1
|
Turyova E, Mikolajcik P, Grendar M, Kudelova E, Holubekova V, Kalman M, Marcinek J, Hrnciar M, Kovac M, Miklusica J, Laca L, Lasabova Z. Expression of OCT4 isoforms is reduced in primary colorectal cancer. Front Oncol 2023; 13:1166835. [PMID: 37409260 PMCID: PMC10319064 DOI: 10.3389/fonc.2023.1166835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/02/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the most common types of cancer worldwide. The carcinogenesis of CRC is indeed complex, and there are many different mechanisms and pathways that contribute to the development of malignancy and the progression from primary to metastatic tumors. The OCT4A, encoded by the POU5F1 gene, is a transcription factor responsible for the phenotype of stem cells, maintaining pluripotency and regulation of differentiation. The POU5F1 gene is made up of five exons that can create numerous isoforms through alternative promoter or alternative splicing. In addition to OCT4A, other isoforms called OCT4B are also translated into protein; however, their role in cells has been unclear. The aim of our work was to investigate the expression patterns of OCT4 isoforms in primary and metastatic CRC, providing us with useful information about their role in the development and progression of CRC. Methods Surgical specimens from a total of 78 patients were collected and isolated from primary tumors (n = 47) and metastases (n = 31). The relative gene expression of OCT4 isoforms was investigated using the RT-qPCR method together with the TaqMan probes for particular OCT4 isoforms. Results Our results suggest significantly downregulated expression of the OCT4A and OCT4Bs isoforms in both primary (p = 0.0002 and p < 0.0001, respectively) and metastatic tumors (p = 0.0006 and p = 0.00051, respectively) when compared with the control samples. We also observed a correlation between reduced expression of all OCT4 isoforms and both primary and left-sided tumors (p = 0.001 and p = 0.030, respectively). On the other hand, the expression of all OCT4 isoforms was significantly upregulated in metastases compared with primary tumors (p < 0.0001). Discussion Unlike previous reports, we found out that the expression of OCT4A, OCT4Bs, and all OCT4 isoforms was significantly reduced in primary tumors and metastases compared with control samples. On the other hand, we supposed that the expression rate of all OCT4 isoforms may be related to the cancer type and side, as well as to liver metastases. However, further studies are required to investigate the detailed expression patterns and significance of individual OCT4 isoforms in carcinogenesis.
Collapse
Affiliation(s)
- Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Matej Hrnciar
- Department of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Michal Kovac
- Department of Informatics, Information Systems and Software Engineering, Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Comenius University Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Naseri M, Ranaei Pirmardan E, Mowla SJ, Shamsara M, Movahedin M, Nouri S, Nayernia K, Kabir Salmani M, Shahali M. Ectopic expression of OCT4B1 Decreases Fertility Rate and Changes Sperm Parameters in Transgenic Mice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3019. [PMID: 36381279 PMCID: PMC9618016 DOI: 10.30498/ijb.2022.278266.3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND The octamer-binding transcription factor-4 (OCT4) is known as an established important regulator of pluripotency, as well as a genetic "master switch" in the self-renewal of embryonic stem and germ cells. OCT4B1, one of the three spliced variants of human OCT4, plays crucial roles in the regulation of pluripotency and stemness. OBJECTIVES The present study developed a transgenic mouse model containing an OCT4B1-expressing construct under the transcriptional direction of mouse mammary tumor virus promoter (pMMTV) to evaluate the role of OCT4B1 in the function of male germ cells in terms of fertility potential. Additionally, the effect of ectopic OCT4B1 overexpression on endogenous OCT4 expression was examined in mouse embryonic stem cells (mESCs). MATERIAL AND METHODS The pMMTV-OCT4B1cDNA construct was injected into the pronuclei of 0.5-day NMRI embryos. Transgenic mice were identified based on the PCR analysis of tail DNA. Further, Diff-Quik staining was applied to assess sperm morphology, while the other sperm parameters were analyzed through a conventional light microscopic evaluation according to World Health Organization (WHO) criteria. The fertility rate was scored by using in vitro frtilization (IVF) method. Furthermore, mESCs was electroporated with the OCT4B1cDNA-containing constructs, followed by analyzing through employing semi-quantitative RT-PCR and western blotting. RESULTS The results demonstrated the changes in sperm morphology, as well as a statistically significant decrease in the other sperm parameters (count, viability, and motility) and fertility rate (p<0.05) in the transgenic mice compared with the control group. The assessment of the cause of the embryonic stem cell (ESC) death following transfection revealed a significant reduction in the endogenous OCT4 expression at both mRNA and protein levels in the transfected mESCs compared to the control ones. CONCLUSION In general, the in vivo results suggested a potential role of OCT4B1 in the spermatogenesis process. These results represented that the overexpression of OCT4B1 may induce its role in spermatogenesis and fertility rate by interfering endogenous OCT4 expression. However, further studies are required to clarify the mechanisms underlying OCT4B1 function.
Collapse
Affiliation(s)
- Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shamsara
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mansoreh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeideh Nouri
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Karim Nayernia
- Institute of Molecular Medicine & Cell Therapy (mmct), Düsseldorf, Germany
- HEALI, Personalizing Medicine, Cambridge, UK
| | - Maryam Kabir Salmani
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Maryam Shahali
- Department of Production, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
4
|
Couto de Carvalho LA, Tosta Dos Santos SL, Sacramento LV, de Almeida VR, de Aquino Xavier FC, Dos Santos JN, Gomes Henriques Leitão ÁC. Mesenchymal stem cell markers in periodontal tissues and periapical lesions. Acta Histochem 2020; 122:151636. [PMID: 33132168 DOI: 10.1016/j.acthis.2020.151636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Nunes Dos Santos
- Postgraduation Program in Dentistry and Health, Federal University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
5
|
Liu HL, Tang HT, Yang HL, Deng TT, Xu YP, Xu SQ, Peng L, Wang Z, Fang Q, Kuang XY, Li QS. Oct4 Regulates the Transition of Cancer Stem-Like Cells to Tumor Endothelial-Like Cells in Human Liver Cancer. Front Cell Dev Biol 2020; 8:563316. [PMID: 33102474 PMCID: PMC7554317 DOI: 10.3389/fcell.2020.563316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) has been recently implicated as a proangiogenic regulator in several induced pluripotent stem cells (iPSCs), however, its role in cancer stem-like cells (CSCs) remain unclear. We report here that Oct4 participates in tumor vasculogenesis in liver CSCs (LCSCs). We identify that LCSCs possess the potential of endothelial trans-differentiation under endothelial induction, present endothelial specific markers and their functions in vitro, and participate in neovasculogenesis in vivo. The knockdown of the Oct4A by short hairpin RNA (shRNA) in LCSCs represses endothelial trans-differentiation potential, but induces endothelial lineage-restricted differentiation, the latter is positively regulated by Oct4B1. Furthermore, Oct4 regulates vasculogenesis in LCSCs may be via the AKT-NF-κB-p65 signaling pathway. This work reveals Oct4, which is a crucial regulator, plays a critical role in tumor endothelial-like cells transition of LCSCs through Oct4A and Oct4B1 by different ways. The simultaneous inhibition of both the isoforms of Oct4 is hence expected to help regress neovascularization derived from CSCs. Our findings may provide insights to the possible new mechanisms of tumor vasculogenesis for primary liver cancer.
Collapse
Affiliation(s)
- Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hong-Ting Tang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Han-Lin Yang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting-Ting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ya-Ping Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Shi-Qing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Yan Kuang
- Institute of Clinical Pathology, Zunyi Medical College, Zunyi, China
| | - Qin-Shan Li
- Department of Obstetrics and Gynecology, Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Mashayekhi P, Noruzinia M, Khodaverdi S. Deregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance. IRANIAN BIOMEDICAL JOURNAL 2020; 24:333-9. [PMID: 32429647 PMCID: PMC7392139 DOI: 10.29252/ibj.24.5.328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these cells. Methods: MSCs were isolated from three endometriotic and three normal endometrium samples and characterized and analyzed for the expressions of OCT4A, OCT4B, OCT4B1, SOX2, and NANOG using the qRT-PCR. Results: The expressions of OCT4 transcripts and NANOG increased significantly in endometriotic MSCs, whereas SOX2 expression did not show any significant difference. Conclusion: Our findings provide further evidence for confirming the self-renewal/ differentiation imbalance in endometriotic MSCs, as the main underlying cause of endometriosis development. This study also paves the way for further research on endometriosis treatment by focusing on endometriotic stem cells.
Collapse
Affiliation(s)
- Parisa Mashayekhi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Noruzinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
7
|
Zhou JM, Jiang H, Yuan T, Zhou GX, Li XB, Wen KM. High hnRNP AB expression is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2019; 18:6459-6468. [PMID: 31819776 PMCID: PMC6896405 DOI: 10.3892/ol.2019.11034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Heterogeneous ribonucleoprotein AB (hnRNP AB) is a member of the heterogeneous nuclear ribonucleoprotein family, which serves important functions in gene expression and signal transduction. However, the expression and clinicopathological significance of hnRNP AB in colorectal cancer (CRC) remain to be elucidated. To investigate the expression and clinical significance of hnRNP AB in CRC, hnRNP AB expression levels were analysed in two independent cohorts of patients with CRC. The results of reverse transcription-quantitative PCR, immunohistochemistry and western blot analysis demonstrated that hnRNP AB was upregulated in CRC tissues compared with the corresponding adjacent normal tissues. Immunohistochemical analyses indicated that a high expression of hnRNP AB was significantly associated with preoperative carcinoembryonic antigen (CEA; P<0.001) and carbohydrate antigen 19-9 (P=0.014) levels, tumour size (P=0.022) and infiltration (P=0.026), lymph node metastasis (P<0.001) and Tumour-Node-Metastasis stage (P<0.001). Univariate and multivariate Cox survival analyses revealed that hnRNP AB expression and preoperative CEA levels were significant independent factors affecting overall survival in patients with CRC (P<0.05). According to the Kaplan-Meier model, patients with CRC with high hnRNP AB expression exhibited significantly poorer prognosis compared with those with low hnRNP AB expression (P<0.001). In conclusion, the results of the present study demonstrated that hnRNP AB expression may serve an important role in the progression of CRC and that hnRNP AB may be considered a predictor of prognosis for patients with CRC.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guang-Xun Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiang-Bing Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
8
|
Zhou JM, Hu SQ, Jiang H, Chen YL, Feng JH, Chen ZQ, Wen KM. OCT4B1 Promoted EMT and Regulated the Self-Renewal of CSCs in CRC: Effects Associated with the Balance of miR-8064/PLK1. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:7-20. [PMID: 31650021 PMCID: PMC6804455 DOI: 10.1016/j.omto.2019.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are the main cause of tumor generation, recurrence, metastasis, and therapy failure in various malignancies including colorectal cancer (CRC). Accumulating evidence suggests that tumor cells can acquire CSC characteristics through the epithelial-mesenchymal transition (EMT) process. However, the molecular mechanism of CSCs remains unclear. OCT4B1 is a transcript of OCT4, which is initially expressed in embryonic stem and carcinoma cells, and is involved in the regulation and maintenance of an undifferentiated state of stem cells. In this study, three-dimensional (3D) microspheres were confirmed as CRC stem cells. Compared with that of parental cells, their self-renewal ability was significantly increased, and OCT4B1 expression was increased and promoted the EMT process. The knockdown of OCT4B1 decreased the self-renewal of CSCs and reversed EMT. Moreover, OCT4B1 induced the expression of Polo-like kinase 1 (PLK1), which is a key regulator of EMT in tumor cells. Further examination showed that OCT4B1 regulated the miR-8064/PLK1 balance to exert its function. Taken together, our data suggest that OCT4B1 may be involved in regulating the self-renewal of colorectal CSCs through EMT, which is at least partially due to the miR-8064/PLK1 balance. This study indicates that OCT4B1 is a potential therapeutic target for CRC by targeting CSCs.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shui-Qing Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yi-Lin Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ji-Hong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zheng-Quan Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
9
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
10
|
Cordaro FG, De Presbiteris AL, Camerlingo R, Mozzillo N, Pirozzi G, Cavalcanti E, Manca A, Palmieri G, Cossu A, Ciliberto G, Ascierto PA, Travali S, Patriarca EJ, Caputo E. Phenotype characterization of human melanoma cells resistant to dabrafenib. Oncol Rep 2017; 38:2741-2751. [PMID: 29048639 PMCID: PMC5780027 DOI: 10.3892/or.2017.5963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
In the present study, the phenotype of melanoma cells resistant to dabrafenib (a B-RAF inhibitor) was investigated, to shed more light on melanoma resistance to B-RAF inhibition. Melanoma cells resistant to dabrafenib were generated using 3 different cell lines, A375, 397 and 624.38, all carrying B-RAFV600E, and they were characterized by cytofluorometric analysis, Ion Torrent technology, immunofluorescence and biochemistry. All dabrafenib-resistant cells showed, in addition to a re-activation of MAPK signaling, morphological changes compared to their sensitive counterparts, accompanied by an increase in CD90 (mesenchymal marker) expression and a decrease in E-cadherin (epithelial marker) expression, suggesting an epithelial-to-mesenchymal-like phenotypic transition. However, melanoma cells with TGF-β1-induced epithelial-to-mesenchymal transition (EMT) were more sensitive to dabrafenib treatment compared to the sensitivity noted in the non-TGF-β1-induced EMT melanoma cells, suggesting that TGF-β1-induced EMT was not associated with dabrafenib resistance. Although dabrafenib-resistant cells exhibited increased cell motility and E-cadherin/vimentin reorganization, as expected in EMT, all of them showed unvaried E-cadherin mRNA and unchanged Snail protein levels, while Twist1 protein expression was decreased with the exception of A375 dabrafenib-resistant melanoma cells, where it was unaffected. These findings suggest a distinct active EMT-like process adopted by melanoma cells under drug exposure. Furthermore, dabrafenib-resistant cells exhibited stem cell-like features, with Oct4 translocation from the cytoplasm to peri-nuclear sites and nuclei, and increased CD20 expression. In conclusion, our data, in addition to confirming that resistance to dabrafenib is dependent on re-activation of MAPK signaling, suggest that this resistance is linked to a distinct active EMT-like process as well as stem-cell features adopted by melanoma cells.
Collapse
Affiliation(s)
- Fabiola Gilda Cordaro
- Institute of Genetics and Biophysics (IGB), A. Buzzati-Traverso, CNR, I-80131 Naples, Italy
| | | | - Rosa Camerlingo
- Istituto Nazionale Tumori Fondazione G. Pascale, I-80131 Naples, Italy
| | - Nicola Mozzillo
- Istituto Nazionale Tumori Fondazione G. Pascale, I-80131 Naples, Italy
| | - Giuseppe Pirozzi
- Istituto Nazionale Tumori Fondazione G. Pascale, I-80131 Naples, Italy
| | | | - Antonella Manca
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, CNR, I-07100 Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, CNR, I-07100 Sassari, Italy
| | - Antonio Cossu
- Unit of Pathology, Hospital-University Health Unit (AOU), I-07100 Sassari, Italy
| | - Gennaro Ciliberto
- Istituto Nazionale Tumori Fondazione G. Pascale, I-80131 Naples, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori Fondazione G. Pascale, I-80131 Naples, Italy
| | - Salvatore Travali
- Department of Biomedical and Biotechnological Sciences-BIOMETEC, University of Catania, I-95100 Catania, Italy
| | - Eduardo J Patriarca
- Institute of Genetics and Biophysics (IGB), A. Buzzati-Traverso, CNR, I-80131 Naples, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics (IGB), A. Buzzati-Traverso, CNR, I-80131 Naples, Italy
| |
Collapse
|
11
|
WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells. Sci Rep 2017; 7:41913. [PMID: 28157212 PMCID: PMC5291217 DOI: 10.1038/srep41913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor.
Collapse
|
12
|
Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 2016; 51:1-9. [DOI: 10.1016/j.ctrv.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|