1
|
Oflaz FE, Bondarenko AI, Trenker M, Waldeck-Weiermair M, Gottschalk B, Bernhart E, Koshenov Z, Radulović S, Rost R, Hirtl M, Pilic J, Karunanithi Nivedita A, Sagintayev A, Leitinger G, Brachvogel B, Summerauer S, Shoshan-Barmatz V, Malli R, Graier WF. Annexin A5 controls VDAC1-dependent mitochondrial Ca 2+ homeostasis and determines cellular susceptibility to apoptosis. EMBO J 2025:10.1038/s44318-025-00454-9. [PMID: 40346273 DOI: 10.1038/s44318-025-00454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Annexin A5 (AnxA5) is a Ca2+-dependent phospholipid-binding protein associated with the regulation of intracellular Ca2+ homeostasis. However, the precise role of AnxA5 in controlling mitochondrial Ca2+ signaling remains elusive. Here, we introduce a novel function of AnxA5 in regulating mitochondrial Ca2+ signaling. Our investigation revealed that AnxA5 localizes at and in the mitochondria and orchestrates intermembrane space Ca2+ signaling upon high Ca2+ elevations induced by ER Ca2+ release. Proximity ligation assays and co-immunoprecipitation revealed a close association but no direct contact of AnxA5 with the voltage-dependent anion channel (VDAC1) in the outer mitochondrial membrane (OMM). In single-cell mitochondrial Ca2+ measurements and electrophysiological recordings, AnxA5 was found to enhance Ca2+ flux through the OMM by promoting the Ca2+-permeable state of VDAC1. By modulating intermembrane space Ca2+ signaling, AnxA5 shapes mitochondrial ultrastructure and influences the dynamicity of the mitochondrial Ca2+ uniporter. Furthermore, by controlling VDAC1's oligomeric state, AnxA5 is protective against cisplatin and selenite-induced apoptotic cell death. Our study uncovers AnxA5 as an integral regulator of VDAC1 in physiological and pathological conditions.
Collapse
Affiliation(s)
- Furkan E Oflaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Alexander I Bondarenko
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Michael Trenker
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- MM Frohnleiten GmbH, Frohnleiten, Austria
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Department of Biochemistry, Weill Cornell Medicine, New York, USA
| | - Snježana Radulović
- Gottfried Schatz Research Center: Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Rene Rost
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Martin Hirtl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Aditya Karunanithi Nivedita
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Adlet Sagintayev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center: Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne Summerauer
- Gottfried Schatz Research Center: Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
2
|
Bonsignore G, Ranzato E, Martinotti S. Unraveling BOLD-100 synergistic potential in pleural mesothelioma treatment: an in vitro study. Invest New Drugs 2025:10.1007/s10637-025-01540-9. [PMID: 40338466 DOI: 10.1007/s10637-025-01540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Pleural mesothelioma (PM) is a rare cancer affecting the pleural layer on the body's serosal surfaces. Exposure to asbestos fibers, a naturally occurring fibrous material with insulating characteristics, contributes to PM's prevalence. PM has a long latency period, making major surgery ineffective and necessitating systemic treatment. Despite the progress of mesothelioma treatment, the median survival is very poor; so, there is a strong need to explore new therapeutic approaches. This study explores the use of BOLD-100, a novel therapeutic drug that targets GRP78, a protein overexpressed in PM cells. BOLD-100, a ruthenium-based small molecule therapeutic drug, is being investigated for the treatment of advanced gastrointestinal malignancies in conjunction with chemotherapy. Our aim is to investigate cellular responses of several PM cell lines to a regimen that includes BOLD-100 in addition to other commonly used treatments. BOLD-100 is a ruthenium-based anticancer therapeutic.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy
| | - Elia Ranzato
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy.
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy.
| | - Simona Martinotti
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy
| |
Collapse
|
3
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
4
|
Oh CJ, Choi W, Lee HY, Lee IK, Kim MJ, Jeon JH. Sodium Phenylbutyrate Attenuates Cisplatin-Induced Acute Kidney Injury Through Inhibition of Pyruvate Dehydrogenase Kinase 4. Biomedicines 2024; 12:2815. [PMID: 39767721 PMCID: PMC11672979 DOI: 10.3390/biomedicines12122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge. This study evaluated tubular injury, serum blood urea nitrogen (BUN) and creatinine levels, and inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1). Additionally, apoptosis, mitochondrial membrane potential, oxygen consumption ratio, and reactive oxygen species (ROS) were assessed in renal tubular cells. The expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were also analyzed. Results: 4-PBA prevented tubular injury and normalized serum BUN and creatinine levels. Inflammatory markers TNF-α and ICAM-1 were suppressed. In renal tubular cells, 4-PBA reduced apoptosis, restored mitochondrial membrane potential and oxygen consumption ratio, and reduced ROS production. Mechanistically, 4-PBA suppressed the expression of Pdk4, which is known to be induced during cisplatin-induced renal injury. The protective effect of 4-PBA was abolished in Pdk4-overexpressing renal tubular cells, indicating that the efficacy of 4-PBA partially depends on the suppression of Pdk4 expression. In cancer cells, 4-PBA did not interfere with the anti-cancer efficacy of cisplatin. Conclusions: These findings suggest that 4-PBA effectively prevents cisplatin-induced acute kidney injury by suppressing Pdk4.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Wooyoung Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ha Young Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|
5
|
Zhao J, Zhang J, Tong X, Zhao L, Cao R. TRIM47 inhibits cisplatin chemosensitivity and endoplasmic reticulum stress-induced apoptosis of ovarian cancer cells. Mol Cell Probes 2024; 77:101978. [PMID: 39096978 DOI: 10.1016/j.mcp.2024.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Ovarian cancer (OC) is the fifth most common cause of death in women worldwide. Chemoresistance is a key reason for treatment failure, causing high mortality. As a member of the tripartite motif-containing (TRIM) protein family, tripartite motif 47 (TRIM47) plays a vital role in the carcinogenesis and drug resistance of various cancers. This study investigated the impact and mechanisms of TRIM47 on cisplatin (DDP) chemosensitivity and apoptosis in OC. OC cell viability was assessed with a cell counting kit-8 assay and OC cell apoptosis was assessed using flow cytometry, caspase-3 and caspase-9 activity, and Bax and Bcl-2 expression assays while gene and protein expression were assessed using qRT-PCR and Western blot assays. The expression of TRIM47 was significantly increased in both DDP-resistant tissues from patients with OC tissues and in cancer cell lines compared with that in normal tissue or parental cell lines. The increased level of TRIM47 correlated with poor prognosis in patients with OC. Functional assays demonstrated that TRIM47 promoted DDP resistance both in vitro and in vivo. The increased viability and reduced apoptosis of OC cells induced by TRIM47 can be rescued by the endoplasmic reticulum (ER) stress-inducer tunicamycin, suggesting that TRIM47 inhibits OC cell apoptosis by suppressing ER stress. Therefore, TRIM47 may be targeted as a therapeutic strategy for DDP resistance in OC.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Jingru Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Xiaojing Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Lili Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Rong Cao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| |
Collapse
|
6
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
7
|
Balakrishnan P, Arasu A, Velusamy T. Targeting altered calcium homeostasis and uncoupling protein-2 promotes sensitivity in drug-resistant breast cancer cells. J Biochem Mol Toxicol 2024; 38:e23575. [PMID: 37920924 DOI: 10.1002/jbt.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Metastatic breast cancer has the highest mortality rate among women owing to its poor clinical outcomes. Metastatic tumors pose challenges for treatment through conventional surgery or radiotherapy because of their diverse organ localization and resistance to various cytotoxic agents. Chemoresistance is a significant obstacle to effective breast cancer treatment owing to cancer's heterogeneous nature. Abnormalities in intracellular calcium signaling, coupled with altered mitochondrial metabolism, play a significant role in facilitating drug resistance and contribute to therapy resistance. Uncoupling protein-2 (UCP2) is considered as a marker of chemoresistance and is believed to play a major role in promoting metabolic shifts and tumor metastasis. In this context, it is imperative to understand the roles of altered calcium signaling and metabolic switching in the development of chemotherapeutic resistance. This study investigates the roles of UCP2 and intracellular calcium signaling (Ca2+ ) in promoting chemoresistance against cisplatin. Additionally, we explored the effectiveness of combining genipin (GP, a compound that reverses UCP2-mediated chemoresistance) and thapsigargin (TG, a calcium signaling modulator) in treating highly metastatic breast cancers. Our findings indicate that both aberrant Ca2+ signaling and metabolic shifts in cancer cells contribute to developing drug-resistant phenotypes, and the combination treatment of GP and TG significantly enhances drug sensitivity in these cells. Collectively, our study underscores the potential of these drug combinations as an effective approach to overcome drug resistance in chemoresistant cancers.
Collapse
Affiliation(s)
- Pavithra Balakrishnan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Ashok Arasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
8
|
Miao Y, Wang X, Lai Y, Huang Y, Yin H, Meng X, Liu H, Hou R, Lin W, Zhang X, Zhang X, Chai BC, Zhang F, Guo L, Yang S. Targeting the mitochondrial calcium uniporter inhibits cancer progression and alleviates cisplatin resistance in esophageal squamous cell carcinoma. Int J Oncol 2023; 63:82. [PMID: 37264968 PMCID: PMC10552700 DOI: 10.3892/ijo.2023.5530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Cisplatin is the standard chemotherapeutic drug used for the treatment of esophageal squamous cell carcinoma (ESCC). Acquired cisplatin resistance is the primary obstacle to prolonging patient survival time. Here, the therapeutic effects of mitochondrial calcium uniporter (MCU) inhibition on tumor growth and cisplatin resistance in ESCC were assessed. MCU was stably overexpressed or knocked down in three ESCC cell lines and three cisplatin‑resistant ESCC cell lines. Then, proliferation, migration, and mitochondrial membrane potential (MMP) were measured by colony formation, wound healing, Transwell, and JC‑1 staining assays. MCU, MICU2, MICU1, and PD‑L1 levels were detected through western blotting and immunofluorescence. ESCC and cisplatin‑resistant ESCC xenograft mouse models were established. After MCU knockdown, tumor volume was measured. The expression levels of proliferation markers (CyclinD1 and Ki‑67), MICU1/2, PD‑L1, epithelial-mesenchymal transition (EMT) markers (vimentin, β‑catenin, and E‑cadherin), and the angiogenesis marker CD34 were detected through western blotting, immunohistochemistry, or immunofluorescence. The results showed that MCU overexpression significantly promoted proliferation, migration, and MMP in ESCC cells and cisplatin‑resistant ESCC cells. However, proliferation, migration, and MMP were suppressed following MCU knockdown. In ESCC cells, MCU overexpression markedly increased MICU2, MICU1, and PD‑L1 levels, and the opposite results were observed when MCU was stably knocked down. Similarly, MCU inhibition decreased MICU2, MICU1, and PD‑L1 expression in cisplatin‑resistant ESCC cells. Moreover, MCU knockdown substantially decreased tumor growth, EMT, and angiogenesis in ESCC and cisplatin‑resistant ESCC xenograft mice. Collectively, targeting MCU may inhibit cancer progression and alleviate cisplatin resistance in ESCC.
Collapse
Affiliation(s)
- Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Xiaofei Wang
- Pathology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebie 063000
| | - Yafang Lai
- Department of Gastroenterology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region 017000
| | - Ying Huang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Hao Liu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Ruirui Hou
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Wan Lin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Xiaoxu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Xu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Bei Cho Chai
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Feixiong Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004
| |
Collapse
|
9
|
Wang W, Zhang Y, Wang Z, Liu X, Lu S, Hu X. A Native Drug-Free Macromolecular Therapeutic to Trigger Mutual Reinforcing of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction for Cancer Treatment. ACS NANO 2023. [PMID: 37257082 DOI: 10.1021/acsnano.3c03450] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Drug-free macromolecular therapeutics are promising alternatives to traditional drugs. Nanomedicines with multiple organelles targeting can potentially increase the efficacy. Herein, a drug-free macromolecular therapeutic was designed to formulate endoplasmic reticulum (ER) and mitochondria dual-targeting nanoparticles (EMT-NPs), which can synergistically elicit ER stress and mitochondrial dysfunction. In vitro experiments indicated that EMT-NPs could effectively enter ER and mitochondria at an approximate ratio of 2 to 3. Subsequently, EMT-NPs could upregulate ER stress-related protein expression (IRE1α, CHOP), boosting calcium ion (Ca2+) efflux and activating the caspase-12 signaling cascade in cancer cells. In addition, EMT-NPs induced direct oxidative stress in mitochondria; some mitochondrial-related apoptotic events such as decreased mitochondrial membrane potential (MMP), upregulation of Bax, cytochrome c release, and caspase-3 activation were also observed for tumor cells upon incubation with EMT-NPs. Furthermore, the leaked Ca2+ from ER could induce mitochondrial Ca2+ overloading to further augment cancer cell apoptosis. In brief, mitochondrial and ER signaling networks collaborated well to promote cancer cell death. Extended photoacoustic and fluorescence imaging served well for the treatment of in vivo patient-derived xenografts cancer model. This drug-free macromolecular strategy with multiple subcellular targeting provides a potential paradigm for cancer theranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Wenhui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongteng Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Zeshu Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xueping Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xianglong Hu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
10
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
Romito O, Guéguinou M, Raoul W, Champion O, Robert A, Trebak M, Goupille C, Potier-Cartereau M. Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 2022; 108:102673. [PMID: 36410063 DOI: 10.1016/j.ceca.2022.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.
Collapse
Affiliation(s)
- Olivier Romito
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Ophélie Champion
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Alison Robert
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Mohamed Trebak
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Caroline Goupille
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France; CHRU de Tours, hôpital Bretonneau, Tours, France.
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| |
Collapse
|
12
|
Wu NN, Bi Y, Ajoolabady A, You F, Sowers J, Wang Q, Ceylan AF, Zhang Y, Ren J. Parkin Insufficiency Accentuates High-Fat Diet-Induced Cardiac Remodeling and Contractile Dysfunction Through VDAC1-Mediated Mitochondrial Ca 2+ Overload. JACC Basic Transl Sci 2022; 7:779-796. [PMID: 36061337 PMCID: PMC9436824 DOI: 10.1016/j.jacbts.2022.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
Mitochondrial Ca2+ overload contributes to obesity cardiomyopathy, yet mechanisms that directly regulate it remain elusive. The authors investigated the role of Parkin on obesity-induced cardiac remodeling and dysfunction in human hearts and a mouse model of 24-week high-fat diet (HFD) feeding. Parkin knockout aggravated HFD-induced cardiac remodeling and dysfunction, mitochondrial Ca2+ overload, and apoptosis without affecting global metabolism, blood pressure, and aortic stiffness. Parkin deficiency unmasked HFD-induced decline in voltage-dependent anion channel (VDAC) type 1 degradation through the ubiquitin-proteasome system but not other VDAC isoforms or mitochondrial Ca2+ uniporter complex. These data suggest that Parkin-mediated proteolysis of VDAC type 1 is a promising therapeutic target for obesity cardiomyopathy.
Collapse
Key Words
- AMCM, adult murine cardiomyocyte
- BP, blood pressure
- Ca2+ overload
- HFD, high-fat diet
- LFD, low-fat diet
- LV, left ventricular
- MCU, mitochondrial Ca2+ uniporter
- PA, palmitic acid
- Parkin
- ROS, reactive oxygen species
- TR90, time to 90% relengthening
- VDAC, voltage-dependent anion channel
- VDAC1
- WT, wild-type
- heart
- high-fat diet
- mPTP, mitochondrial permeability transition pore
- mitochondria
Collapse
Affiliation(s)
- Ne N. Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amir Ajoolabady
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei You
- Department of Cardiology, Xi’an Central Hospital, Xi’an, China
| | - James Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, Missouri, USA
| | - Qiurong Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Asli F. Ceylan
- Faculty of Medicine, Department of Medical Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, Turkey
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z, Chong KY, Yang K, Morrison MJ, Kim D, Kim J, Zhang W, Kril LM, Watt DS, Liu C, Yang-Hartwich Y. A Benzenesulfonamide-Based Mitochondrial Uncoupler Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Epithelial Ovarian Cancer. Mol Cancer Ther 2021; 20:2398-2409. [PMID: 34625503 PMCID: PMC8643344 DOI: 10.1158/1535-7163.mct-21-0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and requires new therapeutic strategies to improve clinical outcomes. EOC metastasizes in the abdominal cavity through dissemination in the peritoneal fluid and ascites, efficiently adapt to the nutrient-deprived microenvironment, and resist current chemotherapeutic agents. Accumulating evidence suggests that mitochondrial oxidative phosphorylation is critical for the adaptation of EOC cells to this otherwise hostile microenvironment. Although chemical mitochondrial uncouplers can impair mitochondrial functions and thereby target multiple, essential pathways for cancer cell proliferation, traditional mitochondria uncouplers often cause toxicity that precludes their clinical application. In this study, we demonstrated that a mitochondrial uncoupler, specifically 2,5-dichloro-N-(4-nitronaphthalen-1-yl)benzenesulfonamide, hereinafter named Y3, was an antineoplastic agent in ovarian cancer models. Y3 treatment activated AMP-activated protein kinase and resulted in the activation of endoplasmic reticulum stress sensors as well as growth inhibition and apoptosis in ovarian cancer cells in vitro Y3 was well tolerated in vivo and effectively suppressed tumor progression in three mouse models of EOC, and Y3 also induced immunogenic cell death of cancer cells that involved the release of damage-associated molecular patterns and the activation of antitumor adaptive immune responses. These findings suggest that mitochondrial uncouplers hold promise in developing new anticancer therapies that delay tumor progression and protect patients with ovarian cancer against relapse.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wonmin Park
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Tobias M P Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Zhiping Ge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kay Y Chong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Madeline J Morrison
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Liliia M Kril
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky.
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
15
|
Astesana V, Faris P, Ferrari B, Siciliani S, Lim D, Biggiogera M, De Pascali SA, Fanizzi FP, Roda E, Moccia F, Bottone MG. [Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cell Mol Neurobiol 2021; 41:563-587. [PMID: 32430779 PMCID: PMC11448674 DOI: 10.1007/s10571-020-00873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.
Collapse
Affiliation(s)
- Valentina Astesana
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, 27100, Pavia, Italy
- Department of Biology, Cihan University-Erbil, Erbil, 44001, Iraq
| | - Beatrice Ferrari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Sandra Angelica De Pascali
- General and Inorganic Chemistry Laboratory, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Francesco Paolo Fanizzi
- General and Inorganic Chemistry Laboratory, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Elisa Roda
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, ICS Maugeri Spa, IRCCS Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, 27100, Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology ''L. Spallanzani'', University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
16
|
Cancer cell death strategies by targeting Bcl-2's BH4 domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118983. [PMID: 33549704 DOI: 10.1016/j.bbamcr.2021.118983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The Bcl-2-family proteins have long been known for their role as key regulators of apoptosis. Overexpression of various members of the family is associated with oncogenesis. Its founding member, anti-apoptotic Bcl-2 regulates cell death at different levels, whereby Bcl-2 emerged as a major drug target to eradicate cancers through cell death. This resulted in the development of venetoclax, a Bcl-2 antagonist that acts as a BH3 mimetic. Venetoclax already entered the clinic to treat relapse chronic lymphocytic leukemia patients. Here, we discuss the role of Bcl-2 as a decision-maker in cell death with focus on the recent advances in anti-cancer therapeutics that target the BH4 domain of Bcl-2, thereby interfering with non-canonical functions of Bcl-2 in Ca2+-signaling modulation. In particular, we critically discuss previously developed tools, including the peptide BIRD-2 (Bcl-2/IP3R-disrupter-2) and the small molecule BDA-366. In addition, we present a preliminary analysis of two recently identified molecules that emerged from a molecular modeling approach to target Bcl-2's BH4 domain, which however failed to induce cell death in two Bcl-2-dependent diffuse large B-cell lymphoma cell models. Overall, antagonizing the non-canonical functions of Bcl-2 by interfering with its BH4-domain biology holds promise to elicit cell death in cancer, though improved tools and on-target antagonizing small molecules remain necessary and ought to be designed.
Collapse
|
17
|
Hodeify R, Siddiqui SS, Matar R, Vazhappilly CG, Merheb M, Al Zouabi H, Marton J. Modulation of calcium-binding proteins expression and cisplatin chemosensitivity by calcium chelation in human breast cancer MCF-7 cells. Heliyon 2021; 7:e06041. [PMID: 33532651 PMCID: PMC7829211 DOI: 10.1016/j.heliyon.2021.e06041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (CDDP) is currently one of the most effective FDA-approved treatments for breast cancer. Previous studies have shown that CDDP-induced cell death in human breast cancer (MCF-7) cells is associated with disruption of calcium homeostasis. However, whether the sensitivity of breast cancer cells to cisplatin is associated with dysregulation of the expression of calcium-binding proteins (CaBPs) remains unknown. In this study, we evaluated the effect of the intracellular calcium chelator (BAPTA-AM) on viability of MCF-7 cells in the presence of toxic and sub-toxic doses of cisplatin. Furthermore, this study assessed the expression of CaBPs, calmodulin, S100A8, and S100A14 in MCF-7 cells treated with cisplatin. Cell viability was determined using MTT-based in vitro toxicity assay. Intracellular calcium imaging was done using Fluo-4 AM, a cell-permeant fluorescent calcium indicator. Expression of CaBPs was tested using real-time quantitative PCR. Exposure of cells to increasing amounts of CDDP correlated with increasing fluorescence of the intracellular calcium indicator, Fluo-4 AM. Conversely, treating cells with cisplatin significantly decreased mRNA levels of calmodulin, S100A8, and S100A14. Treatment of the cells with calcium chelator, BAPTA-AM, significantly enhanced the cytotoxic effects of sub-toxic dose of cisplatin. Our results indicated a statistically significant negative correlation between calmodulin, S100A8, and S100A14 expression and sensitivity of breast cancer cells to a sub-toxic dose of cisplatin. We propose that modulating the activity of calcium-binding proteins, calmodulin, S100A8, and S100A14, could be used to increase cisplatin efficacy, lowering its treatment dosage while maintaining its chemotherapeutic value.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
18
|
Gil-Hernández A, Arroyo-Campuzano M, Simoni-Nieves A, Zazueta C, Gomez-Quiroz LE, Silva-Palacios A. Relevance of Membrane Contact Sites in Cancer Progression. Front Cell Dev Biol 2021; 8:622215. [PMID: 33511135 PMCID: PMC7835521 DOI: 10.3389/fcell.2020.622215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.
Collapse
Affiliation(s)
- Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
19
|
Caravia L, Staicu CE, Radu BM, Condrat CE, Crețoiu D, Bacalbașa N, Suciu N, Crețoiu SM, Voinea SC. Altered Organelle Calcium Transport in Ovarian Physiology and Cancer. Cancers (Basel) 2020; 12:2232. [PMID: 32785177 PMCID: PMC7464720 DOI: 10.3390/cancers12082232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium levels have a huge impact on the physiology of the female reproductive system, in particular, of the ovaries. Cytosolic calcium levels are influenced by regulatory proteins (i.e., ion channels and pumps) localized in the plasmalemma and/or in the endomembranes of membrane-bound organelles. Imbalances between plasma membrane and organelle-based mechanisms for calcium regulation in different ovarian cell subtypes are contributing to ovarian pathologies, including ovarian cancer. In this review, we focused our attention on altered calcium transport and its role as a contributor to tumor progression in ovarian cancer. The most important proteins described as contributing to ovarian cancer progression are inositol trisphosphate receptors, ryanodine receptors, transient receptor potential channels, calcium ATPases, hormone receptors, G-protein-coupled receptors, and/or mitochondrial calcium uniporters. The involvement of mitochondrial and/or endoplasmic reticulum calcium imbalance in the development of resistance to chemotherapeutic drugs in ovarian cancer is also discussed, since Ca2+ channels and/or pumps are nowadays regarded as potential therapeutic targets and are even correlated with prognosis.
Collapse
Affiliation(s)
- Laura Caravia
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
| | - Cristina Elena Staicu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (C.E.S.); (B.M.R.)
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 77125 Măgurele, Romania
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (C.E.S.); (B.M.R.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independenţei, 050095 Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
| | - Dragoș Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
| | - Nicolae Bacalbașa
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (N.S.)
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Crețoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.C.); (D.C.)
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
20
|
Magalhães Rebelo AP, Dal Bello F, Knedlik T, Kaar N, Volpin F, Shin SH, Giacomello M. Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites. Cells 2020; 9:cells9071637. [PMID: 32646031 PMCID: PMC7408517 DOI: 10.3390/cells9071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Federica Dal Bello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Natasha Kaar
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Fabio Volpin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-827-6300
| |
Collapse
|
21
|
Clinically Relevant Chemotherapeutics Have the Ability to Induce Immunogenic Cell Death in Non-Small Cell Lung Cancer. Cells 2020; 9:cells9061474. [PMID: 32560232 PMCID: PMC7349161 DOI: 10.3390/cells9061474] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of immunogenic cell death (ICD) has emerged as a cornerstone of therapy-induced anti-tumor immunity. To this end, the following chemotherapies were evaluated for their ability to induce ICD in non-small cell lung cancer (NSCLC) cell lines: docetaxel, carboplatin, cisplatin, oxaliplatin and mafosfamide. The ICD hallmarks ATP, ecto-calreticulin, HMGB1, phagocytosis and maturation status of dendritic cells (DCs) were assessed in vitro. Furthermore, an in vivo vaccination assay on C57BL/6J mice was performed to validate our in vitro results. Docetaxel and the combination of docetaxel with carboplatin or cisplatin demonstrated the highest levels of ATP, ecto-calreticulin and HMGB1 in three out of four NSCLC cell lines. In addition, these regimens resulted in phagocytosis of treated NSCLC cells and maturation of DCs. Along similar lines, all mice vaccinated with NSCLC cells treated with docetaxel and cisplatin remained tumor-free after challenge. However, this was not the case for docetaxel, despite its induction of the ICD-related molecules in vitro, as it failed to reject tumor growth at the challenge site in 60% of the mice. Moreover, our in vitro and in vivo data show the inability of oxaliplatin to induce ICD in NSCLC cells. Overall with this study we demonstrate that clinically relevant chemotherapeutic regimens in NSCLC patients have the ability to induce ICD.
Collapse
|
22
|
Zhang P, Zhao S, Lu X, Shi Z, Liu H, Zhu B. Metformin enhances the sensitivity of colorectal cancer cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway. Gene 2020; 745:144623. [PMID: 32222530 DOI: 10.1016/j.gene.2020.144623] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Metformin and cisplatin have been widely studied as antitumor agents. However, the effect of metformin combined with cisplatin has not been investigated in colorectal cancer (CRC) cells. This study was aimed to explore the effect of metformin or/and cisplatin on cell viability, apoptosis, and the related signaling pathways in CRC SW480 and SW620 cells. We found that metformin or cisplatin inhibited cell viability of SW480 and SW620 cells in a concentration- and time-dependent manner. Furthermore, metformin combined with cisplatin obviously inhibited cell viability, decreased colony formation, induced apoptosis, mediated cleavage of caspase-9, caspase-3 and PARP, activated mitochondrial membrane potential, downregulated Mcl-1 and Bcl-2 expression, upregulated Bak and Bax expression, and increased reactive oxygen species (ROS) production, compared to the individual agent in SW480 and SW620 cells, which were attenuated by N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, NAC could recover the downregulation of p-PI3K and p-Akt treated with combination of metformin and cisplatin, which subsequently activated the PI3K/Akt signaling pathway. Taken together, our results demonstrated that metformin enhanced the sensitivity of CRC cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Xingyue Lu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Zongfen Shi
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China.
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
23
|
Liang W, Liu J, Wu H, Qiao X, Lu X, Liu Y, Zhu H, Ma L. Artemisinin induced reversal of EMT affects the molecular biological activity of ovarian cancer SKOV3 cell lines. Oncol Lett 2019; 18:3407-3414. [PMID: 31452821 PMCID: PMC6676620 DOI: 10.3892/ol.2019.10608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that celecoxib and artemisinin could mediate ovarian cancer development and metastasis. The present study investigated the effects of celecoxib and artemisinin on the epithelial-mesenchymal transition (EMT) characteristics of the human ovarian epithelial adenocarcinoma cell line, SKOV3. SKOV3 cells were incubated with celecoxib (10 µM) for different periods of time to establish an EMT cell model. Subsequently, artemisinin (20, 40 and 80 µM) was used to establish a cell model of the reverse process, mesenchymal-epithelial transition (MET). Cell proliferation, metastasis, invasiveness and the expression of vimentin and E-cadherin were measured using Cell Counting Kit-8, wound healing assay, western blotting, flow cytometry and immunofluorescence. The EMT cell model exhibited enhanced proliferative capacity, increased migration, increased vimentin expression and decreased E-cadherin expression. By contrast, artemisinin decreased proliferative capacity, decreased migration, decreased vimentin expression and increased E-cadherin expression of EMT model cells, indicating that MET was induced. These results demonstrated that artemisinin may reverse celecoxib-induced epithelial-mesenchymal transition in SKOV3 cells.
Collapse
Affiliation(s)
- Weichen Liang
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jian Liu
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Huazhang Wu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xuxu Qiao
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiang Lu
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yonghong Liu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong Zhu
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Ling Ma
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
24
|
Gentisyl Alcohol Inhibits Proliferation and Induces Apoptosis via Mitochondrial Dysfunction and Regulation of MAPK and PI3K/AKT Pathways in Epithelial Ovarian Cancer Cells. Mar Drugs 2019; 17:md17060331. [PMID: 31163640 PMCID: PMC6627157 DOI: 10.3390/md17060331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the prevalent gynecological cancers occurring in women. In particular, the efficiency of standard therapeutic methods decreases when recurrence and chemoresistance ensue. To assist standard anti-cancer agents in the cure of ovarian cancer, development and application of new compounds such as small molecules or natural products are required. Gentisyl alcohol is one of the secondary metabolites that can be obtained by purification from bacteria or fungi and is known to have antibacterial, antifungal, antiviral, and anti-cancer effects. In the present study, we verified the effect of gentisyl alcohol derived from marine Arthrinium sp. on suppressing proliferation and inducing apoptosis via DNA fragmentation in human ovarian cancers cells (ES2 and OV90 cells). We also confirmed that there was an accumulation of sub-G1 cells and a loss of mitochondrial membrane potential with calcium dysregulation in gentisyl alcohol-treated ovarian cancer cells. Moreover, gentisyl alcohol up-regulated signal transduction of MAPK and PI3K/AKT pathways. Collectively, our results demonstrated the possibility of gentisyl alcohol as a novel therapeutic agent for human ovarian cancer.
Collapse
|
25
|
Sea Cucumber ( Stichopus japonicas) F2 Enhanced TRAIL-Induced Apoptosis via XIAP Ubiquitination and ER Stress in Colorectal Cancer Cells. Nutrients 2019; 11:nu11051061. [PMID: 31083595 PMCID: PMC6567290 DOI: 10.3390/nu11051061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/16/2023] Open
Abstract
Natural products have shown great promise in sensitizing cells to TNF-related apoptosis-inducing ligand (TRAIL) therapy. Sea cucumber (SC) extracts possess antitumor activity, and hence their potential to sensitize colorectal cancer (CRC) cells to TRAIL therapy was evaluated. This study used Western blotting to evaluate the combination effects of SC and TRAIL in CRC, and determined the molecular mechanism underlying these effects. SC fractions and TRAIL alone did not affect apoptosis; however, combined treatment dramatically induced the apoptosis of CRC cells, but not of normal colon cells. Combined treatment induced the expression of apoptotic proteins (poly (ADP-ribose) polymerase (PARP), caspase 3, and 8), and this effect was markedly inhibited by the ubiquitination of X-linked inhibitor of apoptosis protein (XIAP). SC did not affect the mRNA levels, but it increased proteasomal degradation and ubiquitination of the XIAP protein. Furthermore, SC induced reactive oxygen species (ROS) production, thereby activating c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress-related apoptotic pathways in CRC. Altogether, our results demonstrate that the SC F2 fraction may sensitize CRC cells to TRAIL-induced apoptosis through XIAP ubiquitination and ER stress.
Collapse
|
26
|
Jin Y, Wei J, Xu S, Guan F, Yin L, Zhu H. miR‑210‑3p regulates cell growth and affects cisplatin sensitivity in human ovarian cancer cells via targeting E2F3. Mol Med Rep 2019; 19:4946-4954. [PMID: 30957179 DOI: 10.3892/mmr.2019.10129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/19/2019] [Indexed: 11/06/2022] Open
Abstract
The potential role of microRNA (miR)‑210‑3p in carcinogenesis and the cisplatin sensitivity of ovarian cancer were evaluated in the present study. The relative expression levels of miR‑210‑3p in cisplatin‑sensitive SKOV‑3 cells and cisplatin‑resistant SKOV‑3/DDP cells were determined using reverse transcription‑quantitative polymerase chain reaction analysis. miR‑210‑3p mimics and inhibitors were transfected into SKOV‑3/DDP cells. Cell Counting Kit‑8, scratch and Transwell invasion assays and flow cytometry were conducted to evaluate the role of miR‑210‑3p in ovarian cancer cells. A luciferase reporter assay was used to verify the association between miR‑210‑3p and E2F transcription factor 3 (E2F3). Drug sensitivity was evaluated by treating the cells with cisplatin. The expression level of miR‑210‑3p was lower in SKOV‑3/DDP cells than in SKOV‑3 cells. Compared with the untransfected control, SKOV‑3 cells transfected with miR‑210‑3p exhibited a significantly higher survival rate. The overexpression of miR‑210‑3p inhibited SKOV‑3/DDP cell proliferation, migration and invasion, and promoted cell apoptosis. By contrast, the inhibition of miR‑210‑3p promoted cell migration and invasion. The luciferase reporter assay confirmed that E2F3 was a direct target gene of miR‑210‑3p. Cisplatin treatment resulted in a sharp decrease in the survival rate of SKOV‑3/DDP cells transfected with the miR‑210‑3p mimics. The decrease in cell survival rate caused by the overexpression of miR‑210‑3p was rescued by the overexpression of E2F3 in SKOV‑3/DDP cells. Taken together, these results suggest that miR‑210‑3p may act as a tumor suppressor in ovarian cancer cells and affect the sensitivity of cells to cisplatin by directly targeting E2F3. This indicates its potential use as a therapeutic target for improving drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Wei
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shaoting Xu
- Department of Gynecology, Shulan Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Fang Guan
- Department of Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lijun Yin
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haibin Zhu
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
27
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|
28
|
Xie Q, Xu Y, Gao W, Zhang Y, Su J, Liu Y, Guo Y, Dou M, Hu K, Sun L. TAT‑fused IP3R‑derived peptide enhances cisplatin sensitivity of ovarian cancer cells by increasing ER Ca2+ release. Int J Mol Med 2017; 41:809-817. [PMID: 29207009 PMCID: PMC5752180 DOI: 10.3892/ijmm.2017.3260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer is the most common gynecological malignancy. At present, cisplatin is used to treat ovarian cancer; however, the development of cisplatin resistance during therapy is a common obstacle to achieving favorable outcomes. Recently, the B‑cell lymphoma 2 (Bcl‑2) BH4 domain has been reported to mediate the prosurvival activity of Bcl‑2 in cancer; however, the involvement of the BH4 domain of Bcl‑2 in the cisplatin resistance of ovarian carcinoma cells is not entirely clear. In this study, we observed the cytoplasmic and mitochondrial levels of Ca2+ by confocal laser microscopy. We also detected cell apoptosis using western blot analysis and flow cytometry. The present study demonstrated that TAT‑fused inositol 1,4,5‑trisphosphate receptor‑derived peptide (TAT‑IDPS), which targets the BH4 domain of Bcl‑2, increased cisplatin‑induced Ca2+ flux from the endoplasmic reticulum (ER) into the cytosol and mitochondria. In addition, TAT‑IDPS increased cisplatin‑induced expression of mitochondrial apoptosis‑associated proteins and ER stress‑associated proteins. These results indicated that TAT‑IDPS may enhance the cytotoxicity of cisplatin toward ovarian carcinoma cells by increasing ER Ca2+ release.
Collapse
Affiliation(s)
- Qi Xie
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Weinan Gao
- Department of Clinical Medicine, College of Clinical Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yong Zhang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuting Guo
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Minghan Dou
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
Zhong JT, Yu J, Wang HJ, Shi Y, Zhao TS, He BX, Qiao B, Feng ZW. Effects of endoplasmic reticulum stress on the autophagy, apoptosis, and chemotherapy resistance of human breast cancer cells by regulating the PI3K/AKT/mTOR signaling pathway. Tumour Biol 2017; 39:1010428317697562. [PMID: 28459209 DOI: 10.1177/1010428317697562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jia-Teng Zhong
- 1 Department of Pathology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Jian Yu
- 2 Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, P.R. China
| | - Hai-Jun Wang
- 1 Department of Pathology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Yu Shi
- 3 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, P.R. China
| | - Tie-Suo Zhao
- 4 Department of Immunology, Xinxiang Medical University, Xinxiang, P.R. China
| | - Bao-Xia He
- 5 Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Bin Qiao
- 5 Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Zhi-Wei Feng
- 3 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, P.R. China
| |
Collapse
|
30
|
Norris JL, Farrow MA, Gutierrez DB, Palmer LD, Muszynski N, Sherrod SD, Pino JC, Allen JL, Spraggins JM, Lubbock ALR, Jordan A, Burns W, Poland JC, Romer C, Manier ML, Nei YW, Prentice BM, Rose KL, Hill S, Van de Plas R, Tsui T, Braman NM, Keller MR, Rutherford SA, Lobdell N, Lopez CF, Lacy DB, McLean JA, Wikswo JP, Skaar EP, Caprioli RM. Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular Responses and Reveals Global Drug Mechanisms of Action. J Proteome Res 2017; 16:1364-1375. [PMID: 28088864 DOI: 10.1021/acs.jproteome.6b01004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Stacy D Sherrod
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | - James C Poland
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology , Delft 2628 CD, The Netherlands
| | | | - Nathaniel M Braman
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | - M Ray Keller
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | - Carlos F Lopez
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | | | - John A McLean
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - John P Wikswo
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | | | | |
Collapse
|
31
|
Al-Bahlani SM, Al-Bulushi KH, Al-Alawi ZM, Al-Abri NY, Al-Hadidi ZR, Al-Rawahi SS. Cisplatin Induces Apoptosis Through the Endoplasmic Reticulum-mediated, Calpain 1 Pathway in Triple-negative Breast Cancer Cells. Clin Breast Cancer 2016; 17:e103-e112. [PMID: 28089626 DOI: 10.1016/j.clbc.2016.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type that can be treated using platinum-based chemotherapy such as cisplatin (cis-diamminedichloroplatinum II). Although the calpain protein is essential in many cellular processes, including apoptosis, cell signaling, and proliferation, its role in cisplatin-induced apoptosis in TNBC cells is not fully understood. The present study assessed calpain 1-dependent, cisplatin-induced apoptosis in TNBC cells. MATERIALS AND METHODS MDA-MB231 cells were treated with different concentrations of cisplatin (0, 20, and 40 μM). The cisplatin deposit and its effect on endoplasmic reticulum and, subsequently, calcium release were detected using transmission electron microscopy and Von Koss staining, respectively. Calpain 1 messenger RNA, protein content, and apoptosis was measured using reverse transcriptase-polymerase chain reaction, Western blotting, and Hoechst stain, respectively. In addition, calpain modulation, by either activation or inhibition, and its effect on cisplatin-induced apoptosis were assessed. RESULTS Our results showed that cisplatin induced endoplasmic reticulum stress, indicated by an increase in calcium staining and protein expression of glucose-regulated protein 78 and calmodulin, followed by cleavage of α-fodrin and caspase-12 and, eventually, apoptosis. Cyclopiazonic acid showed a similar effect and enhanced the sensitivity of these cells to cisplatin treatment. In contrast, calpain 1 inhibition by both specific small interfering RNA and exogenous inhibitor (calpeptin) attenuated cisplatin-induced apoptosis in these cells. CONCLUSION Altogether, these findings suggest, for the first time, that calpain 1 activation by endoplasmic reticulum plays an essential role in sensitizing TNBC cells to cisplatin-induced apoptosis. This finding will allow exploration of new insights for the treatment of TNBC by overcoming its resistance to apoptosis.
Collapse
Affiliation(s)
- Shadia M Al-Bahlani
- Department of Allied Health Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman.
| | - Khadija H Al-Bulushi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | - Zaina M Al-Alawi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | - Nadia Y Al-Abri
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | - Zuweina R Al-Hadidi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | - Shaikha S Al-Rawahi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| |
Collapse
|
32
|
Increased intracellular Ca 2+ decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells. Biomed Pharmacother 2016; 86:8-15. [PMID: 27936394 DOI: 10.1016/j.biopha.2016.11.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Previous studies have reported that intracellular Ca2+ signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca2+ and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDPS) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.
Collapse
|
33
|
Urzúa U, Ampuero S, Roby KF, Owens GA, Munroe DJ. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells. BMC Genomics 2016; 17:728. [PMID: 27801298 PMCID: PMC5088517 DOI: 10.1186/s12864-016-3068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE). Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE) cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. Results At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05) comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1), Birc5 (Survivin), Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Conclusion Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes suggests altered control of nuclear RNA maturation, features recently linked to impaired DNA damage response leading to genome instability. These results, combined with cytogenetic analysis by other authors in this model, suggest that transcriptional profile at passage 14 might induce cytokinesis failure by which tetraploid cells approach a near-tetraploid stage containing primary chromosome aberrations that initiate the tumorigenic drive. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3068-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulises Urzúa
- Laboratorio de Genómica Aplicada, Programa de Biología Celular y Molecular, ICBM-Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | - Sandra Ampuero
- Programa de Virología, ICBM-Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Katherine F Roby
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Garrison A Owens
- Laboratory of Molecular Technology, NCI-SAIC Frederick, Frederick, MD, USA.,Current address: Life Sciences Solutions Group, ThermoFisher Scientific, 5792 Van Allen Way, Carlsbad, CA, 92008, USA
| | - David J Munroe
- Laboratory of Molecular Technology, NCI-SAIC Frederick, Frederick, MD, USA.,Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
34
|
Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y, Sun L. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 2016; 49:2507-2519. [DOI: 10.3892/ijo.2016.3733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022] Open
|
35
|
Zanotto-Filho A, Masamsetti VP, Loranc E, Tonapi SS, Gorthi A, Bernard X, Gonçalves RM, Moreira JCF, Chen Y, Bishop AJR. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis. Mol Cancer Ther 2016; 15:3000-3014. [PMID: 27638861 DOI: 10.1158/1535-7163.mct-16-0271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000-14. ©2016 AACR.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V Pragathi Masamsetti
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Eva Loranc
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Xavier Bernard
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Rosângela Mayer Gonçalves
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José C F Moreira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas. .,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
36
|
Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol 2016; 37:9709-19. [PMID: 26803514 DOI: 10.1007/s13277-016-4878-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/15/2016] [Indexed: 01/17/2023] Open
Abstract
Many reports have shown the anticancer effects of iron deficient on cancer cells, but the effects of iron-chelators on gastric cancer have not been clearly elucidated. Recently, we reported that iron chelators induced an antiproliferative effect in human malignant lymphoma and myeloid leukemia cells. In the present study, we investigated the antitumor activity of these two iron-chelating agents, deferoxamine (DFO) and deferasirox (DFX), with gastric cancer cell lines, and their apoptosis-inducing effects as the potential mechanism. We found that iron chelators displayed significant antiproliferative activity in human gastric cancer cell lines, which may be attributed to their induction of G1 phase arrest and apoptosis. We also found that iron chelators induced reactive oxygen species (ROS) production, resulting in the activation of both c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress apoptotic pathways in gastric cancer cells. Taken together, our data suggest that iron chelators induced apoptosis in gastric cancer, involving ROS formation ER stress and JNK activation.
Collapse
|