1
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Jiang Z, Zhang M, Li P, Wang Y, Fu Q. Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics 2023; 13:483-509. [PMID: 36632234 PMCID: PMC9830442 DOI: 10.7150/thno.79625] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Computed tomography (CT), a diagnostic tool with clinical application, comprehensive coverage, and low cost, is used in hospitals worldwide. However, CT imaging fails to distinguish soft tissues from normal organs and tumors because their mass attenuation coefficients are similar. Various CT contrast agents have been developed in recent years to improve the sensitivity and contrast of imaging. Here, we review the progress of nanomaterial-based CT contrast agents and their applications in image-guided therapy. The CT contrast agents are classified according to their components; gold (Au)-based, bismuth (Bi)-based, lanthanide (Ln)-based, and transition metal (TM)-based nanomaterials are discussed. CT image-guided therapy of diseases, including photothermal therapy (PPT), photodynamic therapy (PDT), chemotherapy, radiotherapy (RT), gas therapy, sonodynamic therapy (SDT), immunotherapy, starvation therapy, gene therapy (GT), and microwave thermal therapy (MWTT), are reviewed. Finally, the perspectives on the CT contrast agents and their biomedical applications are discussed.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Jinan, 250014, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,✉ Corresponding authors: E-mail: ; ;
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Jinan, 250014, China.,✉ Corresponding authors: E-mail: ; ;
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Jinan, 250014, China.,✉ Corresponding authors: E-mail: ; ;
| |
Collapse
|
3
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
4
|
Ye L, Chen Y, Mao J, Lei X, Yang Q, Cui C. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:303. [PMID: 34579760 PMCID: PMC8477545 DOI: 10.1186/s13046-021-02105-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Background The exploitation of novel nanomaterials combining diagnostic and therapeutic functionalities within one single nanoplatform is challenging for tumor theranostics. Methods We synthesized dendrimer-modified gold nanorods for combinational gene therapy and photothermal therapy (PTT) of colon cancer. Poly(amidoamine) dendrimers (PAMAM, G3) grafted gold nanorods were modified with GX1 peptide (a cyclic 7-mer peptide, CGNSNPKSC). The obtained Au NR@PAMAM-GX1 are proposed as a gene delivery vector to gene (FAM172A, regulates the proliferation and apoptosis of colon cancer cells) for the combination of photothermal therapy (PTT) and gene therapy of Colon cancer cells (HCT-8 cells). In addition, the CT imaging function of Au NR can provide imaging evidence for the diagnosis of colon cancer. Results The results display that Au NR@PAMAM-GX1 can specifically deliver FAM172A to cancer cells with excellent transfection efficiency. The HCT-8 cells treated with the Au NR@PAMAM-GX1/FAM172A under laser irradiation have a viability of 20.45%, which is much lower than the survival rate of other single-mode PTT treatment or single-mode gene therapy. Furthermore, animal experiment results confirm that Au NR@PAMAM-GX1/FAM172A complexes can achieve tumor thermal imaging, targeted CT imaging, PTT and gene therapy after tail vein injection. Conclusion Our findings demonstrate that the synthesized Au NR@PAMAM-GX1 offer a facile platform to exert antitumor and improve the diagnostic level of tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02105-3.
Collapse
Affiliation(s)
- Lili Ye
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yaoming Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jizong Mao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaotian Lei
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Chen X, He H, Xiao Y, Hasim A, Yuan J, Ye M, Li X, Hao Y, Guo X. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol 2021; 11:629350. [PMID: 34422627 PMCID: PMC8377428 DOI: 10.3389/fonc.2021.629350] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Persistent infection with human papillomavirus (HPV) and immune surveillance failure may be the initiating factors for the carcinogenesis of cervical squamous cell carcinoma (CSCC). HPV infection might affect the innate immune pathway of cervical epithelial cells that constitute the "microenvironment" for tumor cells. Programmed death-ligand 1 (PD-L1) has been reported to be an immunosuppressor that helps cancer cells escape the actions of T cells. In the present study, CXCL10 was substantially upregulated both in cervical tissues of HPV infected patients with cervical intraepithelial neoplasia (CIN) or CSCC, as well as in HPV16 E6/E7 transgenic murine cervix. The HPV-positive (HPV+) cervical cancer cell lines SiHa and Caski secreted increased levels of CXCL10 compared to human foreskin fibroblasts (HFF-1), and its receptor CXCR3 was overexpressed in HFF-1. After co-culture with SiHa or Caski, the JAK-STAT signaling pathway and exosomal PD-L1 expression were both upregulated in HFF-1. Recombinant human CXCL10 induced JAK-STAT and PD-L1, while the CXCL10-CXCR3 and JAK-STAT inhibitors AMG487 or ruxolitinib reduced the expression of PD-L1 in HFF-1 cells. Furthermore, the upregulated expression of PD-L1 was verified in HPV+ but not HPV-negative (HPV-) patients with cervical cancers by analysis of tissue microarray cores in 25 cervical lesion patients (P < 0.05). The results indicate that HPV infection can induce cervical cancer cells to secrete CXCL10, which binds to CXCR3 in the surrounding fibroblast cells,leading to JAK-STAT pathway activation and the subsequent upregulated expression of exosomal PD-L1. These mechanisms may help HPV to escape immune response attack, leading to carcinogenesis.
Collapse
Affiliation(s)
- Xiaona Chen
- Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
- Clinical Medical Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hui He
- Department of Pathology, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Yue Xiao
- Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
- Clinical Medical Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ayshamgul Hasim
- Department of Pathology, Basic College, Xinjiang Medical University, Urumqi, China
| | - Jianlin Yuan
- Department of Gynecology, Affiliated Cancer Hospital, Xinjiang Medical University, Urumqi, China
| | - Min Ye
- Department of Pathology, Affiliated Cancer Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Li
- Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
- Clinical Medical Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yi Hao
- Department of Ultrasound, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xia Guo
- Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
- Clinical Medical Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
6
|
Xu AM, He CJ, Tuerxun Z, Anikezi A. FAM172A affects cell proliferation and apoptosis not by targeting β-tubulin in HepG2 cells. Transl Cancer Res 2020; 9:5637-5644. [PMID: 35117927 PMCID: PMC8797783 DOI: 10.21037/tcr-20-2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Microtubules pull chromosomes apart during cell mitosis and take part in cell division, Inhibiting the formation of spindle microtubules during mitosis has become one of the current anti-tumor research strategies. Earlier studies have found that the family with sequence similarity 172, member A (FAM172A) can significantly inhibit the proliferation of human colorectal cancer cell line LOVO cells and promote apoptosis. The purpose of this study was to investigate the biological effects of FAM172A on liver cancer cells and the interaction mechanism with tubulin. METHODS Use STRING software predicted the interactions between FAM172A and β-tubulin, and verify by immunoprecipitation. Real-Time qPCR was used to determine the expression levels of β-tubulin in liver cancer cell line HepG2, western blot was performed to detect protein expression levels. Immunofluorescence experiment to detect the distribution, shape and the dynamic behavior of depolymerization-aggregation of β-tubulin in cells. MTT, wound healing and Transwell assay were employed to determine cell proliferation, migration and invasion respectively. Flow cytometry was conducted to determine cell cycle and apoptosis. RESULTS There is no interactions between FAM172A and β-tubulin. We determined that when FAM172A was up-regulated or down-regulated, the mRNA and protein levels of β-tubulin did not change significantly (P>0.05). Furthermore, the distribution, shape of β-tubulin in cells, and the dynamic behavior of depolymerization-aggregation was not affected. After FAM172A overexpression, the migration and invasion of HepG2 cells were significantly inhibited (P<0.05), the cell proliferation was also significantly inhibited (P<0.05) and was time-dependent. The HepG2 cells had apparent S phase arrest and apoptosis (P<0.05). After interfering with FAM172A, the opposite result will appear. CONCLUSIONS The results show that FAM172A may be a new tumor suppressor gene, which has a specific role in cell cycle control and cell proliferation, but the specific mechanism of action has not been explained in this study and needs further exploration.
Collapse
Affiliation(s)
- Ai-Min Xu
- Department of Laboratory, The First People's Hospital of Kashgar, Kashi, Kashi 844000, China
| | - Chuan-Jiang He
- Department of Laboratory, The First People's Hospital of Kashgar, Kashi, Kashi 844000, China
| | - Zureguli Tuerxun
- Department of Laboratory, The First People's Hospital of Kashgar, Kashi, Kashi 844000, China
| | - Abuduaini Anikezi
- Department of Laboratory, The First People's Hospital of Kashgar, Kashi, Kashi 844000, China
| |
Collapse
|
7
|
Chen Y, Liu P, Shen D, Liu H, Xu L, Wang J, Shen D, Sun H, Wu H. FAM172A inhibits EMT in pancreatic cancer via ERK-MAPK signaling. Biol Open 2020; 9:bio048462. [PMID: 31988090 PMCID: PMC7044457 DOI: 10.1242/bio.048462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022] Open
Abstract
FAM172A, as a newly discovered gene, is little known in cancer development, especially in pancreatic cancer (PC). We investigated the potential role and molecular mechanism of FAM172A in epithelial to mesenchymal transition (EMT) in both human clinical samples and PC cells. FAM172A was downregulated in human PC tissues compared with that in non-cancerous pancreas cells by immunohistochemistry and qRT-PCR. FAM172A expression was negatively associated with tumor size (P=0.015), T stage (P=0.006), lymph node metastasis (P=0.028) and the worst prognosis of PC patients (P=0.004). Meanwhile, a positive relationship between FAM172A and E-cadherin (E-cad) (r=0.381, P=0.002) was observed in clinical samples, which contributed to the better prognosis of PC patients (P=0.014). FAM172A silencing induced EMT in both AsPC-1 and BxPC-3 cells, including inducing the increase of Vimentin, MMP9 and pERK and the decrease of E-cad and β-catenin expression, stimulating EMT-like cell morphology and enhancing cell invasion and migration in PC cells. However, MEK1 inhibitor PD98059 reversed FAM172A silencing-enhanced EMT in PC cells. We conclude that FAM172A inhibits EMT of PC cells via ERK-MAPK signaling.
Collapse
Affiliation(s)
- Ying Chen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Peihui Liu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Di Shen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Han Liu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Lepeng Xu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Jian Wang
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Daguang Shen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - He Sun
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Hongkui Wu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| |
Collapse
|
8
|
The Effect of Protein FAM172A on Proliferation in HepG2 Cells and Investigation of the Possible Molecular Mechanism. Anal Cell Pathol (Amst) 2019; 2019:5901083. [PMID: 31915594 PMCID: PMC6930761 DOI: 10.1155/2019/5901083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background In our previous study, we found that the FAM172A recombinant protein could promote proliferation of L02 cells. However, the underlying mechanisms are still unknown. The present study was aimed at investigating the effect of FAM172A on proliferation of HepG2 cells and exploring the possible molecular mechanisms and its role in hepatocellular carcinoma (HCC). Methods Cell proliferation was measured by MTT assay. Western blot test was carried out to investigate the mechanism. Rabbit antibodies against FAM172A and membrane proteins isolated from lysate of HepG2 cell were coprecipitated and the resultant precipitates were analyzed by mass spectrum. Results The MTT assay showed that recombinant protein FAM172A isoform 1 (FAM172A-1) could induce HepG2 cell proliferation at the concentration of 10-100 ng/mL, while protein FAM172A isoform 3 (FAM172A-3) was at the concentration of 80-100 ng/mL. Western blot demonstrated that both FAM172A-1 and FAM172A-3 could activate the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) pathway and the phosphatidylinositol 3-kinase/threonine-protein kinase (PI3K/Akt) pathway. Mass spectrum analysis suggested that there were some membrane proteins interacting with FAM172A. Several candidate interacting proteins might mediate proliferation signals induced by FAM172A recombinant protein, including seven membrane proteins. Conclusion In conclusion, FAM172A recombinant protein could induce proliferation of HepG2 cells, in which the MAPK/ERK and PI3K/Akt signaling pathways might be involved. The role of FAM172A in HepG2 cell proliferation also indicated its possible involvement in HCC. The receptor of FAM172A on cells still needs to be exploited.
Collapse
|
9
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Cui CH, Chen RH, Zhai DY, Xie L, Qi J, Yu JL. Detection of FAM172A expressed in circulating tumor cells is a feasible method to predict high-risk subgroups of colorectal cancer. Tumour Biol 2017; 39:1010428317699126. [PMID: 28618931 DOI: 10.1177/1010428317699126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies used to enumerate circulating tumor cells to predict prognosis and therapeutic effect of colorectal cancer. However, increasing studies have shown that only circulating tumor cells enumeration was not enough to reflect the heterogeneous condition of tumor. In this study, we classified different metastatic-potential circulating tumor cells from colorectal cancer patients and measured FAM172A expression in circulating tumor cells to improve accuracy of clinical diagnosis and treatment of colorectal cancer. Blood samples were collected from 45 primary colorectal cancer patients. Circulating tumor cells were enriched by blood filtration using isolation by size of epithelial tumor cells, and in situ hybridization with RNA method was used to identify and discriminate subgroups of circulating tumor cells. Afterwards, FAM172A expression in individual circulating tumor cells was measured. Three circulating tumor cell subgroups (epithelial/biophenotypic/mesenchymal circulating tumor cells) were identified using epithelial-mesenchymal transition markers. In our research, mesenchymal circulating tumor cells significantly increased along with tumor progression, development of distant metastasis, and vascular invasion. Furthermore, FAM172A expression rate in mesenchymal circulating tumor cells was significantly higher than that in epithelial circulating tumor cells, which suggested that FAM172A may correlate with malignant degree of tumor. This hypothesis was further verified by FAM172A expression in mesenchymal circulating tumor cells, which was strictly related to tumor aggressiveness factors. Mesenchymal circulating tumor cells and FAM172A detection may predict highrisk stage II colorectal cancer. Our research proved that circulating tumor cells were feasible surrogate samples to detect gene expression and could serve as a predictive biomarker for tumor evaluation.
Collapse
Affiliation(s)
- Chun-Hui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ri-Hong Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Duan-Yang Zhai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Qi
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Long Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Liu W, Qian K, Wei X, Deng H, Zhao B, Chen Q, Zhang J, Liu H. miR‑27a promotes proliferation, migration, and invasion of colorectal cancer by targeting FAM172A and acts as a diagnostic and prognostic biomarker. Oncol Rep 2017; 37:3554-3564. [PMID: 28440497 DOI: 10.3892/or.2017.5592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence shows that mircroRNAs (miRNAs) play a crucial role in the development of colorectal cancer. In our previous study, FAM172A was demonstrated to be a novel tumor suppressor gene in CRC. Therefore, the aim of the present study was to identify whether the miR‑27a could be a diagnostic and prognostic marker and the regulatory relationships between miR‑27a and FAM172A. We demonstrated high levels of miR‑27a expression in tissues of patients with CRC as well as in CRC cell lines. There was a positive correlation between the levels of miR‑27a and the poor overall survival of patients with CRC. Furthermore, elevated levels of miR‑27a expression were associated with TNM stage and distant metastasis. Increased expression or inhibition of miR‑27a promoted or inhibited the metastasis of CRC cell lines, respectively. Moreover, we showed that miR‑27a directly targets the 3'-untranslated region of FAM172A mRNA by using a dual-luciferase assay. Increased or decreased expression of FAM172A expression was observed when miR‑27a expression was inhibited or elevated in the CRC cells, respectively. In summary, our study showed that miR‑27a expression is a diagnostic and prognostic marker and correlates with overall survival of patients with CRC. Therefore, it may be a therapeutic approach for preventing metastasis of CRC to inhibit expression of miR‑27a or increase expression of FAM172A.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai Qian
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xing Wei
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bei Zhao
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing Chen
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinqian Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Guangdong Province, Guangzhou, Guangdong 510317, P.R. China
| | - Hao Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
12
|
Xu C, Zhang C, Wang H, Yang H, Li G, Fei Z, Li W. FAM172A expression in circulating tumor cells for prediction of high-risk subgroups of colorectal cancer. Onco Targets Ther 2017; 10:1933-1939. [PMID: 28408845 PMCID: PMC5384730 DOI: 10.2147/ott.s118346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Previous studies used enumerated circulating tumor cells (CTCs) to predict prognosis and therapeutic effect in several types of cancers. However, increasing evidence showed that only enumerated CTCs were not enough to reflect the heterogeneity of tumors. Therefore, we classified different metastasis potentials of CTCs from colorectal cancer (CRC) patients to improve the accuracy of prognosis by CTCs. Methods Blood samples were collected from 45 primary CRC patients. CTCs were enriched by blood filtration, and the RNA in situ hybridization method was used to identify and discriminate subgroups of CTCs. Later, FAM172A expression in individual CTCs was measured. Results Three CTC subgroups (epithelial/biophenotypic/mesenchymal CTCs) were identified using epithelial–mesenchymal transition markers. In our research, mesenchymal CTCs significantly increased along with tumor progression, including developing distant metastasis and vascular invasion. Furthermore, FAM172A expression rate in mesenchymal CTCs was significantly higher than that in epithelial CTCs, which suggested that FAM172A may correlate with tumor malignancy. This hypothesis was further verified by FAM172A expression in mesenchymal CTCs strictly related to tumor aggressiveness factors. Finally, we revealed that mesenchymal CTCs and FAM172A expression may predict high-risk subgroups in stage II CRC. Conclusion Our research proved that CTCs could serve as feasible surrogate samples to detect gene expression as a predictive biomarker for tumor evaluation.
Collapse
Affiliation(s)
- Chang Xu
- Department of Colorectal Surgery
| | | | | | | | - Gang Li
- Department of Chemoradiotherapy
| | | | - Wenfeng Li
- Department of Colorectal Surgery.,Department of Chemoradiotherapy.,Laboratory for Interdisciplinary Research, Institution for Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|