1
|
Kelly MD, Pawlak MR, Zhan KH, Shamsan GA, Gordon WR, Odde DJ. Mutual antagonism between CD44 and integrins in glioblastoma cell traction and migration. APL Bioeng 2024; 8:036102. [PMID: 38957223 PMCID: PMC11219079 DOI: 10.1063/5.0203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Cell migration is the major driver of invasion and metastasis during cancer progression. For cells to migrate, they utilize the actin-myosin cytoskeleton and adhesion molecules, such as integrins and CD44, to generate traction forces in their environment. CD44 primarily binds to hyaluronic acid (HA) and integrins primarily bind to extracellular matrix (ECM) proteins such as collagen. However, the role of CD44 under integrin-mediated conditions and vice versa is not well known. Here, we performed traction force microscopy (TFM) on U251 cells seeded on collagen I-coated polyacrylamide gels to assess the functional mechanical relationship between integrins and CD44. Performing TFM on integrin-mediated adhesion conditions, i.e., collagen, we found that CD44KO U251 cells exerted more traction force than wild-type (WT) U251 cells. Furthermore, untreated WT and CD44-blocked WT exhibited comparable results. Conversely, in CD44-mediated adhesive conditions, integrin-blocked WT cells exerted a higher traction force than untreated WT cells. Our data suggest that CD44 and integrins have a mutually antagonistic relationship where one receptor represses the other's ability to generate traction force on its cognate substrate.
Collapse
Affiliation(s)
- Marcus D. Kelly
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew R. Pawlak
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kevin H. Zhan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ghaidan A. Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wendy R. Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Wang MD, Li HT, Peng LX, Mei Y, Zheng LS, Li CZ, Meng DF, Lang YH, Xu L, Peng XS, Liu ZJ, Xie DH, Guo LL, Ma MG, Ding LY, Huang BJ, Cao Y, Qian CN. TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling. Cancer Gene Ther 2024; 31:454-463. [PMID: 38135697 DOI: 10.1038/s41417-023-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.
Collapse
Affiliation(s)
- Ming-Dian Wang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hui-Ting Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Li-Sheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Chang-Zhi Li
- Medical School, Pingdingshan University, Pingdingshan, Henan Province, 467021, P. R. China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P. R. China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Xing-Si Peng
- Department of radiation oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiotherapy, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - De-Huan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Guang Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Liu-Yan Ding
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yun Cao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Guangzhou Concord Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Han J, Xie C, Liu B, Wang Y, Pang R, Bi W, Sheng R, He G, Kong L, Yu J, Ding Z, Chen L, Jia J, Zhang J, Nie C. Tetraspanin 1 regulates papillary thyroid tumor growth and metastasis through c-Myc-mediated glycolysis. Cancer Sci 2023; 114:4535-4547. [PMID: 37750019 PMCID: PMC10728014 DOI: 10.1111/cas.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common form of thyroid cancer and is characterized by its tendency for lymphatic metastasis, leading to a poor prognosis. Tetraspanin 1 (TSPAN1) is a member of the tetra-transmembrane protein superfamily and has been implicated in tumorigenesis and cancer metastasis in various studies. However, the role of TSPAN1 in PTC tumor development remains unclear. In this study, we aimed to investigate the impact of TSPAN1 on PTC cell behavior. Our results demonstrate that knockdown of TSPAN1 inhibits PTC cell proliferation, migration, and invasion, while overexpression of TSPAN1 has the opposite effect. These findings suggest that TSPAN1 might play a role in the tumorigenesis and invasiveness of PTC. Mechanistically, we found that TSPAN1 activates the ERK pathway by increasing its phosphorylation, subsequently leading to upregulated expression of c-Myc. Additionally, we observed that TSPAN1-ERK-c-Myc axis activation promotes glycolytic activity in PTC cells, as evidenced by the upregulation of glycolytic genes such as LDHA. Taken together, our findings indicate that TSPAN1 acts as an oncogene in PTC by regulating glycolytic metabolism. This discovery highlights the potential of TSPAN1 as a promising therapeutic target for PTC treatment. Further research in this area could provide valuable insights into the development of targeted therapies for PTC patients.
Collapse
Affiliation(s)
- Jihua Han
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Changming Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Bo Liu
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yan Wang
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Rui Pang
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Wen Bi
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Rinan Sheng
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Guoqing He
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Lingyu Kong
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jiawei Yu
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhaoming Ding
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Lili Chen
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jinliang Jia
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jiewu Zhang
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Chunlei Nie
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
4
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses I: Differentially expressed transcripts in the conceptus on day 17 after insemination. J Dairy Sci 2023; 106:9745-9762. [PMID: 37641295 DOI: 10.3168/jds.2023-23398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize transcriptome changes associated with elongation in bovine conceptuses during preimplantation stages. Nonlactating Holstein cows were euthanized 17 d after artificial insemination (AI) and the uterine horn ipsilateral to the CL was flushed with saline solution. Recovered conceptuses were classified as small (1.2 to 6.9 cm; n = 9), medium (10.5 to 16.0 cm; n = 9), or large (18.0 to 26.4 cm; n = 10). Total mRNA was extracted and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 634, 240, and 63 differentially expressed transcripts, respectively. Top canonical pathways of known involvement with embryo growth that were upregulated in large conceptuses included actin cytoskeleton (LvsS), integrin signaling (LvsS and LvsM), ephrin receptor (LvsS), mesenchymal transition by growth factor (LvsM), and regulation of calpain protease (LvsS). Transcripts involved with lipid metabolism pathways (LXR/RXR, FXR/RXR, hepatic fibrosis) were associated with the LvsS and LvsM, and some transcripts such as APOC2, APOH, APOM, RARA, RBP4, and PPARGC1A, were involved in these pathways. An overall network summary associated biological downstream effects of invasion of cells, proliferation of embryonic cells, and inhibition of organismal death in the LvsS. In conclusion, differently expressed transcripts in the LvsS comparison were associated with the cell growth, adhesion, and organismal development, although part of these findings could be attributed to differences in circulatory concentrations of progesterone of the cows that bore large and small conceptuses. The large and medium conceptuses developed under similar concentrations of progesterone and presented 240 differently expressed transcripts, associated with cell differentiation, metabolite regulation, and other biological processes.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
5
|
Huang R, Sun H, Lin R, Zhang J, Yin H, Xian S, Li M, Wang S, Li Z, Qiao Y, Jiang M, Yan P, Meng T, Huang Z. The Role of Tetraspaninsin Pan-Cancer. iScience 2022; 25:104777. [PMID: 35992081 PMCID: PMC9385710 DOI: 10.1016/j.isci.2022.104777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Hanlin Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Ruoyi Lin
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Man Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Siqiao Wang
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Zhenyu Li
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yannan Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Meiyun Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
- Corresponding author
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
- Corresponding author
| |
Collapse
|
6
|
Garcia-Mayea Y, Mir C, Carballo L, Sánchez-García A, Bataller M, LLeonart ME. TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochim Biophys Acta Rev Cancer 2021; 1877:188674. [PMID: 34979155 DOI: 10.1016/j.bbcan.2021.188674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
The tetraspanin (TSPAN) family constitutes a poorly explored family of membrane receptors involved in various physiological processes, with relevant roles in anchoring multiple proteins, acting as scaffolding proteins, and cell signaling. Recent studies have increasingly demonstrated the involvement of TSPANs in cancer. In particular, tetraspanin 1 (also known as TSPAN1, NET-1, TM4C, C4.8 or GEF) has been implicated in cell survival, proliferation and invasion. Recently, our laboratory revealed a key role of TSPAN1 in the acquired resistance of tumor cells to conventional chemotherapy (e.g., cisplatin). In this review, we summarize and discuss the latest research on the physiological mechanisms of TSPANs in cancer and, in particular, on TSPAN1 regulating resistance to chemotherapy. A model of TSPAN1 action is proposed, and the potential of targeting TSPAN1 in anticancer therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Laia Carballo
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Center in Oncology, CIBERONC, Spain.
| |
Collapse
|
7
|
Liu S, Cai Y, Changyong E, Sheng J, Zhang X. Screening and Validation of Independent Predictors of Poor Survival in Pancreatic Cancer. Pathol Oncol Res 2021; 27:1609868. [PMID: 34321959 PMCID: PMC8310909 DOI: 10.3389/pore.2021.1609868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a digestive system malignant tumor with high mortality and poor prognosis, but the mechanisms of progression remain unclear in pancreatic cancer. It's necessary to identify the hub genes in pancreatic cancer and explore the novel potential predictors in the prognosis of pancreatic cancer. We downloaded two mRNA expression profiles from Gene Expression Omnibus and The Cancer Genome Atlas Pancreatic Cancer (TCGA-PAAD) datasets to screen the commonly differentially expressed genes in pancreatic cancer by limma package in R. Subsequently, measurement of the functional similarity among the 38 DEGs in common was performed to identify the hub genes using GOSemSim package. Then, survival analysis and Cox regression were applied to explore prognosis-related hub genes using the survival package. Statistics analysis by two-tailed Student's t-test or one-way based on TCGA-PAAD datasets and qPCR detection in clinical samples were performed to explore the correlations between expression of hub genes in pancreatic cancer tissues and clinical parameters. Based on integrated analysis of TCGA and GEO datasets, we screened 38 DEGs in common, which were all up-regulated. The functional similarity results showed that 10 DEGs including TSPAN1, MSLN, C1orf116, PKP3, CEACAM6, BAIAP2L1, PPL, RAB25, ERBB3, and AP1M2 in the DEGs in common, which had the higher average functional similarity, were considered as the hub genes. Survival analysis results and Cox regression analysis showed that TSPAN1, CEACAM6, as well as ERBB3 were all associated with poor overall survival of PC. qPCR results showed that the expression levels of TSPAN1 and ERBB3 were significantly upregulated in the PC tissues. The statistical analysis results revealed that TSPAN1 expression correlated significantly with histologic grade, T stage, clinical stage, and vital status by two-tailed Student's t-test or one-way ANOVA; ERBB3 expression correlated significantly with T stage, clinical stage, and vital status by two-tailed Student's t-test or one-way ANOVA. We found that TSPAN1 and ERBB3 could be independent predictors of poor survival in pancreatic cancer.
Collapse
Affiliation(s)
- Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Cai
- Hospital of Stomatology, Jilin University, Changchun, China
| | - E. Changyong
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
8
|
Ye H, Li T, Wang H, Wu J, Yi C, Shi J, Wang P, Song C, Dai L, Jiang G, Huang Y, Yu Y, Li J. TSPAN1, TMPRSS4, SDR16C5, and CTSE as Novel Panel for Pancreatic Cancer: A Bioinformatics Analysis and Experiments Validation. Front Immunol 2021; 12:649551. [PMID: 33815409 PMCID: PMC8015801 DOI: 10.3389/fimmu.2021.649551] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal malignancy with a poor prognosis. This study aims to identify pancreatic cancer-related genes and develop a robust diagnostic model to detect this disease. Weighted gene co-expression network analysis (WGCNA) was used to determine potential hub genes for pancreatic cancer. Their mRNA and protein expression levels were validated through reverse transcription PCR (RT-PCR) and immunohistochemical (IHC). Diagnostic models were developed by eight machine learning algorithms and ten-fold cross-validation. Four hub genes (TSPAN1, TMPRSS4, SDR16C5, and CTSE) were identified based on bioinformatics. RT-PCR showed that the four hub genes were expressed at medium to high levels, IHC revealed that their protein expression levels were higher in pancreatic cancer tissues. For the panel of these four genes, eight models performed with 0.87-0.92 area under the curve value (AUC), 0.91-0.94 sensitivity, and 0.84-0.86 specificity in the validation cohort. In the external validation set, these models also showed good performance (0.86-0.98 AUC, 0.84-1.00 sensitivity, and 0.86-1.00 specificity). In conclusion, this study has identified four hub genes that might be closely related to pancreatic cancer: TSPAN1, TMPRSS4, SDR16C5, and CTSE. Four-gene panels might provide a theoretical basis for the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Hua Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Jinyu Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Chuncheng Yi
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Chunhua Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guozhong Jiang
- Deparment of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxin Huang
- Program in Public Health, University of California, Irvine, Irvine, CA, United States
| | - Yongwei Yu
- Department of Pathology, Second Military Medical University, Shanghai, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, China
| |
Collapse
|
9
|
Ma C, Cui Z, Wang Y, Zhang L, Wen J, Guo H, Li N, Zhang W. Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer. Bosn J Basic Med Sci 2021; 21:47-60. [PMID: 33188589 PMCID: PMC7861625 DOI: 10.17305/bjbms.2020.5096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PCC) is a common malignant tumor of the digestive system that is resistant to traditional treatments and has an overall 5-year survival rate of <7%. Transcriptomics research provides reliable biomarkers for diagnosis, prognosis, and clinical precision treatment, as well as the identification of molecular targets for the development of drugs to improve patient survival. We sought to identify new biomarkers for PCC by combining transcriptomics and clinical data with current knowledge regarding molecular mechanisms. Consequently, we employed weighted gene co-expression network analysis and differentially expressed gene analysis to evaluate genes co-expressed in tumor versus normal tissues using pancreatic adenocarcinoma data from The Cancer Genome Atlas and dataset GSE16515 from the Gene Expression Omnibus. Twenty-one overlapping genes were identified, with enrichment of key Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, including epidermal growth factor receptor signaling, cadherin, cell adhesion, ubiquinone, and glycosphingolipid biosynthesis pathways, and retinol metabolism. Protein-protein interaction analysis highlighted 10 hub genes, according to Maximal Clique Centrality. Univariate and multivariate COX analyses indicated that TSPAN1 serves as an independent prognostic factor for PCC patients. Survival analysis distinguished TSPAN1 as an independent prognostic factor among hub genes in PCC. Finally, immunohistochemical staining results suggested that the TSPAN1 protein levels in the Human Protein Atlas were significantly higher in tumor tissue than in normal tissue. Therefore, TSPAN1 may be involved in PCC development and act as a critical biomarker for diagnosing and predicting PCC patient survival.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Hepatobiliary Medicine, Hebei General Hospital, Shijiazhuang, China. Graduate school of North China University of Science and Technology, Tangshan, China
| | - ZeLong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - YiChao Wang
- Graduate School of North China University of Science and Technology, Tangshan, China
| | - Lei Zhang
- Department of hepatobiliary, Hebei General Hospital, Shijiazhuang, China
| | - JunYe Wen
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - HuaiBin Guo
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - WanXing Zhang
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
10
|
Shin HY, Yang W, Chay DB, Lee EJ, Chung JY, Kim HS, Kim JH. Tetraspanin 1 promotes endometriosis leading to ovarian clear cell carcinoma. Mol Oncol 2021; 15:987-1004. [PMID: 33331115 PMCID: PMC8024726 DOI: 10.1002/1878-0261.12884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) reportedly develops from endometriosis. However, the molecular mechanism underlying its malignant progression to OCCC remains elusive. This study aimed to identify an essential gene in the malignant transformation of endometriosis to OCCC. We performed RNA sequencing in formalin‐fixed, paraffin‐embedded (FFPE) tissues of endometriosis (n = 9), atypical endometriosis (AtyEm) (n = 18), adjacent endometriosis to OCCC (AdjEm) (n = 7), and OCCC (n = 17). We found that tetraspanin 1 (TSPAN1) mRNA level was significantly increased by 2.4‐ (DESeq2) and 3.4‐fold (edgeR) in AtyEm and by 80.7‐ (DESeq2) and 101‐fold (edgeR) in OCCC relative to endometriosis. We confirmed that TSPAN1 protein level was similarly overexpressed in OCCC tissues and cell lines. In immortalized endometriosis cell lines, TSPAN1 overexpression enhanced cell growth and invasion. Mechanistically, TSPAN1 triggered AMP‐activated protein kinase (AMPK) activity, promoting endometriosis and cell growth. Upregulated levels of TSPAN1 are considered an early event in the development of high‐risk endometriosis that could progress to ovarian cancer. Our study suggests the potential of TSPAN1 as a screening candidate for high‐risk endometriosis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Doo Byung Chay
- Department of Obstetrics and Gynecology, Sahmyook Medical Center, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Yong Chung
- Experimental Pathology Lab., Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
miR-573 suppresses pancreatic cancer cell proliferation, migration, and invasion through targeting TSPAN1. Strahlenther Onkol 2020; 197:438-448. [PMID: 33320287 DOI: 10.1007/s00066-020-01728-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To explore whether miR-573 can suppress pancreatic cancer cell proliferation, migration, and invasion by targeting TSPAN1. METHODS The expression of miR-573 and TSPAN1 in pancreatic cancer tissues and cells lines was analyzed using RT-qPCR. The human pancreatic cancer cell line PANC‑1 was transfected with miR-573 mimic, pcDNA3.1-TSPAN1, or genOFFTM st-h-TSPAN1. The effects of miR-573 and TSPAN1 on cell proliferation, colony formation, migration, and invasion were analyzed by CCK‑8, colony formation, transwell migration, and invasion assay, respectively. Target genes of miR-573 were screened using bioinformatics tools and confirmed by dual-luciferase reporter assay and real-time PCR. The effects of miR-573 in vivo were observed using tumor xenografts. RESULTS We found that miR-573 is downregulated and TSPAN1 is upregulated in pancreatic cancer tissues and cells lines. Function assays demonstrated that overexpression of miR-573 inhibited cell proliferation, colony formation, migration, and invasion of pancreatic cancer cells, as well as suppressing tumor growth in vivo. Target genes of miR-573 were predicted using bioinformatics tools and confirmed by dual-luciferase reporter assay and RT-qPCR or western blotting. Downregulation of TSPAN1 also inhibited cell proliferation, colony formation, migration, and invasion of pancreatic cancer cells. Furthermore, overexpression of TSPAN1 attenuated miR-573-induced inhibition of pancreatic cancer cell proliferation and migration. CONCLUSION Our findings indicated that miR-573 suppresses pancreatic cancer cell proliferation, migration, and invasion through targeting TSPAN1. TSPAN1 targeted by miR-573 might be a potential therapeutic target for clinical treatment of pancreatic cancer.
Collapse
|
12
|
Garcia-Mayea Y, Mir C, Carballo L, Castellvi J, Temprana-Salvador J, Lorente J, Benavente S, García-Pedrero JM, Allonca E, Rodrigo JP, LLeonart ME. TSPAN1: A Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance. Cancers (Basel) 2020; 12:cancers12113269. [PMID: 33167355 PMCID: PMC7694336 DOI: 10.3390/cancers12113269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Therapy resistance in head and neck squamous cell carcinoma (HNSCC) patients is the main obstacle to achieve more effective treatments that improve survival and quality of life of these patients. Therefore, it is of vital importance to unravel the molecular and cellular mechanisms by which tumor cells acquire resistance to chemotherapy. We conducted a comparative proteomic study involving cisplatin-resistant cells and cancer stem cells with the aim of identifying proteins potentially implicated in the acquisition of cisplatin resistance. Through this study, we identified for the first time tetraspanin-1 (TSPAN1) as an important protein involved in the development, progression and chemoresistance of HNSCC tumors. Abstract Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial–mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
- Genetic, Microbiology and Statistics Department, Faculty of Biology, University of Barcelona, Avenida Diagonal 643, 08014 Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
| | - Laia Carballo
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
| | - Jordi Temprana-Salvador
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
| | - Juan Lorente
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Sergi Benavente
- Radiotherapy Unit, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Juana M. García-Pedrero
- Department of Otolaryngology-Head and Neck Surgery, Central University Hospital of Asturias, University of Oviedo, ISPA, IUOPA, 33011 Oviedo, Spain; (J.M.G.-P.); (E.A.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Av. Roma SN, 33011 Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology-Head and Neck Surgery, Central University Hospital of Asturias, University of Oviedo, ISPA, IUOPA, 33011 Oviedo, Spain; (J.M.G.-P.); (E.A.); (J.P.R.)
| | - Juan P. Rodrigo
- Department of Otolaryngology-Head and Neck Surgery, Central University Hospital of Asturias, University of Oviedo, ISPA, IUOPA, 33011 Oviedo, Spain; (J.M.G.-P.); (E.A.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Av. Roma SN, 33011 Oviedo, Spain
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d’Hebron Research Institute (VHIR), Autonomous University of Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (Y.G.-M.); (C.M.); (L.C.); (J.C.); (J.T.-S.)
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Vall d’Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119–129, 08035 Barcelona, Spain
- Correspondence: ; Tel.: +34-934894169; Fax: +34-932746708
| |
Collapse
|
13
|
Shi LE, Shang X, Nie KC, Xu Q, Chen NB, Zhu ZZ. Identification of potential crucial genes associated with the pathogenesis and prognosis of pancreatic adenocarcinoma. Oncol Lett 2020; 20:60. [PMID: 32793313 PMCID: PMC7418510 DOI: 10.3892/ol.2020.11921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a type of malignant tumor with the highest mortality rate among all neoplasms worldwide, and its exact pathogenesis is still poorly understood. Timely diagnosis and treatment are of great importance in order to decrease the mortality rate of PAAD. Therefore, identifying new biomarkers for diagnosis and prognosis is essential to enable early detection of PAAD and to improve the overall survival (OS) rate. In order to screen and integrate differentially expressed genes (DEGs) between PAAD and normal tissues, a total of seven datasets were downloaded from the Gene Expression Omnibus database and the ‘limma’ and ‘robustrankggreg’ packages in R software were used. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery website, and the protein-protein interaction network analysis was performed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. A gene prognostic signature was constructed using the Cox regression model. A total of 10 genes (CDK1, CCNB1, CDC20, ASPM, UBE2C, TPX2, TOP2A, NUSAP1, KIF20A and DLGAP5) that may be associated with pancreatic adenocarcinoma were identified. According to the differentially expressed genes in The Cancer Genome Atlas, the present study set up four prognostic signatures (matrix metalloproteinase 12, sodium voltage-gated channel α subunit 11, tetraspanin 1 and SH3 domain and tetratricopeptide repeats-containing 2), which effectively predicted OS. The hub genes that were highly associated with the occurrence, development and prognosis of PAAD were identified, which may be helpful to further understand the molecular basis of pancreatic cancer and guide the synthesis of drugs for PPAD.
Collapse
Affiliation(s)
- Lan-Er Shi
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xin Shang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ke-Chao Nie
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qiang Xu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Na-Bei Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhang-Zhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
14
|
Tavsan Z, Kayali HA. Protein Kinase C regulates the complex between cell membrane molecules in ovarian cancer. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
TSPAN8 as a Novel Emerging Therapeutic Target in Cancer for Monoclonal Antibody Therapy. Biomolecules 2020; 10:biom10030388. [PMID: 32138170 PMCID: PMC7175299 DOI: 10.3390/biom10030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.
Collapse
|
16
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
18
|
Guo XB, Zhang XC, Chen P, Ma LM, Shen ZQ. miR‑378a‑3p inhibits cellular proliferation and migration in glioblastoma multiforme by targeting tetraspanin 17. Oncol Rep 2019; 42:1957-1971. [PMID: 31432186 PMCID: PMC6775804 DOI: 10.3892/or.2019.7283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and patients with this disease tend to have poor clinical outcome. MicroRNAs (miRs) are important regulators of a number of key pathways implicated in tumor pathogenesis. Recently, the expression of miR‑378 was shown to be dysregulated in several different types of cancer, including gastric cancer, colorectal cancer and oral carcinoma. Additional studies have demonstrated that miR‑378 may serve as a potential therapeutic target against human breast cancer. However, the underlying mechanisms and potential targets of miR‑378a‑3p involved in GBM remain unknown. The aim of the present of was to determine the effects of miR‑378a‑3p and its potential targets. Tetraspanin 17 (TSPAN17) is involved in the neoplastic events in GBM and is a member of the tetraspanin family of proteins. The tetraspanins are involved in the regulation of cell growth, migration and invasion of several different types of cancer cell lines, and may potentially act as an oncogene associated with GBM pathology. The results of the present study showed that high miR‑378a‑3p and low TSPAN17 expression levels were associated with improved survival in patients with GBM. Additionally, high levels of TSPAN17 were linked to the poor prognosis of patients with GBM aged 50‑60, larger tumor sizes (≥5 cm) and an advanced World Health Organization stage. TSPAN17 was identified and confirmed as a direct target of miR‑378a‑3p using a luciferase reporter assay in human glioma cell lines. Overexpression of miR‑378a‑3p in either of U87MG or MT‑330 cells decreased the expression of TSPAN17, promoted apoptosis and decreased proliferation, migration and invasion. Overexpression of TSPAN17 attenuated the aforementioned effects induced by miR‑378a‑3p overexpression. The present study indicated that miR‑378a‑3p suppresses the progression of GBM by reducing TSPAN17 expression, and may thus serve as a potential therapeutic target for treating patients with GBM.
Collapse
Affiliation(s)
- Xiao-Bing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Chao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Li-Mei Ma
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
19
|
Bao Y, Wang L, Shi L, Yun F, Liu X, Chen Y, Chen C, Ren Y, Jia Y. Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Cell Mol Biol Lett 2019; 24:38. [PMID: 31182966 PMCID: PMC6554968 DOI: 10.1186/s11658-019-0162-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Exploration of the genes with abnormal expression during the development of breast cancer is essential to provide a deeper understanding of the mechanisms involved. Transcriptome sequencing and bioinformatics analysis of invasive ductal carcinoma and paracancerous tissues from the same patient were performed to identify the key genes and signaling pathways related to breast cancer development. Methods Samples of breast tumor tissue and paracancerous breast tissue were obtained from 6 patients. Sequencing used the Illumina HiSeq platform. All. Only perfectly matched clean reads were mapped to the reference genome database, further analyzed and annotated based on the reference genome information. Differentially expressed genes (DEGs) were identified using the DESeq R package (1.10.1) and DEGSeq R package (1.12.0). Using KOBAS software to execute the KEGG bioinformatics analyses, enriched signaling pathways of DEGs involved in the occurrence of breast cancer were determined. Subsequently, quantitative real time PCR was used to verify the accuracy of the expression profile of key DEGs from the RNA-seq result and to explore the expression patterns of novel cancer-related genes on 8 different clinical individuals. Results The transcriptomic sequencing results showed 937 DEGs, including 487 upregulated and 450 downregulated genes in the breast cancer specimens. Further quantitative gene expression analysis was performed and captured 252 DEGs (201 downregulated and 51 upregulated) that showed the same differential expression pattern in all libraries. Finally, 6 upregulated DEGs (CST2, DRP2, CLEC5A, SCD, KIAA1211, DTL) and 6 downregulated DEGs (STAC2, BTNL9, CA4, CD300LG, GPIHBP1 and PIGR), were confirmed in a quantitative real time PCR comparison of breast cancer and paracancerous breast tissues from 8 clinical specimens. KEGG analysis revealed various pathway changes, including 20 upregulated and 21 downregulated gene enrichment pathways. The extracellular matrix–receptor (ECM-receptor) interaction pathway was the most enriched pathway: all genes in this pathway were DEGs, including the THBS family, collagen and fibronectin. These DEGs and the ECM-receptor interaction pathway may perform important roles in breast cancer. Conclusion Several potential breast cancer-related genes and pathways were captured, including 7 novel upregulated genes and 76 novel downregulated genes that were not found in other studies. These genes are related to cell proliferation, movement and adhesion. They may be important for research into breast cancer mechanisms, particularly CST2 and CA4. A key signaling pathway, the ECM-receptor interaction signal pathway, was also identified as possibly involved in the development of breast cancer. Electronic supplementary material The online version of this article (10.1186/s11658-019-0162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulong Bao
- 1College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia China.,Tumor Molecular Diagnostic Laboratory, The Inner Mongolia Cancer Hospital, Hohhot, Inner Mongolia China
| | - Li Wang
- 1College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Lin Shi
- 2Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Fen Yun
- 2Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Xia Liu
- 2Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Yongxia Chen
- Tumor Molecular Diagnostic Laboratory, The Inner Mongolia Cancer Hospital, Hohhot, Inner Mongolia China
| | - Chen Chen
- 2Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Yanni Ren
- 2Department of Pathology, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Yongfeng Jia
- 1College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia China.,Tumor Molecular Diagnostic Laboratory, The Inner Mongolia Cancer Hospital, Hohhot, Inner Mongolia China
| |
Collapse
|
20
|
Li P, Dong M, Wang Z. Downregulation of TSPAN13 by miR-369-3p inhibits cell proliferation in papillary thyroid cancer (PTC). Bosn J Basic Med Sci 2019; 19:146-154. [PMID: 30114378 DOI: 10.17305/bjbms.2018.2865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 01/07/2023] Open
Abstract
Previous studies demonstrated dysregulation of different microRNAs in thyroid cancer. Tetraspanins (TSPANs) are cell surface proteins with critical roles in many cellular processes, and implications in tumor development. Here we investigated the role of miR-369-3p in papillary thyroid cancer (PTC) and its association with TSPAN13. miR-369-3p and the TSPAN13 gene expression profiles of 513 thyroid cancer and 59 normal thyroid tissues were downloaded from the Cancer Genome Atlas database. Thyroid cancer tissues were classified according to the histological type, grouped based on low and high median miR-369-3p and TSPAN13 expression, and analyzed in relation to overall survival (OS) of patients. Human PTC cell lines (TPC-1 and GLAG-66) and human embryonic kidney 293T (HEK293T) cells were used for in vitro analysis. Transfection experiments were performed with synthetic miRNA mimics for miR-369-3p and small interfering RNAs for TSPAN13. Relative expression of miR-369-3p and TSPAN13 mRNA was determined by RT-qPCR. Protein levels of TSPAN13 were determined by western blotting. Cell proliferation (CCK-8 assay), colony formation, and apoptosis (flow cytometry) were analyzed in transfected cells. Binding sites of miR-369-3p in TSPAN13 mRNA were determined by bioinformatics analysis and dual luciferase reporter assay. miR-369-3p was downregulated and TSPAN13 upregulated in PTC, follicular thyroid cancer, and tall cell variant tissues. Both low expression of miR-369-3p and high expression of TSPAN13 were associated with shorter OS in thyroid cancer patients. Overexpression of miR-369-3p significantly suppressed proliferation and promoted apoptosis in PTC cells. TSPAN13 was a direct target of miR-369-3p, and silencing of TSPAN13 phenocopied the effect of miR-369-3p mimics in PTC cells. Overall, the downregulation of miR-369-3p and consequent upregulation of its target TSPAN13 appear to be involved in pathophysiology of PTC.
Collapse
Affiliation(s)
- Peng Li
- Department of Emergency, Jingmen NO.1 People's Hospital, Jingmen, Hubei, China.
| | | | | |
Collapse
|
21
|
Wang Y, Liang Y, Yang G, Lan Y, Han J, Wang J, Yin D, Song R, Zheng T, Zhang S, Pan S, Liu X, Zhu M, Liu Y, Cui Y, Meng F, Zhang B, Liang S, Guo H, Liu Y, Hassan MK, Liu L. Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:300. [PMID: 30514341 PMCID: PMC6280496 DOI: 10.1186/s13046-018-0969-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that tetraspanin 1 (TSPAN1), a transmembrane protein, functions as an oncoprotein in many cancer types. However, its role and underlying molecular mechanism in cholangiocarcinoma (CCA) progression remain unclear. METHODS In the present study, the expression of TSPAN1 in human CCA and adjacent nontumor tissues was examined using real-time PCR, western blot and immunohistochemistry. The effect of TSPAN1 on proliferation and metastasis was evaluated by functional assays both in vitro and in vivo. A luciferase reporter assay was performed to investigate the interaction between microRNA-194-5p (miR-194-5p) and TSPAN1 3'-untranslated region. Co-immunoprecipitation (co-IP) was used to confirm the interaction between TSPAN1 protein and integrin α6β1 and western blot was used to explore TSPAN1 mechanism. RESULTS We found that TSPAN1 was frequently upregulated in CCA and high levels of TSPAN1 correlated with TNM stage, especially metastasis in CCA. TSPAN1 overexpression promoted CCA growth, metastasis, and induced epithelial-to-mesenchymal transition (EMT), while its silencing had the opposite effect both in vitro and in vivo. To explore the differential expression of TSPAN1, we screened miR-194-5p as the upstream regulator of TSPAN1. A combination of high-level TSPAN1 and low-level miR-194-5p predicted poor prognosis in patients with CCA. Furthermore, in accordance with the functional characteristics of the TSPAN superfamily, we proved that TSPAN1 interacted with integrin α6β1 to amplify the phosphoinositide-3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β/Snail family transcriptional repressor (Snail)/phosphatase and tensin homolog (PTEN) feedback loop. CONCLUSION The results indicate that TSPAN1 could be a potential therapeutic target for CCA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Dalong Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shangha Pan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yao Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yufeng Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Md Khaled Hassan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China. .,Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
22
|
Tetraspanin 1 inhibits TNFα-induced apoptosis via NF-κB signaling pathway in alveolar epithelial cells. Inflamm Res 2018; 67:951-964. [DOI: 10.1007/s00011-018-1189-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022] Open
|
23
|
Gu T, Chen W, Chen L, Wang G, Li T, Zhu Y, Gao X. Expression and function of tetraspanin 1 in esophageal carcinoma. Oncol Lett 2017; 14:6815-6822. [PMID: 29422958 DOI: 10.3892/ol.2017.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2017] [Indexed: 11/05/2022] Open
Abstract
The present study explored the expression of tetraspanin 1 (TSPAN1) in esophageal carcinoma (EC) and its association with clinicopathological factors. TSPAN1 small interfering RNA (siRNA) was designed to target the TSPAN1 gene in Eca-109 cells in order to explore the biological function of TSPAN1 in the proliferation and apoptosis of EC. The results demonstrated that the level of TSPAN1 expression in EC tissue was significantly increased compared with that in adjacent normal tissue (P<0.001). TSPAN1 expression was also associated with histological differentiation, depth of invasion, lymph node metastasis (all P<0.05) and Ki-67 (P<0.01). However, no association was observed between TSPAN expression and gender, age or location (P>0.05). In addition, silencing TSPAN1 markedly inhibited proliferation while increasing the apoptosis rate of Eca-109 cells, which was demonstrated by detecting the expression of the cell proliferation-associated gene Ki-67 and the apoptotic gene caspase-3 (P<0.05). Taken together, these results indicated that TSPAN1 functions as a tumor-associated gene in EC through promoting cell proliferation and suppressing apoptosis, and siRNA technology may provide an advanced alternative in the development of therapeutics for EC.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Pathology, Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, P.R. China
| | - Weiwei Chen
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Pathology, Affiliated Tumor Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guilan Wang
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Tiejun Li
- Research and Development Department, Biomics Biotechnologies Co., Ltd., Nantong University, Nantong, Jiangsu 226016, P.R. China
| | - Yuanyuan Zhu
- Research and Development Department, Biomics Biotechnologies Co., Ltd., Nantong University, Nantong, Jiangsu 226016, P.R. China
| | - Xiaojiao Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|
24
|
Xie Z, Chen W, Chen Y, Wang X, Gao W, Liu Y. miR-768-3p is involved in the proliferation, invasion and migration of non-small cell lung carcinomas. Int J Oncol 2017; 51:1574-1582. [PMID: 29048613 DOI: 10.3892/ijo.2017.4133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 09/18/2017] [Indexed: 11/06/2022] Open
Abstract
Altered microRNA expression has been found to be a common feature of several cancers, including lung carcinomas. However, the possible roles of miR-768-3p in the pathological changes of lung carcinomas are still unknown. The aim of the present study was to investigate the expression and possible effects of miR-768-3p in human non-small cell lung carcinomas (NSCLC). Eighty-three NSCLC patients attending the clinic of Kunming Hospital were invited to participate in the study. Their tumor samples were obtained for qRT-PCR analysis. Human NSCLC cell lines, A549 and HCC4006, were employed and transfected with either miR-768-3p mimics or miR-768-3p antagomir. Following transfection, the in vitro and in vivo proliferation, apoptosis fractions, migration and invasion of NSCLC cells were evaluated. The data revealed that: i) upregulated miR-768-3p in tumors were associated with the clinicopathological features of NSCLC patients; ii) inhibiting miR-768-3p function by miR-768-3p antagomir induced distinctly apoptosis and Fas/FasL expressional alteration of NSCLC cells; iii) miR-768-3p antagomir transduction also decreased the viability, migration and invasion, as well as MMP-2 and MMP-9 activities in A549 and HCC4006 cells; and iv) miR-768-3p antagomir transfection also inhibited the growth and proliferation of NSCLC xenografts in nude mice. The present results suggested that abnormal elevated miR-768-3p in NSCLC tumors and cell lines played important roles in NSCLC carcinogenic progression, and the targeting of miR-768-3p might be a potential therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zuozhou Xie
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| | - Weiqiang Chen
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| | - Yinghua Chen
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| | - Xiang Wang
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| | - Wenyong Gao
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| | - Yi Liu
- Department of Respiratory and Critical Medicine, No. 2 People's Hospital of Kunming, Kunming, Yunnan 650204, P.R. China
| |
Collapse
|
25
|
Cheng Q, Han LH, Zhao HJ, Li H, Li JB. Abnormal alterations of miR-1 and miR-214 are associated with clinicopathological features and prognosis of patients with PDAC. Oncol Lett 2017; 14:4605-4612. [PMID: 29085459 PMCID: PMC5649611 DOI: 10.3892/ol.2017.6819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignant disease with a poor prognosis. PDAC is known to be difficult to diagnose at an early stage and to exhibit poor recurrence-free prognosis, but there is also a lack of effective treatment and limited knowledge of its biological characteristics. Therefore, there is an urgent requirement for an improved understanding of the cellular or molecular properties associated with PDAC, and to explore novel avenues for the diagnosis and treatment of this disease. In the present study, the microRNA (miRNA/miR) profiles of sera and tumor samples from patients with PDAC and healthy controls were investigated by miRNA microarray, and the potential role of miR-1 expression in PDAC was determined. A total of 43 patients attending the clinic diagnosed with PDAC at Changzhi City People's Hospital were invited to participate. Blood and surgical tumor samples were obtained for analysis by miRNA microarray and the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The surgical tumor tissue was additionally used to determine miRNAs status by in situ hybridization (ISH). The results of microarray revealed that: i) 27 miRNAs in the sera and 23 miRNAs in the tumor tissues obtained from patients with PDAC were different compared with their matched controls; ii) miR-1, miR-10b and miR-214 were significantly altered in the PDAC group, either in the sera or tumor tissue samples. Results from the RT-qPCR, which detected the levels of miRNAs in patients with PDAC, confirmed those obtained from the miRNA microarray. In particular, the results of the present study revealed that decreased miR-1 and increased miR-214 in the PDAC tissues were associated with the clinicopathological features and survival rates of patients with PDAC. The results of the present study indicated that miRNAs serve an important role in PDAC carcinogenic progression and supplied useful markers, including miR-1, miR-214 and miR-10b, for determining PDAC prognosis using noninvasive methods.
Collapse
Affiliation(s)
- Qing Cheng
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Li-Hua Han
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hai-Juan Zhao
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hui Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Jian-Bing Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
26
|
Munkley J, McClurg UL, Livermore KE, Ehrmann I, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries LW, Leung HY, Mills IG, Robson CN, Rajan P, Elliott DJ. The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration. Sci Rep 2017; 7:5249. [PMID: 28701765 PMCID: PMC5507901 DOI: 10.1038/s41598-017-05489-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Karen E Livermore
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul Mccullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John Mcgrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Department of Urology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter, Devon, UK
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Forskningsparken, Gaustadalléen 21, N-0349, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital HE - Norwegian Radium Hospital, Montebello, Ian G. Mills, NO-0424, Oslo, Norway
- Movember/Prostate Cancer UK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
27
|
Reimann R, Kost B, Dettmer J. TETRASPANINs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:545. [PMID: 28458676 PMCID: PMC5394113 DOI: 10.3389/fpls.2017.00545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Tetraspanins are small transmembrane proteins that laterally associate with each other and cluster with numerous partner proteins as well as lipids. These interactions result in the formation of a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs), which influence numerous cellular processes such as cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis, motility as well as interaction with pathogens and cancer development. The majority of information available about tetraspanins is based on studies using animal models or cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate that tetraspanins have important functions in plant development, reproduction and stress responses. Here we provide a brief summary of the current state of tetraspanin research in plants.
Collapse
|