1
|
Radnai L, Young EJ, Kikuti C, Hafenbreidel M, Stremel RF, Lin L, Toth K, Pasetto P, Jin X, Patel A, Conlon M, Briggs S, Heidsieck L, Sweeney HL, Sellers J, Krieger-Burke T, Martin WH, Sisco J, Young S, Pearson P, Rumbaugh G, Araldi GL, Duddy SK, Cameron MD, Surman M, Houdusse A, Griffin PR, Kamenecka TM, Miller CA. Development of Clinically Viable Non-Muscle Myosin II Small Molecule Inhibitors with Broad Therapeutic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617018. [PMID: 39416074 PMCID: PMC11482808 DOI: 10.1101/2024.10.07.617018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Non-muscle myosin II (NMII), a molecular motor that regulates critical processes such as cytokinesis and neuronal synaptic plasticity, has substantial therapeutic potential. However, translating this potential to in vivo use has been hampered by the lack of selective tools. The most prototypical non-selective inhibitor, blebbistatin inactivates both NMII and cardiac myosin II (CMII), a key regulator of heart function. Using rational drug design, we developed a series of NMII inhibitors that improve tolerability by selectively targeting NMII over CMII, including MT-228, which has excellent properties such as high brain penetration and efficacy in preclinical models of stimulant use disorder, which has no current FDA-approved therapies. The structure of MT-228 bound to myosin II provides insight into its 17-fold selectivity for NMII over CMII. MT-228's broad therapeutic window opens the door to new disease treatments and provides valuable tools for the scientific community, along with promising leads for future medication development. Highlights Research suggests numerous indications, from axon regeneration and cancer, would benefit from a small molecule inhibitor of non-muscle myosin II, a molecular motor that regulates the actin cytoskeleton. Current chemical probe options are very limited and lack sufficient safety for in vivo studies, which we show is primarily due to potent inhibition of cardiac myosin II.Rational design that focused on improving target selectivity over the pan-myosin II inhibitor, blebbistatin, led to the identification of MT-228, a small molecule inhibitor with a wide therapeutic window.High-resolution structure of MT-228 bound to myosin II reveals that selectivity results from a different positioning compared to blebbistatin and an important sequence difference between cardiac and non-muscle myosin II in the inhibitor binding pocket.A single administration of MT-228 shows long-lasting efficacy in animal models of stimulant use disorder, a current unmet and rapidly escalating need with no FDA-approved treatments.
Collapse
|
2
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
3
|
Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, Wang Y, Wang Y, Zhou H. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421763. [PMID: 39149512 PMCID: PMC11325155 DOI: 10.3389/fcell.2024.1421763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.
Collapse
Affiliation(s)
- Zixuan Gou
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ye Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
5
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
6
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
7
|
Lei Q, Yuan B, Liu K, Peng L, Xia Z. A novel prognostic related lncRNA signature associated with amino acid metabolism in glioma. Front Immunol 2023; 14:1014378. [PMID: 37114036 PMCID: PMC10126287 DOI: 10.3389/fimmu.2023.1014378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background Glioma is one of the deadliest malignant brain tumors in adults, which is highly invasive and has a poor prognosis, and long non-coding RNAs (lncRNAs) have key roles in the progression of glioma. Amino acid metabolism reprogramming is an emerging hallmark in cancer. However, the diverse amino acid metabolism programs and prognostic value remain unclear during glioma progression. Thus, we aim to find potential amino-related prognostic glioma hub genes, elaborate and verify their functions, and explore further their impact on glioma. Methods Glioblastoma (GBM) and low-grade glioma (LGG) patients' data were downloaded from TCGA and CCGA datasets. LncRNAs associated with amino acid metabolism were discriminated against via correlation analysis. LASSO analysis and Cox regression analysis were conducted to identify lncRNAs related to prognosis. GSVA and GSEA were performed to predict the potential biological functions of lncRNA. Somatic mutation data and CNV data were further built to demonstrate genomic alterations and the correlation between risk scores. Human glioma cell lines U251 and U87-MG were used for further validation in vitro experiments. Results There were eight amino-related lncRNAs in total with a high prognostic value that were identified via Cox regression and LASSO regression analyses. The high risk-score group presented a significantly poorer prognosis compared with the low risk-score group, with more clinicopathological features and characteristic genomic aberrations. Our results provided new insights into biological functions in the above signature lncRNAs, which participate in the amino acid metabolism of glioma. LINC01561 is one of the eight identified lncRNAs, which was adopted for further verification. In in vitro experiments, siRNA-mediated LINC01561 silencing suppresses glioma cells' viability, migration, and proliferation. Conclusion Novel amino-related lncRNAs associated with the survival of glioma patients were identified, and a lncRNA signature can predict glioma prognosis and therapy response, which possibly has vital roles in glioma. Meanwhile, it emphasized the importance of amino acid metabolism in glioma, particularly in providing deeper research at the molecular level.
Collapse
Affiliation(s)
- Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Yuan
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kun Liu
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Peng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| |
Collapse
|
8
|
You GR, Chang JT, Li YL, Huang CW, Tsai YL, Fan KH, Kang CJ, Huang SF, Chang PH, Cheng AJ. MYH9 Facilitates Cell Invasion and Radioresistance in Head and Neck Cancer via Modulation of Cellular ROS Levels by Activating the MAPK-Nrf2-GCLC Pathway. Cells 2022; 11:cells11182855. [PMID: 36139430 PMCID: PMC9497050 DOI: 10.3390/cells11182855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
The MYH9 (Myosin heavy chain 9), an architecture component of the actomyosin cytoskeleton, has been reported to be dysregulated in several types of cancers. However, how this molecule contributes to cancer development is still obscure. This study deciphered the molecular function of MYH9 in head and neck cancer (HNC). Cellular methods included clonogenic survival, wound-healing migration, and Matrigel invasion assays. Molecular techniques included RT-qPCR, western blot, luciferase reporter assays, and flow cytometry. Clinical association studies were undertaken by TCGA data mining, Spearman correlation, and Kaplan-Meier survival analysis. We found that MYH9 was overexpressed in tumors and associated with poor prognosis in HNC patients. MYH9 promoted cell motility along with the modulation of the extracellular matrix (fibronectin, ITGA6, fascin, vimentin, MMPs). Also, MYH9 contributed to radioresistance and was related to the expression of anti-apoptotic and DNA repairing molecules (XIAP, MCL1, BCL2L1, ATM, RAD50, and NBN). Mechanically, MYH9 suppressed cellular ROS levels, which were achieved by activating the pan-MAPK signaling molecules (Erk, p38, and JNK), the induction of Nrf2 transcriptional activity, and the up-regulation of antioxidant enzymes (GCLC, GCLM, GPX2). The antioxidant enzyme GCLC was further demonstrated to facilitate cell invasion and radioresistance in HNC cells. Thus, MYH9 exerts malignant functions in HNC by regulating cellular ROS levels via activating the MAPK-Nrf2-GCLC signaling pathway. As MYH9 contributes to radioresistance and metastasis, this molecule may serve as a prognostic biomarker for clinical application. Furthermore, an in vivo study is emergent to support the therapeutic potential of targeting MYH9 to better manage refractory cancers.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yan-Liang Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chi-Wei Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Liang Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Jan Kang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otorhinolaryngology, Chang Gung Memorial Hospital-LinKou, Taoyuan 33305, Taiwan
| | - Shiang-Fu Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Otorhinolaryngology, Chang Gung Memorial Hospital-LinKou, Taoyuan 33305, Taiwan
| | - Po-Hung Chang
- Department of Otorhinolaryngology, Chang Gung Memorial Hospital-LinKou, Taoyuan 33305, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118-800
| |
Collapse
|
9
|
Chen W, Wang W, Sun X, Xie S, Xu X, Liu M, Yang C, Li M, Zhang W, Liu W, Wang L, Zhou T, Yang Y. NudCL2 regulates cell migration by stabilizing both myosin-9 and LIS1 with Hsp90. Cell Death Dis 2020; 11:534. [PMID: 32665550 PMCID: PMC7360774 DOI: 10.1038/s41419-020-02739-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell migration plays pivotal roles in many biological processes; however, its underlying mechanism remains unclear. Here, we find that NudC-like protein 2 (NudCL2), a cochaperone of heat shock protein 90 (Hsp90), modulates cell migration by stabilizing both myosin-9 and lissencephaly protein 1 (LIS1). Either knockdown or knockout of NudCL2 significantly increases single-cell migration, but has no significant effect on collective cell migration. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudCL2 binds to myosin-9 in mammalian cells. Depletion of NudCL2 not only decreases myosin-9 protein levels, but also results in actin disorganization. Ectopic expression of myosin-9 efficiently reverses defects in actin disorganization and single-cell migration in cells depleted of NudCL2. Interestingly, knockdown of myosin-9 increases both single and collective cell migration. Depletion of LIS1, a NudCL2 client protein, suppresses both single and collective cell migration, which exhibits the opposite effect compared with myosin-9 depletion. Co-depletion of myosin-9 and LIS1 promotes single-cell migration, resembling the phenotype caused by NudCL2 depletion. Furthermore, inhibition of Hsp90 ATPase activity also reduces the Hsp90-interacting protein myosin-9 stability and increases single-cell migration. Forced expression of Hsp90 efficiently reverses myosin-9 protein instability and the defects induced by NudCL2 depletion, but not vice versa. Taken together, these data suggest that NudCL2 plays an important role in the precise regulation of cell migration by stabilizing both myosin-9 and LIS1 via Hsp90 pathway.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China
| | - Xiaoxia Sun
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Shanshan Xie
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyang Xu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Min Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chunxia Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Min Li
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wen Zhang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wei Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Liangjing Wang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Tianhua Zhou
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- The Cancer Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, China.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Yuehong Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
10
|
Wu Y, Du H, Zhan M, Wang H, Chen P, Du D, Liu X, Huang X, Ma P, Peng D, Sun L, Yuan S, Ding J, Lu L, Jiang J. Sepiapterin reductase promotes hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner. Cell Death Dis 2020; 11:248. [PMID: 32312975 PMCID: PMC7170898 DOI: 10.1038/s41419-020-2471-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022]
Abstract
Sepiapterin reductase plays an enzymatic role in the biosynthesis of tetrahydrobiopterin, which is reported in limited studies to regulate the progression of several tumors. However, the role of sepiapterin reductase in hepatocellular carcinoma remains largely unknown. Here, we found that sepiapterin reductase was frequently highly expressed in human hepatocellular carcinoma, which was significantly associated with higher T stage, higher tumor node metastasis stage, and even shorter survival of hepatocellular carcinoma patients. Furthermore, cell and animal experiments showed that sepiapterin reductase depletion inhibited cancer cell proliferation and promoted cancer cell apoptosis. Importantly, the results suggested that sepiapterin reductase enzymatic activity was not necessary for the progression of hepatocellular carcinoma, based on the comparison between SMMC-7721 and SMMC-7721 containing sepiapterin reductase mutant. Moreover, we showed that sepiapterin reductase regulated the development of hepatocellular carcinoma via the FoxO3a/Bim-signaling pathway. Collectively, our study suggests that sepiapterin reductase controls hepatocellular carcinoma progression via FoxO3a/Bim signaling in a nonenzymatic manner, which provides a potential prognostic factor and therapeutic strategy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, No.16, Huangjiahu Road West, Wuhan, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hongxv Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xinyi Liu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Xingxv Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, China
| | - Dezheng Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jian Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Gao Y, Khan GJ, Wei X, Zhai KF, Sun L, Yuan S. DT-13 inhibits breast cancer cell migration via non-muscle myosin II-A regulation in tumor microenvironment synchronized adaptations. Clin Transl Oncol 2020; 22:1591-1602. [PMID: 32056128 DOI: 10.1007/s12094-020-02303-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor metastasis is a terrifying characteristic of cancer. Numerous studies have been conducted to overcome metastasis by targeting tumor microenvironment (TME). However, due to complexity of tumor microenvironment, it remained difficult for accurate targeting. Dwarf-lillytruf tuber monomer-13 (DT-13) possess good potential against TME. OBJECTIVE As TME is supportive for tumor metastasis, alternatively it is a challenging for therapeutic intervention. In our present study, we explored molecular mechanism through which TME induced cell migration and how DT-13 interferes in this mechanism. METHODS We used a novel model of co-culture system which is eventually developed in our lab. Tumor cells were co-cultured with hypoxia induced cancer-associated fibroblasts (CAF) or with chemically induced cancer-associated adipocytes (CAA). The effect of hypoxia in conditioned medium for CAF was assessed through expression of α-SMA and HIF by western blotting while oil red staining was done to assess the successful chemical induction for adipocytes (CAA), the effect of TME through conditioned medium on cell migration was analyzed by trans-well cell migration, and cell motility (wound healing) analyses. The expression changes in cellular proteins were assessed through western blotting and immunofluorescent studies. RESULTS AND CONCLUSION Our results showed that tumor microenvironment has a direct role in promoting breast cancer cell migration by stromal cells; moreover, we found that DT-13 restricts this TME regulated cell migration via targeting stromal cells in vitro. Additionally we also found that DT-13 targets NMII-A for its effect on breast cancer cell migration for the regulation of stromal cells in TME.
Collapse
Affiliation(s)
- Y Gao
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - G J Khan
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.,Faculty of Pharmacy (FOP), University of Central Punjab, Lahore, Pakistan
| | - X Wei
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - K-F Zhai
- Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering, Suzhou University, 49, Bianhe Road, Suzhou, 234000, People's Republic of China.
| | - L Sun
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| | - S Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
12
|
Khan GJ, Sun L, Abbas M, Naveed M, Jamshaid T, Baig MMFA, Yuan S. In-vitro Pre-Treatment of Cancer Cells with TGF-β1: A Novel Approach of Tail Vein Lung Cancer Metastasis Mouse Model for Anti-Metastatic Studies. Curr Mol Pharmacol 2019; 12:249-260. [PMID: 30848226 DOI: 10.2174/1874467212666190306165703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Aggressive behavior of tumor metastasis comes from certain mutations,
changes in cellular metabolic and signaling pathways that are majorly altered by tumor microenvironment
(TME), its other components and growth factors like transforming growth factor-β1 (TGF-β1)
which is chiefly known for its epithelial to mesenchymal transformation (EMT). EMT is a critical step
of metastasis cascade in actual human lung cancer scenario.
Objective:
Our present study is focused on unveiling the in-vivo metastatic behavior of TGF-β1 treated
lung cancer cells that undergo EMT.
Methods:
The lung cancer epithelial A549 cells were treated in-vitro with TGF-β1 (3-5ng/ml for 72 h)
for EMT. After confirming the transformation of cells by phenotype modifications, wound healing and
cell migration assay and qRT-PCR analyses of EMT biomarkers including E. Cadherin, Vimentin,
Snail, Slug, MMP2 and MMP9; those TGF-β1 modified cells were probed with fluorescent trackers and
were injected into the tail vein of BALB/c nude mice for metastatic dissemination studies.
Results:
Our findings indicate that the distribution of TGF-β1 treated A549 cells as compared to W.T
A549 towards lungs is less in terms of total relative fluorescent cluster count, however, the difference is
insignificant (52±4, 60±5 respectively). Additionally, we show that TGF-β1 treated cells tend to metastasize
almost 2, 3, 1.5, 2 and 1.7 times more than W.T towards liver, brain, ovaries, bones and adrenal
gland, respectively, which is very much like human lung cancer metastasis.
Conclusion:
Conclusively, it is the first study ever reporting that a pre-treatment of cells with TGF-β1
for experimental lung cancer metastasis mouse model may portray a more precise approach for the
development of potential therapeutic treatments. Additional pre-treatment studies with the application
of other TME conditions like hypoxia and factors like NFκB, VEGF etc. may be a future prospect to
develop a better understanding.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Muhammad Abbas
- State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, Nanjing, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Talha Jamshaid
- Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shengtao Yuan
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
He J, Wei X, Li S, Quan X, Li R, Du H, Yuan S, Sun L. DT-13 suppresses breast cancer metastasis by modulating PLOD2 in the adipocytes microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152778. [PMID: 31005809 DOI: 10.1016/j.phymed.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Metastasis is the main cause of death in breast cancer and previous researches have indicated the pivotal role of adipocytes in breast cancer metastasis. DT-13, the saponin monomer 13 of the Dwarf lilyturf tuber, has been proved to exert potential anti-metastatic effect, the detailed mechanisms have not been well elucidated and the role of DT-13 in modulating adipocyte-breast cancer microenvironment has been given little attention. PURPOSE This study aims to explore the mechanisms of DT-13 in inhibiting breast cancer metastasis and whether DT-13 inhibit breast cancer metastasis via modulating the interactions between adipocytes and breast cancer cells. METHODS The cytotoxic effect of DT-13 on breast cancer cell viability was detected by MTT assay. Migration assays was used to conduct the effect of DT-13 on breast cancer cells migration. Orthotopic xenograft tumor model was used to test the effect of DT-13 on breast cancer metastasis. qRT-PCR and Western blot were used to investigate the mechanisms of DT-13 inhibiting breast cancer metastasis. RESULTS DT-13 inhibited breast cancer cells migration at the concentration without cytotoxicity. Furthermore, DT-13 decreased PLOD2 expression through modulating JAK/STAT3 and PI3K/AKT signaling pathways directly or indirectly in the adipocyte-breast cancer microenvironment. Orthotopic implantation mouse model of breast cancer further confirmed that DT-13 inhibited breast cancer metastasis via downregulating PLOD2 in vivo. CONCLUSION DT-13 suppressed breast cancer metastasis via reducing the expression of PLOD2.
Collapse
Affiliation(s)
- Jinyong He
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaohui Wei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Sijing Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xingping Quan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ruiming Li
- Tasly Research Institute, Tianjin Tasly Hodling Group Co., Ltd., Tianjin, China
| | - Hongzhi Du
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Wei X, Mao T, Li S, He J, Hou X, Li H, Zhan M, Yang X, Li R, Xiao J, Yuan S, Sun L. DT-13 inhibited the proliferation of colorectal cancer via glycolytic metabolism and AMPK/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:120-131. [PMID: 30668361 DOI: 10.1016/j.phymed.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 09/03/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Emerging hallmark of cancer is reprogrammed cellular metabolism, increased glycolytic metabolism is physiological characteristic of human malignant neoplasms. Saponin monomer 13 of the dwarf lilyturf tuber (DT-13) is the main steroidal saponin from Liriopes Radix, which has been reported to exert anti-inflammation and anti-tumor activities but low toxicity to normal tissue. However, the effect of DT-13 on metabolism process is still unclear. PURPOSE This study aims to characterize the role of DT-13 in glucose metabolism in colorectal cancer cells, and investigate whether the metabolism process is involved in the anti-cancer response of DT-13. METHODS Colony formation assay was employed to determine anti-proliferative effect induced by DT-13 at 2.5, 5, 10 μM. Apoptosis and cell cycle arrest were detected by Annexin V/PI staining and PI staining, respectively. Genetic inhibition of glycolytic metabolism was carried out by knockdown of GLUT1. Orthotopic implantation mouse model of colorectal cancer was used to assess in vivo antitumor effect of DT-13 (0.625, 1.25, 2.5 mg/kg). The chemoprevention effect of DT-13 (10mg/kg) was evaluated by using C57BL/6J APCmin mice model. Glycolytic-related key enzymes and AMPK pathway were detected by using quantitative real-time PCR, western blotting, and immunohistochemical staining. RESULTS Our results showed that cell proliferation was significantly inhibited by DT-13 in a dose-dependent manner. DT-13 inhibited glucose uptake, ATP generation, and reduced lactate production. Furthermore, DT-13 remarkably inhibited GLUT1 expression in both mRNA and protein levels. Knocking down of GLUT1 led to reduced inhibition of glucose uptake after DT-13 treatment. Moreover, deletion of GLUT1 decreased inhibitory ratio of DT-13 on cancer growth. Orthotopic implantation mouse model of colorectal cancer further confirmed that DT-13 inhibited colorectal cancer growth via blocking GLUT1 in vivo. In addition, C57BL/6J APCmin mice model revealed that DT-13 dramatically reduced the total number of spontaneous adenomas in intestinal, which further confirmed the anti-tumor activity of DT-13 in colorectal cancer. Furthermore, the mechanistically investigation showed DT-13 activated AMPK and inhibited m-TOR to block cancer growth in vitro. CONCLUSION DT-13 is a potent anticancer agent for colorectal cancer.
Collapse
Affiliation(s)
- Xiaohui Wei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Tingting Mao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Sijing Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jinyong He
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meixiao Zhan
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Xiangyu Yang
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Ruiming Li
- Tasly Research Institute, Tianjin Tasly Holding Group Co. Ltd., Tianjin 300410, China
| | - Jing Xiao
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong, China.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Li Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Abbas M, Ahmed A, Khan GJ, Baig MMFA, Naveed M, Mikrani R, Cao T, Naeem S, Shi M, Dingding C. Clinical evaluation of carcinoembryonic and carbohydrate antigens as cancer biomarkers to monitor palliative chemotherapy in advanced stage gastric cancer. Curr Probl Cancer 2018; 43:5-17. [PMID: 30172422 DOI: 10.1016/j.currproblcancer.2018.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carcinoembryonic antigen (CEA), carbohydrate antigen (CA)-125, CA19-9, and CA72-4 are often found modulated parameters in gastric cancer. OBJECTIVE Our present study is focused to evaluate the synchronization of these biomarkers in response to palliative chemotherapy. METHOD A retrospective study was conducted on 216 gastric cancer patients undergoing first-line cisplatin chemotherapy along with antiangiogenic regimen. Blood samples were taken and analyzed biochemically and statistically. RESULTS Progression occurred in 78 of 216 patients and the median progression-free survival (PFS) was 5 months. For serum CEA, the median PFS was 4 versus 7 months for elevated and normal groups respectively (P = 0.01). The median PFS for normal and elevated CA19-9 and CA72-4 was 6 vs 4 months respectively (P = 0.001). In the multivariate Cox regression model, elevated pretreatment level of CEA, CA19-9, and distant metastases were independent factors associated with increased risk of progression (P = 0.021, P = 0.000, P = 0.006, respectively). CONCLUSIONS Conclusively, elevated pretreatment level of CEA and CA19-9 is correlated with high risk of progression and worse prognosis. Moreover, an additional antiangiogenic therapy is more effective in decreasing cancer biomarker level after palliative chemotherapy that may be correlated with therapeutic triumph.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China; Department of Oncology, Jiangsu Cancer Hospital, Jiangsu institute of cancer research, Nanjing medical university affiliated cancer hospital Nanjing 210009, Jiangsu, PR China
| | - Abrar Ahmed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China; Department of Oncology, Jiangsu Cancer Hospital, Jiangsu institute of cancer research, Nanjing medical university affiliated cancer hospital Nanjing 210009, Jiangsu, PR China
| | - Ghulam Jilany Khan
- Jiangsu key laboratory of Drug Screening, Evaluation and Pharmacodynamics Research, China Pharmaceutical University, Nanjing, PR China; Department of Pharmacology and Therapeutics, Faculty of Pharmacy (FOP), University of Central Punjab, Lahore, Pakistan; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China.
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, PR China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China
| | - Tengli Cao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China
| | - Shagufta Naeem
- Department of Pathology, Ayub Medical College, Abbottabad, Pakistan.
| | - Meiqi Shi
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu institute of cancer research, Nanjing medical university affiliated cancer hospital Nanjing 210009, Jiangsu, PR China.
| | - Chen Dingding
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, PR China.
| |
Collapse
|
16
|
Abbas M, Faggian A, Sintali DN, Khan GJ, Naeem S, Shi M, Dingding C. Current and future biomarkers in gastric cancer. Biomed Pharmacother 2018; 103:1688-1700. [DOI: 10.1016/j.biopha.2018.04.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
|
17
|
Hou X, Du H, Yang R, Qi J, Huang Y, Feng S, Wu Y, Lin S, Liu Z, Jia AQ, Yuan S, Sun L. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi. Int J Mol Med 2018; 41:2793-2801. [PMID: 29484370 PMCID: PMC5846669 DOI: 10.3892/ijmm.2018.3502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidissima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima.
Collapse
Affiliation(s)
- Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Rui Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Jing Qi
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Yue Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Shuyun Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Zhixin Liu
- Guangxi Gui RenTang Co., Ltd., Fangchenggang 538021, P.R. China
| | - Ai-Qun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009
| |
Collapse
|
18
|
Khan GJ, Rizwan M, Abbas M, Naveed M, Boyang Y, Naeem MA, Khan S, Yuan S, Baig MMFA, Sun L. Pharmacological effects and potential therapeutic targets of DT-13. Biomed Pharmacother 2018; 97:255-263. [PMID: 29107216 DOI: 10.1016/j.biopha.2017.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022] Open
|
19
|
Du H, Liu Y, Chen X, Yu X, Hou X, Li H, Zhan M, Lin S, Lu L, Yuan S, Sun L. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur J Pharmacol 2017; 818:124-131. [PMID: 29037767 DOI: 10.1016/j.ejphar.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Natural medicine has multi-levels, multi-paths and multi-targets, and an increasing number of reports have confirmed that the combination of natural medicine with chemotherapy drugs exhibit a significant synergistic effect. It is necessary to find drug combination strategies to enhance efficacy and reduce toxicity, which can relieve the restrictions on the use of several chemotherapy drugs that have serious toxicity. Our previous reports showed that DT-13 inhibits cancer proliferation, invasion, migration, metastasis, and angiogenesis and induces autophagy. In this study, we evaluated the anti-proliferation effect of DT-13 on a panel of 40 different cancer cell lines for the first time. Moreover, it is also the first time that the combination of DT-13 with 5 different chemotherapy drugs on 3 common cancer cells has been examined. We further confirmed that DT-13 enhanced the sensitivity of gastric cancer cells to topotecan (TPT) via cell cycle arrest in vitro and in vivo. Considering that TPT has been subjected to restriction because of its serious toxicity, DT-13 showed the ability to enhance its effect and reduce its toxicity, which could provide a strategy to reduce the toxic and clinical side effects of TPT.
Collapse
Affiliation(s)
- Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xudong Chen
- Department of Intervention Treatment, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaowen Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meixiao Zhan
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China
| | - Sensen Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ligong Lu
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital of Tongji University, Zhuhai, Guangdong, China.
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC. Cell Death Dis 2017; 8:e3143. [PMID: 29072684 PMCID: PMC5680920 DOI: 10.1038/cddis.2017.553] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment.
Collapse
|
21
|
Zhang Y, Han Y, Zhao Y, Lv Y, Hu Y, Tan Y, Bi X, Yu B, Kou J. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway. Front Immunol 2017; 8:925. [PMID: 28855900 PMCID: PMC5557769 DOI: 10.3389/fimmu.2017.00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yuwei Han
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yanni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yang Hu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Xueyuan Bi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Zhang L, Ren B, Zhang J, Liu L, Liu J, Jiang G, Li M, Ding Y, Li W. Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:184-192. [PMID: 28571726 DOI: 10.1016/j.jep.2017.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria barbata D. Don is a widely used medicinal herb in China. It possess various medicinal properties including antioxidative, anti-inflammatory and anti-cancer effects. The aim of this study was to explore whether Scutellaria barbata D. Don could inhibit the growth of ovarian cancer cells in vitro and further investigate the underlying mechanisms. MATERIALS AND METHODS Effects of Scutellaria barbata D. Don on the viability of ovarian cancer A2780 cells were measured by MTT assay. Apoptosis was measured by cell morphologic observation through DAPI staining and Annexin V-FITC staining assay for apoptosis analysis. The migration of ovarian cancer cells which exposed to Scutellaria barbata D. Don were measured by wound healing and transwell chamber assays. The protein levels of caspase 3/9, Bcl-2 and MMP-2/9 in human ovarian cancer cells treated with Scutellaria barbata D. Don were assessed by western blotting analysis. The potential bioactive compounds were characterized by HPLC-Q-TOF-MS. RESULTS The present study was to investigate the anticancer effects of crude extracts from Scutellaria barbata D. Don on ovarian cancer A2780 cells by MTT, DAPI staining, wound healing assay, transwell migration assay and western blotting analysis. Our study showed that Scutellaria barbata D. Don reduced the viability of A2780 cells and induced apoptosis by down-regulated Bcl-2 protein and increased Caspase 3/9 proteins. Furthermore, migration of A2780 cells were significantly inhibited by Scutellaria barbata D. Don and the underlying mechanism may be related to the decrease of MMP-2/9. The main constituents from Scutellaria barbata D. Don were identified to be thirteen flavonoids. A HPLC-Q-TOF-MS analysis of Scutellaria barbata D. Don indicated the presence of 14 flavonoids compounds, which may contribute to the anticancer activity of the Scutellaria barbata D. Don. CONCLUSIONS Scutellaria barbata D. Don could inhibit proliferation and induce apoptosis in A2780 cells through mitochondrial pathway. Moreover, the inhibitory effect of Scutellaria barbata D. Don on the migration of ovarian cancer cells was associated with the down-regulation of MMP-2/9 expression. These findings could shed a light on the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jia Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Guoqiang Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Man Li
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yuejia Ding
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|