1
|
Wadhonkar K, Das S, Subramanian R, Sk MH, Singh Y, Baig MS. The effect of cancer cell-derived exosomal proteins on macrophage polarization: An in-depth review. Exp Cell Res 2025; 444:114393. [PMID: 39710293 DOI: 10.1016/j.yexcr.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by unregulated cell proliferation, enabling it to invade and spread to different organs and tissues in the body. Cancer progression is intricately influenced by the complex dynamics within the tumor microenvironment (TME). The TME is a composite and dynamic network comprising cancer cells and various immune cells, including tumor-associated macrophages. Exosomes facilitate the communication between different cancer cells as well as other types of cells. This review particularly focuses on exosomal proteins derived from different cancer cells in mounting the complex crosstalk between cells of cancer and macrophages within the TME. Most cancer-derived exosomal proteins polarize macrophages towards M2 phenotype, promoting cancer aggressiveness, while a few have role switching towards the M1 phenotype, inhibiting cancer proliferation, respectively. In this review, we summarize, for the first time, the dual impact of cancer cell-derived exosomal proteins on macrophage polarization and the associated signaling pathways, offering valuable insights for developing innovative therapeutic strategies against diverse cancer types.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Soumalya Das
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | | | - Mobbassar Hassan Sk
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK; Institute for Energy and Environmental Flows, University of Cambridge, Cambridge, UK
| | - Yashi Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
2
|
Au TTD, Ho YL, Chang YS. Qualitative and quantitative analysis methods for quality control of rhubarb in Taiwan's markets. Front Pharmacol 2024; 15:1364460. [PMID: 38746013 PMCID: PMC11091417 DOI: 10.3389/fphar.2024.1364460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Rhubarb is a traditional Chinese medicine (TCM) used to release heat and has cathartic effects. Official rhubarb in Taiwan Herbal Pharmacopeias 4th edition (THP 4th) and China Pharmacopeia 2020 (CP 2020) are the roots and rhizomes of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. However, the Rheum genus is a large genus with many different species, and owing to the similarity in appearance and taste with official rhubarb, there needs to be more clarity in the distinction between the species of rhubarb and their applications. Given the time-consuming and complicated extraction and chromatography methods outlined in pharmacopeias, we improved the qualitative analysis and quantitative analysis methods for rhubarb in the market. Hence, we applied our method to identify the species and quality of official and unofficial rhubarb. Method: We analyzed 21 rhubarb samples from the Taiwanese market using a proposed HPLC-based extraction and qualitative analysis employing eight markers: aloe-emodin, rhein, emodin, chrysophanol, physcion, rhapontigenin, rhaponticin, and resveratrol. Additionally, we developed a TLC method for the analysis of rhubarb. KEGG pathway analysis was used to clarify the phytochemical and pharmacological knowledge of official and unofficial rhubarb. Results: Rhein and rhapontigenin emerged as key markers to differentiate official and unofficial rhubarb. Rhapontigenin is abundant in unofficial rhubarb; however, rhein content was low. In contrast, their contents in official rhubarb were opposite to their contents in unofficial rhubarb. The TLC analysis used rhein and rhapontigenin to identify rhubarb in Taiwan's markets, whereas the KEGG pathway analysis revealed that anthraquinones and stilbenes affected different pathways. Discussion: Eight reference standards were used in this study to propose a quality control method for rhubarb in Taiwanese markets. We propose a rapid extraction method and quantitative analysis of rhubarb to differentiate between official and unofficial rhubarb.
Collapse
Affiliation(s)
- Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Olejarz W, Basak G. Emerging Therapeutic Targets and Drug Resistance Mechanisms in Immunotherapy of Hematological Malignancies. Cancers (Basel) 2023; 15:5765. [PMID: 38136311 PMCID: PMC10741639 DOI: 10.3390/cancers15245765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
CAR-T cell therapy has revolutionized the treatment of hematological malignancies with high remission rates in the case of ALL and NHL. This therapy has some limitations such as long manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination regimens increase the risk of immune-related adverse events, so the identification new therapeutic targets is important to minimize the risk of toxicities and to guide more effective approaches. Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to immunotherapy; therefore, a very important therapeutic approach is to focus on the development of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules, checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenvironment (TME) has significantly improved anticancer responses. Novel strategies regarding combination immunotherapies with CAR-T cells are the most promising approach to cure cancer.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
4
|
Ramhormozi P, Ansari JM, Simorgh S, Asgari HR, Najafi M, Barati M, Babakhani A, Nobakht M. Simvastatin accelerates the healing process of burn wound in Wistar rats through Akt/mTOR signaling pathway. Ann Anat 2021; 236:151652. [DOI: 10.1016/j.aanat.2020.151652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
|
5
|
Chen D, Liu JR, Cheng Y, Cheng H, He P, Sun Y. Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Curr Med Chem 2020; 27:3168-3186. [DOI: 10.2174/0929867326666190121143252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb
rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has
shown various biological activities including anticancer activities to act a potential human cytochrome
P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial
activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species
(ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide
(H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA
and protein, and also presented the capacity of inducing morphological changes and apoptosis
of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying
mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed.
This review will provide a certain reference value for developing the therapeutic drug
of rhaponticin or RHAG.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Jing-Ru Liu
- School of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yanjin Cheng
- School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Hua Cheng
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Ping He
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Yang Sun
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| |
Collapse
|
6
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
7
|
Li CY, Wang Q, Wang X, Li G, Shen S, Wei X. Scutellarin inhibits the invasive potential of malignant melanoma cells through the suppression epithelial-mesenchymal transition and angiogenesis via the PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol 2019; 858:172463. [PMID: 31211986 DOI: 10.1016/j.ejphar.2019.172463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Malignant melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. Scutellarin is an active flavone extracted from traditional Chinese herb Erigeron breviscapus (Vant.) Hand. Mazz. Recent studies have reported that scutellarin can be utilized to treat various types of tumors. In this study, we investigated the effects of scutellarin on melanoma cancer cell invasive potential and the molecular mechanisms underlying these effects using A375 melanoma cells lines. The in-vitro antitumor activity of scutellarin was evaluated by CCK-8 assay, wound-healing assay, transwell assays, adhesion assays, and tube formation assays to assess the cell viability, migration, invasion, adhesion, and angiogenesis, respectively. Also, western blotting assay was used to assess the level of PI3K/Akt/mTOR signaling pathway proteins in A375 cells. We found that scutellarin significantly inhibited melanoma cell lines and HUVECs viability in a time- and concentration-dependent manners. Additionally, scutellarin effectively suppressed tumor cell migration, invasion, adhesion through the suppression of EMT and angiogenesis by inhibiting the PI3K/Akt/mTOR signaling pathway. These results indicated that scutellarin could markedly inhibit the invasive potential of melanoma cell lines by suppressing the EMT and angiogenesis through the PI3K/Akt/mTOR signaling pathway. It suggests that scutellarin might be a potential compound in malignant melanoma treatment.
Collapse
Affiliation(s)
- Chun-Yu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China.
| | - Qi Wang
- Department of Oncology, Shanghai Pulmonary Hospital Affiliated Tongji University, No. 507 Zhengmin, Yangpu District, Shanghai, 200433, China
| | - Xiaomin Wang
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Guoxia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Xiaolu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| |
Collapse
|
8
|
Chen Y, Zheng X, Wang Y, Song J. Effect of PI3K/Akt/mTOR signaling pathway on JNK3 in Parkinsonian rats. Exp Ther Med 2018; 17:1771-1775. [PMID: 30783448 PMCID: PMC6364142 DOI: 10.3892/etm.2018.7120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Effect of PI3K/Akt/mTOR signaling pathway on the expression of JNK3 in Parkinsonian rats was investigated. A total of 200 rats were used for Parkinson's disease (PD) modeling and 180 models were successfully established. Rats were randomly divided into four groups including A, B, C, and D, 45 in each group. Group A was control group and no inhibitor was given. Group B was given PI3K inhibitor LY294002. Group C was given rapamycin inhibitor rapamycin; and group D was given inhibitor LY294002 and inhibitor rapamycin. JNK3 mRNA expression was detected by RT-qPCR and expression of p-mTOR protein and JNK3 protein was detected by western blot analysis. Expression level of JNK3 mRNA and protein in groups C and D was significantly lower than that in group B (P<0.01). Expression level of JNK3 mRNA and protein in group D was significantly lower than that in group C (P<0.01). Relative expression level of p-mTOR protein in groups C and D was significantly lower than that in group B (P<0.01). Relative expression level of JNK3 protein in group D was significantly lower than that in group C (P<0.01). Pearson's correlation analysis showed that expression of JNK3 mRNA was positively correlated with the expression of JNK3 protein and Pearson's correlation coefficient was 0.98 (P<0.01). There was also a positive correlation between the expression of JNK3 mRNA and the expression of p-mTOR protein and Pearson's correlation coefficient was 0.95 (P<0.01). Expression of JNK3 protein was positively correlated with the expression of p-mTOR protein, and the Pearson's correlation coefficient was 0.93 (P<0.01). Inhibition of PI3K/Akt/mTOR signaling pathway is negatively correlated with the expression of JNK3. Inhibition of PI3K-Akt-mTOR signaling pathway leads to a decrease in the expression of JNK3, which protects dopaminergic neurons and improves PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xiaozhen Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Ying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Junjie Song
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
9
|
Li M, Wang J, Liu D, Huang H. High‑throughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars. Mol Med Rep 2018; 18:5669-5682. [PMID: 30320389 PMCID: PMC6236202 DOI: 10.3892/mmr.2018.9557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Growing evidence suggests that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in the occurrence and development of tumors and fibrotic diseases. However, the integrated analysis of lncRNA and circRNA expression, alongside associated co‑expression and competing endogenous RNA (ceRNA) networks, has not yet been performed in human hypertrophic scars (HS). The present study compared the expression levels of lncRNAs, circRNAs and mRNAs in human HS and normal skin tissues by high‑throughput RNA sequencing. Numerous differentially expressed lncRNAs, circRNAs and mRNAs were detected. Subsequently, five aberrantly expressed lncRNAs and mRNAs, and six circRNAs were measured to verify the RNA sequencing results by reverse transcription‑quantitative polymerase chain reaction. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the dysregulated genes, in order to elucidate their principal functions. In addition, a coding‑noncoding gene co‑expression (CNC) network and ceRNA network were constructed for specific significantly altered genes. The CNC network analysis suggested that AC048380.1 and LINC00299 were associated with metastasis‑related genes, including inhibin subunit βA (INHBA), SMAD family member 7 (SMAD7), collagen type I α1 chain (COL1A1), transforming growth factor β3 (TGFβ3) and MYC proto‑oncogene, bHLH transcription factor (MYC). Inhibitor of DNA binding 2 was associated with the lncRNAs cancer susceptibility 11, TGFβ3‑antisense RNA 1 (AS1), INHBA‑AS1, AC048380.1, LINC00299 and LINC01969. Circ‑Chr17:50187014_50195976_‑, circ‑Chr17:50189167_50194626_‑, circ‑Chr17:50189167_ 50198002_‑ and circ‑Chr17:50189858_50195330_‑ were also associated with INHBA, SMAD7, COL1A1, TGFβ3 and MYC. COL1A1 and TGFβ3 were associated with circ‑Chr9:125337017_125337591_+ and circ‑Chr12:120782654_120784593_‑. The ceRNA network indicated that INHBA‑AS1 and circ‑Chr9:125337017_125337591_+ were ceRNAs of microRNA‑182‑5p targeting potassium voltage‑gated channel subfamily J member 6, ADAM metallopeptidase with thrombospondin type 1 motif 18, SRY‑box 11, MAGE family member L2, matrix metallopeptidase 16, thrombospondin 2, phosphodiesterase 11A and collagen type V a1 chain. These findings suggested that lncRNAs and circRNAs may act as ceRNAs, which are implicated in the pathophysiology and development of human HS, and lay a foundation for further insight into the novel regulatory mechanism of lncRNAs and circRNAs in hypertrophic scarring.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Huang
- Department of Plastic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Lu Q, Wang WW, Zhang MZ, Ma ZX, Qiu XR, Shen M, Yin XX. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp Ther Med 2018; 17:835-846. [PMID: 30651870 DOI: 10.3892/etm.2018.7014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress has been reported to serve an important role in the development and progression of diabetic nephropathy (DN). Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells promotes renal fibrosis in DN, while the mechanism of reactive oxygen species (ROS)-mediated EMT is not fully understood. The aim of the present study was to investigate the effect of high glucose-induced ROS on the activation of the transforming growth factor (TGF)-β1/phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in a normal rat kidney tubular epithelial cell line (NRK-52E) and rats with type 1 diabetes. In vitro, high glucose-stimulated ROS production resulted in increased TGF-β1 expression as well as an increase in the Akt and mTOR phosphorylation ratio, resulting in EMT. When cells were pre-treated with ROS inhibitors, changes in TGF-β1, Akt and mTOR were significantly ameliorated. In vivo, diabetic rats experienced a significant decline in renal function and severe renal fibrosis compared with control rats at 8 weeks following streptozocin injection. Levels of malondialdehyde and TGF-β1/PI3K/Akt/mTOR pathway activation were increased in the renal cortex of rats with diabetes compared with the control rats. Furthermore, renal fibrosis was further aggravated in DN compared with the control rats. The results of the present study suggest that ROS serves an important role in mediating high glucose-induced EMT and inhibits activation of the TGF-β1/PI3K/Akt/mTOR pathway. ROS may therefore have potential as a treatment approach to prevent renal fibrosis in DN.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Wen-Wen Wang
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214000, P.R. China
| | - Ming-Zhu Zhang
- Deparment of Clinical Pharmacy, Changzhou Fourth People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Zhong-Xuan Ma
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xin-Ran Qiu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mengli Shen
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiao-Xing Yin
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
11
|
Kim A, Ma JY. Rhaponticin decreases the metastatic and angiogenic abilities of cancer cells via suppression of the HIF‑1α pathway. Int J Oncol 2018; 53:1160-1170. [PMID: 30015877 PMCID: PMC6065401 DOI: 10.3892/ijo.2018.4479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Rhaponticin (RA; 3′5-dihydroxy-4′-methoxystilbene 3-O-β-D-glucopyranoside) is a component isolated from various medicinal herbs including Rheum undulatum L. RA has been reported to be an effective treatment for allergy, diabetes, thrombosis, liver steatosis, lung fibrosis and colitis. In addition, RA effectively inhibits tumor growth and induces apoptosis; however, the effects of RA, at non-cytotoxic doses, on the metastasis and angiogenesis of malignant cancer cells have, to be the best of our knowledge, not been identified. In the present study, it was identified that RA suppressed the metastatic potential of MDA-MB231 breast cancer cells, including colony formation, migration and invasion. Human umbilical vein endothelial cells (HUVECs) treated with RA exhibited a decreased ability to form tube-like networks and to migrate across a Transwell membrane, when compared with RA-untreated HUVECs. Using the chick chorioallantoic membrane assay, RA treatment significantly suppressed spontaneous and vascular endothelial growth factor (VEGF)-induced angiogenesis. Furthermore, RA inhibited the production of pro-angiogenic factors, including matrix metalloproteinase (MMP)-9, pentraxin-3, interleukin-8, VEGF and placental growth factor under normoxic and hypoxic conditions, and suppressed the phorbol 12-myristate 13-acetate-induced increase in the gelatinolytic MMP-9 activity and MMP-9 expression in HT1080 cells. RA also significantly inhibited the hypoxia-inducible factor (HIF)-1α pathway, leading to decreased HIF-1α accumulation and HIF-1α nuclear expression under hypoxia. These results indicated that RA exhibits potent anti-metastatic and anti-angiogenic activities with no cytotoxicity via suppression of the HIF-1α signaling pathway. Thus, RA may control malignant cancer cells by inhibiting the spread from primary tumors and expansion to distant organs.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 701‑300, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 701‑300, Republic of Korea
| |
Collapse
|
12
|
Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018; 37:70. [PMID: 29587825 PMCID: PMC5870508 DOI: 10.1186/s13046-018-0730-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interferon (IFN) could modulate both inflammatory and hypoxic responses under normoxia and its relation with cancer development. METHODS IFN was used to induce inflammation response and HIF-1α expression in various cancer cell lines. Corresponding signaling pathways were then analyzed by a combination of pharmacological inhibitors, immunoblotting, GST-Raf pull-down assays, dominant-negative and short-hairpin RNA-mediated knockdown approaches. Specifically, roles of functional HIF-1α in the IFN-induced epithelial-mesenchymal transition (EMT) and other tumorigenic propensities were examined by knockdown, pharmacological inhibition, luciferase reporter, clonogenic, anchorage-independent growth, wound-healing, vasculogenic mimicry, invasion and sphere-formation assays as well as cellular morphology observation. RESULTS We showed for the first time that IFN induced functional HIF-1α expression in a time- and dose- dependent manner in various cancer cell lines under both hypoxic and normoxic conditions, and then leading to an activated HIF-1α pathway in an IFN-mediated pro-inflammatory TME. IFN regulates anti-apoptosis activity, cellular metastasis, EMT and vasculogenic mimicry by a novel mechanism through mainly the activation of PI3K/AKT/mTOR axis. Subsequently, pharmacological and genetic modulations of HIF-1α, JAK, PI3K/AKT/mTOR or p38 pathways efficiently abrogate above IFN-induced tumorigenic propensities. Moreover, HIF-1α is required for the IFN-induced invasiveness, tumorigenesis and vasculogenic mimicry. Further supports for the HIF-1α-dependent tumorigenesis were obtained from results of xenograft mouse model and sphere-formation assay. CONCLUSIONS Our mechanistic study showed an induction of HIF-1α and EMT ability in an IFN-mediated inflammatory TME and thus demonstrating a novel interaction between inflammatory and hypoxic TMEs. Moreover, targeting HIF-1α may be a potential target for inhibiting tumor tumorigenesis and EMT by decreasing cancer cells wound healing and anchorage-independent colony growth. Our results also lead to rationale guidance for developing new therapeutic strategies to prevent relapse via targeting TME-providing IFN signaling and HIF-1α programming.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Ho-Fu Hsiao
- Department of Emergency Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan, Republic of China
| | - Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.
- Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
13
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
14
|
Cai B, Zheng Y, Ma S, Xing Q, Wang X, Yang B, Yin G, Guan F. Long non‑coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep 2018; 17:5477-5483. [PMID: 29393477 DOI: 10.3892/mmr.2018.8546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-coding transcripts (>200 nucleotides) that serve important roles in the proliferation and differentiation of stem cells. Hair follicle stem cells (HFTs) have multidirectional differentiation potential and are able to differentiate into skin, hair follicles and sebaceous glands, serving a role in skin wound healing. The aim of the present study was to analyze the regulatory role of lncRNA AK015322 (IncRNA5322) in HFTs and the potential mechanism of IncRNA5322‑mediated differentiation of HFTs. The results demonstrated that lncRNA5322 transfection promoted proliferation and differentiation in HFTs. It was identified that lncRNA5322 transfection upregulated the expression and phosphorylation of phosphoinositide 3‑kinase (PI3K) and protein kinase B (AKT) in HFTs. It was also observed that lncRNA5322 transfection upregulated microRNA (miR)‑21 and miR‑21 agonist (agomir‑21) eliminated lncRNA5322‑induced expression and phosphorylation of PI3K and AKT. The present study also demonstrated that agomir‑21 blocked IncRNA5322‑induced expression and phosphorylation of PI3K and AKT in HFTs. The results indicated that agomir‑21 transfection also suppressed the IncRNA5322‑induced proliferation and differentiation of HFTs. In conclusion, the results of the present study suggest that lncRNA5322 is able to promote the proliferation and differentiation of HFTs by targeting the miR‑21‑mediated PI3K‑AKT signaling pathway in HFTs.
Collapse
Affiliation(s)
- Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xinxin Wang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bo Yang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fangxia Guan
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci Rep 2017; 37:BSR20170658. [PMID: 28864782 PMCID: PMC5678031 DOI: 10.1042/bsr20170658] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Skin injury affects millions of people via the uncontrolled inflammation and infection. Many cellular components including fibroblasts and signaling pathways such as transforming growth factor-β (TGF-β) were activated to facilitate the wound healing to repair injured tissues. C57BL/6 female mice were divided into control and ozone oil treated groups. Excisional wounds were made on the dorsal skin and the fibroblasts were isolated from granulation tissues. The skin injured mouse model revealed that ozone oil could significantly decrease the wound area and accelerate wound healing compared with control group. QPCR and Western blotting assays showed that ozone oil up-regulated collagen I, α-SMA, and TGF-β1 mRNA and protein levels in fibroblasts. Wound healing assay demonstrated that ozone oil could increase the migration of fibroblasts. Western blotting assay demonstrated that ozone oil increased the epithelial–mesenchymal transition (EMT) process in fibroblasts via up-regulating fibronectin, vimentin, N-cadherin, MMP-2, MMP-9, insulin-like growth factor binding protein (IGFBP)-3, IGFBP5, and IGFBP6, and decreasing epithelial protein E-cadherin and cellular senescence marker p16 expression. Mechanistically, Western blotting assay revealed that ozone oil increased the phosphorylation of PI3K, Akt, and mTOR to regulate the EMT process, while inhibition of PI3K reversed this effect of ozone oil. At last, the results from Cytometric Bead Array (CBA) demonstrated ozone oil significantly decreased the inflammation in fibroblasts. Our results demonstrated that ozone oil facilitated the wound healing via increasing fibroblast migration and EMT process via PI3K/Akt/mTOR signaling pathway in vivo and in vitro. The cellular and molecular mechanisms we found here may provide new therapeutic targets for the treatment of skin injury.
Collapse
|
16
|
Transforming growth factor β1 promotes migration and invasion in HepG2 cells: Epithelial‑to‑mesenchymal transition via JAK/STAT3 signaling. Int J Mol Med 2017; 41:129-136. [PMID: 29115395 PMCID: PMC5746290 DOI: 10.3892/ijmm.2017.3228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor β1 (TGFβ1) is a cytokine with multiple functions. TGFβ1 significantly induces migration and invasion of liver cancer cells. However, the molecular mechanisms underlying this effect remain unclear. Epithelial‑to‑mesenchymal transition (EMT) is crucial for the development of invasion and metastasis in human cancers. The aim of the present study was to determine whether TGFβ1‑induced EMT promoted migration and invasion in HepG2 cells. The underlying mechanism and the effect of EMT on HepG2 cells were also investigated. The results demonstrated that TGFβ1 may induce EMT to promote migration and invasion of HepG2 cells, and this effect depends on activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. JAK/STAT3 signaling is involved in human malignancies, including lung cancer, and is implicated in cell transformation, tumorigenicity, EMT and metastasis. In the present study, TGFβ1 also activated JAK/STAT3 signaling in HepG2 cells and promoted Twist expression, but these events were abolished by treatment with the STAT3 inhibitor AG490. Additionally, Twist siRNA blocked TGFβ1‑induced EMT. Thus, TGFβ1 was shown to induce EMT, thereby promoting the migration and invasion of HepG2 cells via JAK/STAT3/Twist signaling.
Collapse
|
17
|
Pan G, Cheng L, Feng X, Zhu X, Wu G. Ethanol Extract of Stellera chamaejasme L. Inhibits Hepatoma Cell Proliferation Through Down-regulation of Smad4-mediated TGF-β Signaling Pathway. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.628.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One 2016; 11:e0157614. [PMID: 27333275 PMCID: PMC4917104 DOI: 10.1371/journal.pone.0157614] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy. Understanding the propagation of fetal signals and their mechanisms in normal term pregnancies can provide insights into pathologic activation of such signals associated with spontaneous preterm parturitions.
Collapse
Affiliation(s)
- Samantha Sheller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Herston, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|