1
|
Kong M, Zhai Y, Liu H, Zhang S, Chen S, Li W, Ma X, Ji Y. Insights into the mechanisms of angiogenesis in hepatoblastoma. Front Cell Dev Biol 2025; 13:1535339. [PMID: 40438141 PMCID: PMC12116456 DOI: 10.3389/fcell.2025.1535339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatoblastoma (HB), the most common pediatric liver malignancy, is characterized by aggressive growth and metastasis driven by complex angiogenic mechanisms. This review elucidates the pivotal role of angiogenesis in HB progression, emphasizing metabolic reprogramming, tumor microenvironment (TME) dynamics, and oncogenic signalling pathways. The Warburg effect in HB cells fosters a hypoxic microenvironment, stabilizing hypoxia-inducible factor-1α (HIF-1α) and upregulating vascular endothelial growth factor (VEGF), which synergistically enhances angiogenesis. Key pathways such as the Wnt/β-catenin, VEGF, PI3K/AKT, and JAK2/STAT3 pathways are central to endothelial cell proliferation, migration, and vascular maturation, whereas interactions with tumor-associated macrophages (TAMs) and pericytes further remodel the TME to support neovascularization. Long noncoding RNAs and glycolytic enzymes have emerged as critical regulators of angiogenesis, linking metabolic activity with vascular expansion. Anti-angiogenic therapies, including VEGF inhibitors and metabolic pathway-targeting agents, show preclinical promise but face challenges such as resistance and off-target effects. Future directions advocate for dual-target strategies, spatial multiomics technologies to map metabolic-angiogenic crosstalk, and personalized approaches leveraging biomarkers for risk stratification. This synthesis underscores the need for interdisciplinary collaboration to translate mechanistic insights into durable therapies, ultimately improving outcomes for HB patients.
Collapse
Affiliation(s)
- Meng Kong
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Yunpeng Zhai
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Hongzhen Liu
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shuai Chen
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Wenfei Li
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Ma
- Department of Respiratory Disease, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhao Y, Ma Q, Gao W, Li Z, Yu G, Li B, Xu Y, Huang Y. Dextran sulfate inhibits proliferation and metastasis of human gastric cancer cells via miR-34c-5p. Heliyon 2024; 10:e34859. [PMID: 39157392 PMCID: PMC11327518 DOI: 10.1016/j.heliyon.2024.e34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with a high global mortality rate that is currently difficult to treat. Dextran sulfate (DS), a safe anti-tumor agent, can effectively inhibit the malignant biological behavior of gastric cancer; however, its mechanism of action is not fully understood. Therefore, this study aimed at elucidate the potential mechanisms of action. Methods In this study we used DS to intervene in lentivirus-transfected gastric cancer cells to observe the effect of DS on miR-34c-5p. RT-qPCR, CCK-8, clone formation assay, wound healing assay, transwell assay and western blot were used to examine whether DS affects the proliferation and metastasis of gastric cancer cells via miR-34c-5p. The results were validated using in vivo experiments. Results Our data confirmed that DS up-regulated miR-34c-5p expression in human gastric cancer cells. Moreover, DS intervention enhanced the inhibitory effect of miR-34c-5p over-expression on the proliferation, invasion, and migration of gastric cancer cells, and partially reversed the promotive effect of miR-34c-5p on the proliferation, invasion, and migration of gastric cancer cells. In addition, DS could affect the activation of the MAP2K1/ERK signaling pathway through the up-regulation of miR-34c-5p, thereby inhibiting the malignant biological behavior of gastric cancer. Finally, it was demonstrated that DS could also inhibit the expression of MAP2K1 in vivo, which in turn inhibits the activation of the ERK signaling pathway to exert anti-cancer effects. Conclusion DS may inhibit the proliferation and metastasis of gastric cancer cells by regulating miR-34c-5p, which may be a new option for clinical treatment.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Heze Third People's Hospital, Heze, China
| | - Qian Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- College of Life Sciences, Ningxia University, Yinchuan, China
| | - Wenwei Gao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhaojun Li
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Guangfu Yu
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bing Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanyi Xu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China
| |
Collapse
|
3
|
The function of Piezo1 in hepatoblastoma metastasis and its potential transduction mechanism. Heliyon 2022; 8:e10301. [PMID: 36097495 PMCID: PMC9463386 DOI: 10.1016/j.heliyon.2022.e10301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hepatoblastoma (HB) is the most common primary malignant liver tumor in children. The prognosis of HB metastasis is poor, despite the increasing diversity of treatment. Piezo, a ubiquitously expressed membrane mechano-transduction protein, is involved in the process of tumor cell migration. Under the gene expression profiling interactive analysis (GEPIA) database, Piezo1 was highly expressed in HB and negatively correlated with the overall survival time. Methods Firstly, the expression of Piezo1 in both paracancerous and HB tissues (n = 7) was detected, and the prognostic value of Piezo1 was assessed in HB (n = 160) patients. Secondly, the inhibition and overexpression of Piezo1were executed in two HB cell lines, HepG2 and Huh 6. Methyl thiazolyl tetrazolium (MTT), wound healing and trans-well assays were performed to identify the effect of Piezo1 on the proliferation and metastasis of HB cells, respectively. In addition, a co-immunoprecipitation assay was performed to determine whether Piezo1 has an interaction with HIF-1α. Finally, the expressions level of Piezo1, HIF-1α, and VEGF by overexpression/inhibition each other were detected by RT-qPCR and western blots to find a possible signaling channel in HB metastasis. Results We found that Piezo1 was highly expressed in HB tissues and associated with poor prognosis of patients. Piezo1 was related to cell proliferation in HepG2 and Huh 6 cells. We also found that Piezo1 stimulated HIF-1α expression. Meanwhile, overexpression of Piezo1 promoted the migration and invasion of HB cells, while the promotion was not detected when HIF-1α was suppressed. Additionally, the silencing of HIF-1α inhibited the expression of VEGF, but showed no effect on Piezo1 expression. Conclusion In this study, we identified that Piezo1 was involved in HB metastasis, and the Piezo1-HIF-1α-VEGF axis could be a possible signaling pathway in HB metastasis.
Collapse
|
4
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|
5
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
6
|
Wang X, Cheng G, Miao Y, Qiu F, Bai L, Gao Z, Huang Y, Dong L, Niu X, Wang X, Li Y, Tang H, Xu Y, Song X. Piezo type mechanosensitive ion channel component 1 facilitates gastric cancer omentum metastasis. J Cell Mol Med 2021; 25:2238-2253. [PMID: 33439514 PMCID: PMC7882944 DOI: 10.1111/jcmm.16217] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The peritoneum, especially the omentum, is a common site for gastric cancer (GC) metastasis. Our aim was to expound the role and mechanisms of Piezo1 on GC omentum metastasis. A series of functional assays were performed to examine cell proliferation, clone formation, apoptosis, Ca2+ influx, mitochondrial membrane potential (MMP) and migration after overexpression or knockdown of Piezo1. A GC peritoneal implantation and metastasis model was conducted. After infection by si‐Piezo1, the number and growth of tumours were observed in abdominal cavity. Fibre and angiogenesis were tested in metastatic tumour tissues. Piezo1 had higher expression in GC tissues with omentum metastasis and metastatic lymph node tissues than in GC tissues among 110 patients. High Piezo1 expression was associated with lymph metastasis, TNM and distant metastasis. Overexpressed Piezo1 facilitated cell proliferation and suppressed cell apoptosis in GC cells. Moreover, Ca2+ influx was elevated after up‐regulation of Piezo1. Piezo1 promoted cell migration and Calpain1/2 expression via up‐regulation of HIF‐1α in GC cells. In vivo, Piezo1 knockdown significantly inhibited peritoneal metastasis of GC cells and blocked EMT process and angiogenesis. Our findings suggested that Piezo1 is a key component during GC omentum metastasis, which could be related to up‐regulation of HIF‐1α.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Guang Cheng
- Central Laboratory of Clinical Medical College, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yu Miao
- Department of GI Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fangyuan Qiu
- Department of Medical, Jining Second People's Hospital, Jining, China
| | - Lugen Bai
- Department of laboratory, Jingbian County People's Hospital, Yulin, China
| | - Zhongfei Gao
- Department of Medical, Jining First People's Hospital, Jining, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Liru Dong
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuyang Li
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Hui Tang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, China
| | - Xudong Song
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
7
|
Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo J, Cao X, Wang X, Li M. Inhibition of Nrf2/HO-1 signaling pathway by Dextran Sulfate suppresses angiogenesis of Gastric Cancer. J Cancer 2021; 12:1042-1060. [PMID: 33442403 PMCID: PMC7797653 DOI: 10.7150/jca.50605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: To investigate the role of Nrf2/HO-1 signaling pathway in angiogenesis and whether dextran sulfate (DS) could suppress angiogenesis by inhibiting Nrf2/HO-1 signaling pathway in gastric cancer. Methods:In vitro; Western blot analyzed the expression of Nrf2 in gastric cell lines. Tube formation assay observed the effect of gradient concentration DS on the angiogenic potential of HGC-27 cells. Immunofluorescence,western blot and qPCR analyzed the effects of DS on the expression of Nrf2, HO-1 and VEGF under gradient hypoxia time. Immunofluorescence,western blot,qPCR and tube formation assay analyzed the effects of up-regulating or down-regulating Nrf2/HO-1 signaling pathway on VEGF expression and angiogenic potential in HGC-27 cells. In vivo: Construct nude mouse intraperitoneal implantation metastasis model. Immunohistochemistry and western blot analyzed the effects of DS on the expression of Nrf2, HO-1, VEGF and MVD in nude mice. Immunohistochemistry detected the expression of Nrf2, HO-1, VEGF and MVD in human paracancerous tissue and gastric cancer tissues with different degrees of differentiation. Results: The expression of Nrf2 increased most significantly in HGC-27 cell line. DS reduced the angiogenic potential and the expression of Nrf2, HO-1 and VEGF in HGC-27 cells. Down-regulation of Nrf2/HO-1 signaling pathway decreased VEGF expression and angiogenic potential in HGC-27 cells. Up-regulation of Nrf2/HO-1 signaling pathway increased VEGF expression and angiogenic potential in HGC-27 cells. DS reduced the expression of Nrf2, HO-1, VEGF and MVD in nude mice. Nrf2, HO-1, VEGF and MVD showed low expression in paracancerous tissue but high expression in gastric cancer tissues. They were weak, moderate and strong in well, moderately and poorly differentiated gastric cancer tissues, respectively. Conclusion: Nrf2/HO-1 signaling pathway may positively regulate gastric cancer angiogenesis and DS may suppress the angiogenesis by inhibiting Nrf2/HO-1 signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuanyuan Yang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Qian Ma
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.,College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Shang
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiaxin Guo
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiangmei Cao
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, China
| | - Mengqi Li
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| |
Collapse
|
8
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|
9
|
Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2020; 18:124-147. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rate and extent of drug release under physiological conditions is a key factor influencing the therapeutic activity of a formulation. Real-time detection of drug release by conventional pharmacokinetics approaches is confounded by low sensitivity, particularly in the case of tissue-targeted novel drug delivery systems, where low concentrations of the drug reach systemic circulation. We present a novel fluorescence turn-on platform for real-time monitoring of drug release from nanoparticles based on reversible fluorescence quenching in fluorescein esters. Fluorescein-conjugated carbon nanotubes (CNTs) were esterified with methotrexate in solution and solid phase, followed by supramolecular functionalization with a chemoenhancer (suramin) or/and a stealth agent (dextran sulfate). Suramin was found to increase the cytotoxicity of methotrexate in A549 cells. On the other hand, dextran sulfate exhibited no effect on cytotoxicity or cellular uptake of CNTs by A549 cells, while a decrease in cellular uptake of CNTs and cytotoxicity of methotrexate was observed in macrophages (RAW 264.7 cells). Similar results were also obtained when CNTs were replaced with graphene. Docking studies revealed that the conjugates are not internalized by folate receptors/transporters. Further, docking and molecular dynamics studies revealed the conjugates do not exhibit affinity toward the methotrexate target, dihydrofolate reductase. Molecular dynamics studies also revealed that distinct features of dextran-CNT and suramin-CNT interactions, characterized by π-π interactions between CNTs and dextran/suramin. Our study provides a simple, cost-effective, and scalable method for the synthesis of nanoparticles conferred with the ability to monitor drug release in real-time. This method could also be extended to other drugs and other types of nanoparticles.
Collapse
Affiliation(s)
- Arjun Attri
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Deepak Thakur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, Punjab 147 001, India
| | - Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, United States
| | - Zhangli Peng
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois 60612, United States
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Raman Preet Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India.,Department of Pharmacy, Government Polytechnic College, Bathinda, Punjab 151 001, India
| |
Collapse
|
10
|
Jin Y, Che X, Qu X, Li X, Lu W, Wu J, Wang Y, Hou K, Li C, Zhang X, Zhou J, Liu Y. CircHIPK3 Promotes Metastasis of Gastric Cancer via miR-653-5p/miR-338-3p-NRP1 Axis Under a Long-Term Hypoxic Microenvironment. Front Oncol 2020; 10:1612. [PMID: 32903845 PMCID: PMC7443574 DOI: 10.3389/fonc.2020.01612] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
As a vital feature of the microenvironment, hypoxia, especially long-term hypoxia, is known to promote metastasis and lead to poor prognosis in solid tumors. Circular RNAs (circRNAs) participate in important processes of cell proliferation and metastasis in cancers. However, the contribution of circRNAs to metastasis under long-term hypoxia is obscure. In this study, we aim to explore specific functions of circHIPK3 in long-term hypoxia-promoting metastasis of gastric cancer (GC). The hypoxic resistant gastric cancer (HRGC) cell lines we established previously, which were tolerant to 2% O2 conditions, were used as the long-term hypoxia model. We found that circHIPK3 was upregulated by HIF-2α in HRGC cells, and circHIPK3 facilitated the migration and invasion ability of HRGC cells. Further investigation proved that circHIPK3 promoted metastasis of HRGC cells directly by interacting with miR-653-5p and miR-338-3p to relieve the suppression of neuropilin 1 (NRP1), resulting in the activation of downstream ERK and AKT pathways. Our study identified oncogene functions of circHIPK3 under a long-term hypoxic microenvironment and the possibility of using circHIPK3 as a potential biomarker of long-term hypoxia in GC. In conclusion, circHIPK3 could promote GC metastasis via the miR-653-5p/miR-338-3p-NRP1 axis under a long-term hypoxic microenvironment.
Collapse
Affiliation(s)
- Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jie Wu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yizhe Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
11
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
12
|
Xu Y, Wang X, Huang Y, Ma Y, Jin X, Wang H, Wang J. Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int J Mol Med 2018; 42:2737-2749. [PMID: 30226558 PMCID: PMC6192768 DOI: 10.3892/ijmm.2018.3855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
In the present study, the effect of dextran sulfate (DS) on the metastasis and invasion of human gastric cancer cells and its key underlying mechanism were investigated. The levels of hypoxia‑inducible factor 1α (HIF‑1α), transforming growth factor β (TGF‑β) and lysyl oxidase (LOX) expression were evaluated in human gastric cancer and peritumoral tissues by immunohistochemical analysis. Cell proliferation and apoptosis were also examined using the Cell Counting Kit‑8 assay and flow cytometry. The effect of DS on the invasion and migration of BGC‑823 cells was assessed using a Transwell assay. BGC‑823 cells were divided into the control (phosphate‑buffered saline‑treated) and experimental (DS‑treated) groups, and cultured for different times under hypoxic conditions. Subsequently, LOX and TGF‑β expression levels in the cells were measured by immunocytochemistry, immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. HIF‑1α, TGF‑β and LOX expression levels were significantly higher in human gastric cancer tissues as compared with that in adjacent tissues. DS influenced cell proliferation and apoptosis in a dose‑dependent manner. Furthermore, DS reduced the number of invaded and migrated cells. Under hypoxic conditions, DS reduced HIF‑1α, TGF‑β and LOX expression levels in BGC‑823 cells. After 12 h, the effect of combination of DS and β‑aminopropionitrile (BAPN) on LOX and TGF‑β protein levels was more significant compared with that of DS or BAPN alone. Therefore, DS may inhibit the invasion and migration of human gastric cancer cells under hypoxic conditions by influencing LOX.
Collapse
Affiliation(s)
- Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, Ningxia People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Yanmei Ma
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Xiu Jin
- Department of Pathology, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Honghong Wang
- Department of Pathology, Ningxia People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Juan Wang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| |
Collapse
|
13
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
14
|
Xu Y, Jin X, Huang Y, Wang J, Wang X, Wang H. Dextran sulfate inhibition on human gastric cancer cells invasion, migration and epithelial-mesenchymal transformation. Oncol Lett 2018; 16:5041-5049. [PMID: 30250571 PMCID: PMC6144945 DOI: 10.3892/ol.2018.9251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of the present study was to observe the influence of dextran sulfate (DS) on the proliferation, invasion and migration of AGS, BGC-23, GES-1, MGC-803 and SGC-7901 cells. Additionally, the possible inhibition mechanism of DS on BGC-823 cells epithelial-mesenchymal transition (EMT) was explored. The cells in the control and experimental group were treated with PBS and DS respectively. The effect of DS on the invasion and migration of these five types of cells were investigated using Transwell invasion and migration assays. Immunocytochemistry, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) assays were used to measure gene and protein expression of hypoxia-inducible factor 1α (HIF1-a) and EMT associated factors [Twist, E-cadherin, N-cadherin and β-catenin] of BGC-823 cells. According to the results of CCK-8, DS significantly decreased the proliferation of AGS, SGC-7901 and BGC-823 cells to different extents, but there were no notable differences for MGC-803 cells. Transwell migration and invasion results demonstrated that, compared with the control group, DS reduced the migration and invasion of every types of cells to different extents, and the inhibition to BGC-823 cells invasion is the most notably. Immunofluorescence, RT-PCR and western blot analysis results indicated that HIF-1α, Twist and N-cad expressions levels had different degrees of reduction in the experimental group following DS treatment; however, the expression level of E-cad had increased. In conclusion, DS inhibited the proliferation of AGS, BGC-823, SGC-7901 and GES-1 cells, the inhibition degree may be associated with the differentiation degree of every cancer cell, the higher the differentiation degree, the stronger the inhibition. DS inhibited migration and invasion of the five types of gastric cancer cells in different degree. DS may inhibit EMT of BGC-823 by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiu Jin
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, Ningxia People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Juan Wang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiaofei Wang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Honghong Wang
- Department of Pathology, Ningxia People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
15
|
Chen KB, Chen J, Jin XL, Huang Y, Su QM, Chen L. Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed Rep 2018; 8:503-509. [PMID: 29774141 DOI: 10.3892/br.2018.1088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
The prognosis of patients with peritoneal dissemination from gastric cancer is poor, and the underlying molecular mechanism remains unclear. Exosomes, as macromolecular phospholipid bilayer vesicles comprising of proteins, nucleic acids and lipids, serve as mediators of cell-cell communication. Gastric cancer tumor-derived exosomes may be involved in the pathological process of peritoneal dissemination by mediating crosstalk between cancer cells and mesothelial cells, to result in the induction of enhanced tumor growth, migratory, adhesive and invasive abilities, peritoneal fibrosis and apoptosis, mesothelial-to-mesenchymal transition, angiogenesis and chemoresistance. The present review focuses on previous studies addressing the exosome-dependent molecular transfer in peritoneal dissemination in gastric cancer and the potential clinical applications.
Collapse
Affiliation(s)
- Kai-Bo Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jian Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiao-Li Jin
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yi Huang
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Qiu-Ming Su
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Li Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
16
|
Zhao X, Yu D, Yang J, Xue K, Liu Y, Jin C. Knockdown of Snail inhibits epithelial-mesenchymal transition of human laryngeal squamous cell carcinoma Hep-2 cells through the vitamin D receptor signaling pathway. Biochem Cell Biol 2017; 95:672-678. [PMID: 28806534 DOI: 10.1139/bcb-2017-0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been well documented that Snail plays a decisive role in various tumors. However, the direct effect of Snail on laryngeal squamous cell carcinoma (LSCC) has not been elaborated. In this study, we firstly detected the expression of Snail in 14 samples of patients with LSCC and found that its content was high in cancer tissues compared with adjacent tissues. Then we established LSCC Hep-2 cells with Snail silencing and validated the knockdown efficiency by Western blotting and real-time PCR. Results showed that silencing of Snail significantly inhibited the ability of adhesion, migration, and invasion of Hep-2 cells. Further study revealed that knockdown of Snail suppressed the epithelial-mesenchymal transition (EMT) process of Hep-2 cells, as evidenced by downregulation of matrix metallopeptidase (MMP)-2, MMP-9, integrin subunit beta 1 (ITGβ1), β-catenin, vimentin, N-cadherin, and fibronectin and upregulation of vitamin D receptor (VDR) and E-cadherin. Additionally, transfection with the small interfering RNA of VDR reversed the effect induced by Snail silencing in Hep-2 cells. Taken together, these results demonstrate that knockdown of Snail can inhibit the EMT process of LSCC cells through the VDR signaling pathway in vitro.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Jingpu Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yan Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chunshun Jin
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|