising target for intervention in GIST therapy.
Collapse
Affiliation(s)
- Yu Zhao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bei Cao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Juan Li
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
5
|
Xu W, Chen B, Ke D, Chen X. CD142 plays a key role in the carcinogenesis of gastric adenocarcinoma by inhibiting BCL2-dependent autophagy. Biochem Cell Biol 2021; 100:17-27. [PMID: 34289309 DOI: 10.1139/bcb-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD142 is expressed on the surface of multiple malignant tumors and contributes to various carcinogenesis. However, the role of CD142 in the pathogenesis of GAC remains unclear. This study aimed to investigate the role of CD142 in GAC carcinogenesis. Our results showed that CD142 expression was significantly increased in GAC cancer tissues, especially in those with significant invasion or metastasis. The invasion and migration of CD142-positive SNU16 cells were significantly increased compared with those of CD142-negative cells. Moreover, CD142 overexpression promoted the invasion and migration of SGC083 cells, but CD142 silencing was contrary. In addition, there was a positive correlation between CD142 expression of cancer tissues and serum IL-8 levels. CD142 overexpression promotes IL-8 production in SGC083 cells. In vivo analysis showed that the implantation of CD142-positive SNU16 cells promoted the growth of xenograft tumor and the production of IL-8. Mechanistically, CD142 silencing not only inhibited the expression of BCL2 and the interaction between BCL2 and Beclin1, but also promoted the autophagic response in SGC083. Furthermore, CD142 silencing-induced IL-8 degradation was recovered by treatment of autophagy inhibitor 3-MA. CD142 can inhibit autophagic cell death and the autophagic degradation of IL-8 in GAC, which exerts an effective effect on GAC carcinogenesis.
Collapse
Affiliation(s)
- Weifeng Xu
- Henan Cancer Hospital, 377327, Zhengzhou, China;
| | - Beibei Chen
- Henan Cancer Hospital, 377327, Zhengzhou, China;
| | - Dianshan Ke
- Southern Medical University, 70570, Guangzhou, Guangdong, China;
| | - Xiaobing Chen
- Henan Cancer Hospital, 377327, Zhengzhou, China, 450008;
| |
Collapse
|
6
|
Gao L, Li J, He J, Liang L, He Z, Yue C, Jin X, Luo G, Zhou Y. CD90 affects the biological behavior and energy metabolism level of gastric cancer cells by targeting the PI3K/AKT/HIF-1α signaling pathway. Oncol Lett 2021; 21:191. [PMID: 33574930 DOI: 10.3892/ol.2021.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
CD90, also known as Thy-1 cell surface antigen, is located on human chromosome 11q23.3, and encodes a glycosylphosphatidylinositol-linked cell surface glycoprotein. CD90 serves a key role in malignancy by regulating cell proliferation, metastasis and angiogenesis. Gastric cancer is one of the most common types of malignancy. Patients with advanced gastric cancer have a poor prognosis. CD90 plays a key role in the occurrence and progression of gastric cancer. However, the molecular mechanism of CD90 in gastric cancer is currently unclear. In order to identify the molecular mechanism by which CD90 affects the biological behavior and energy metabolism of gastric cancer cells, the present study used Cell Counting Kit-8 assays, lactate concentration determination and ATP content determination. The results demonstrated that CD90 promotes proliferation and inhibits senescence in gastric cancer cells. In addition, CD90 enhanced the invasion and migration abilities of AGS gastric cancer cells. Overexpression of CD90 resulted in the accumulation of intracellular lactic acid in AGS cells. CD90 upregulated lactate dehydrogenase levels and increased the NADPH/NADP+ ratio in AGS cells. CD90 overexpression decreased the ATP concentration in AGS cells. PI3K, PDK1, phosphorylated-AKT-Ser473, HIF-1α, MDM2 and SIRT1 levels were upregulated in CD90-overexpressing AGS cells, compared with AGS cells transfected with the empty vector. In contrast, PTEN, p53, SIRT2, SIRT3 and SIRT6 were downregulated. The results indicate that CD90 affects the biological behavior and levels of energy metabolism of gastric cancer cells by targeting the PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Lu Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jun Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junyu He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhengxi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xi Jin
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
7
|
Liao S, Liang L, Yue C, He J, He Z, Jin X, Luo G, Zhou Y. CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. Int J Oncol 2020; 57:338-354. [PMID: 32319590 DOI: 10.3892/ijo.2020.5040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 11/06/2022] Open
Abstract
In contrast to normal cells, cancer cells typically undergo metabolic reprogramming. Studies have shown that oncogenes play an important role in this metabolic reprogramming. CD38 is a multifunctional transmembrane protein that is expressed abnormally in a variety of tumor types. To investigate the effect and possible mechanism of CD38 in cervical cancer cells and to provide a new therapeutic target for the treatment of cervical cancer, the present study identified that CD38 is involved in regulating cell metabolism in cervical cancer cells. Liquid chromatography‑tandem mass spectrometry and bioinformatic analyses revealed that differentially abundant proteins in CD38‑overexpressed cervical cancer cells (CaSki‑CD38 and HeLa‑CD38) are predominantly involved in glycolytic pathways, oxidative phosphorylation and the NAD/NADH metabolic process. Further experiments using an ATP test kit and lactate test kit revealed that CD38 promotes glucose consumption, increases lactate accumulation and increases ATP production. In addition, CD38 increases the phosphorylation of phosphatidylserine/threonine kinase (AKT), mechanistic target of rapamycin (mTOR) and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K), which play a key role in tumor metabolism. Furthermore, it was found that the energy metabolism of cervical cancer cells was inhibited following treatment with the mTOR inhibitor rapamycin. In conclusion, the results of the present study suggested that CD38 regulates the metabolism of cervical cancer cells by regulating the PI3K/AKT/mTOR pathway, which may be a candidate target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Shan Liao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhengxi He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xi Jin
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Yuan D, Ma Z, Tuo B, Li T, Liu X. Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2869138. [PMID: 32104192 PMCID: PMC7040404 DOI: 10.1155/2020/2869138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dysfunction, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC. This review summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl- channels, Cl-/HCO3 - exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.
Collapse
Affiliation(s)
- Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| |
Collapse
|
9
|
Kim BH, Park JW, Kim JS, Lee SK, Hong EK. Stem Cell Markers Predict the Response to Sorafenib in Patients with Hepatocellular Carcinoma. Gut Liver 2020; 13:342-348. [PMID: 30600675 PMCID: PMC6529171 DOI: 10.5009/gnl18345] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Sorafenib remains the only approved molecular targeted agent for hepatocellular carcinoma (HCC); however, reliable biomarkers that predict its efficacy are still lacking. The aim of this study was to explore whether cancer stem cell (CSC) markers have a predictive role with regard to the sorafenib response in HCC patients. Methods We enrolled 47 patients with HCC for whom tumor samples obtained before starting sorafenib treatment were available. RNA was extracted from formalin-fixed, paraffin-embedded samples, and real-time polymerase chain reaction was used to quantify mRNA expression of the CSC genes EpCAM, CD13, CK8, CD24, CD44, CD90, CD133, SALL4, ALDH1A1, ALB, and AFP. Results Of 47 patients, 14.9% and 74.5% had vascular invasion and extrahepatic spread, respectively. Patients with low CD133 expression tended to have longer progression-free survival (PFS) than those with high CD133 expression (5.5 months vs 4.0 months), although without statistical significance. The expression levels of other markers were not associated with PFS. When examining markers in combination, patients with high CD133 and CD90 expression had shorter PFS rates than those with low expression (2.7 months vs 5.5 months; p=0.04). Patients with low CD133 and EpCAM expression demonstrated better PFS than those with high expression (7.0 months vs 4.2 months; p=0.04). Multivariable analysis indicated that an Eastern Cooperative Oncology Group performance status score of 1 and high CD133/CD90 expression were significantly associated with shorter PFS. Conclusions Overexpression of the CSC markers CD133 and CD90 in HCC was associated with poorer response to sorafenib. These two genes may serve as predictive biomarkers for sorafenib therapy.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea.,Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Joong-Won Park
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea.,Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Jin Sook Kim
- Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Sook-Kyung Lee
- Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun Kyung Hong
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
10
|
Sun J, Long Y, Peng X, Xiao D, Zhou J, Tao Y, Liu S. The survival analysis and oncogenic effects of CFP1 and 14-3-3 expression on gastric cancer. Cancer Cell Int 2019; 19:225. [PMID: 31496919 PMCID: PMC6717331 DOI: 10.1186/s12935-019-0946-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Background & aim Gastric cancer (GC) is the third-leading cause of cancer-related deaths. We established a prospective database of patients with GC who underwent surgical treatment. In this study, we explored the prognostic significance of the expression of CFP1 and 14-3-3 in gastric cancer, by studying the specimens collected from clinical subjects. Materials & methods Immunohistochemistry was used to detect the expression of CFP1 and 14-3-3 in 84 GC subjects, including 73 patients who have undergone radical gastrectomy and 11 patients who have not undergone radical surgery. Survival analysis was performed by km-plot data. Results According to the survival analysis, we can see that the survival time of patients with high expression of CFP1 is lower than the patients with low expression in gastric cancer, while the effect of 14-3-3 is just the opposite. The survival time of patients with higher expression of 14-3-3 is also longer. Conclusion The CFP1 and 14-3-3 genes can be used as prognostic markers in patients with GC, but the study is still needed to confirm.
Collapse
Affiliation(s)
- Jingyue Sun
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yao Long
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,4Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Peng
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Desheng Xiao
- 3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jianhua Zhou
- 3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yongguang Tao
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,4Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
11
|
MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep 2019; 39:BSR20181434. [PMID: 31123165 PMCID: PMC6646234 DOI: 10.1042/bsr20181434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023] Open
Abstract
Studies have highlighted the importance of microRNAs (miRs) in the development of various cancers, including gastric cancer (GC), a commonly occurring malignancy, accompanied by high recurrence and metastasis rate. The aim of the current study was to investigate the role of miR-140-5p in GC. Microarray expression profiles were initially employed to screen the differentially expressed gene related to GC, and the miR regulating the gene was predicted accordingly. The data obtained indicated that thymus cell antigen 1 (THY1) was differentially expressed in GC and confirmed to be a target gene of miR-140-5p. Poorly expressed miR-140-5p and highly expressed THY1 were observed in the GC tissues. SGC-7901 cells were treated with miR-140-5p mimic/inhibitor, siRNA against THY1 and siRNA against Notch1 in order to determine their regulatory roles in GC cell activities. The relationship of miR-140-5p, THY1 and the Notch signaling pathway was subsequently identified. Moreover, cell proliferation, migration, invasion and apoptosis were determined using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), wound-healing, transwell assay and flow cytometry, respectively. The overexpression of miR-140-5p and silencing of THY1 resulted in a diminished expression of the Notch signaling pathway-related proteins, as well as inhibited proliferation, migration and invasion of GC cells, enhanced expression of pro-apoptotic proteins in addition to elevated apoptosis rate. Taken together, the present study suggests that miR-140-5p directly targets and negatively regulates THY1 expression and inhibits activation of the Notch signaling pathway, whereby the up-regulation of miR-140-5p inhibits development of GC, highlighting the promise of miR-140-5p as a potential target for GC treatment.
Collapse
|
12
|
Carrasco-Garcia E, García-Puga M, Arevalo S, Matheu A. Towards precision medicine: linking genetic and cellular heterogeneity in gastric cancer. Ther Adv Med Oncol 2018; 10:1758835918794628. [PMID: 30181784 PMCID: PMC6116075 DOI: 10.1177/1758835918794628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Molecular and cellular heterogeneity are phenomena that are revolutionizing
oncology research and becoming critical to the idea of personalized medicine.
Recent comprehensive molecular profiling has identified molecular subtypes of
gastric cancer (GC) and linked them to clinical information. Moreover, GC stem
cells (gCSCs) have been identified and found to be responsible for GC initiation
and progression, Helicobacter pylori oncogenic action and
therapy resistance. Addressing molecular heterogeneity is critical for achieving
an optimal therapeutic approach against GC as well as targeting gCSCs. In this
review, we outline the implications of molecular and cellular heterogeneity in
the treatment of GC and we summarize the clinical impact of the most important
regulators of gCSCs.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, Gipuzkoa, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Mikel García-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Sara Arevalo
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, Gipuzkoa, 20014, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) Madrid, Spain
| |
Collapse
|
13
|
Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017; 5:biomedicines5030045. [PMID: 28792479 PMCID: PMC5618303 DOI: 10.3390/biomedicines5030045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted.
Collapse
|
14
|
Su JR, Kuai JH, Li YQ. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression. World J Gastroenterol 2016; 22:10053-10063. [PMID: 28018113 PMCID: PMC5143752 DOI: 10.3748/wjg.v22.i45.10053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future.
Collapse
|