1
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Liu Y, Huang S, Dong G, Hou C, Zhao Y, Zhang D. Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer. Comput Biol Med 2024; 171:108107. [PMID: 38412692 DOI: 10.1016/j.compbiomed.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). METHODS Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. RESULTS We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. CONCLUSIONS Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Yixin Liu
- Modern Education Technology Center, Harbin Medical University, Harbin, 150080, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Chang Hou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China.
| |
Collapse
|
3
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wu H, Ye J, Zhang M, Luo H. A concise review of the regulatory, diagnostic, and prognostic implications of HOXB-AS3 in tumors. J Cancer 2024; 15:714-728. [PMID: 38213732 PMCID: PMC10777036 DOI: 10.7150/jca.91033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Recent studies have reported that HOXB-AS3 (HOXB Cluster Antisense RNA 3) is an intriguing molecule with dual functionality as a long noncoding RNA (lncRNA) and putative coding peptide in tumorigenesis and progression. The significant expression alterations of HOXB-AS3 were detected in diverse cancer types and closely correlated with clinical stage and patient survival. Furthermore, HOXB-AS3 was involved in a spectrum of biological processes in solid tumors and hematological malignancies, such as stemness, lipid metabolism, migration, invasion, and tumor growth. This review comprehensively analyzes its clinical relevance for diagnosis and prognosis across human tumors and summarizes its functional role and regulatory mechanisms in different malignant tumors, including liver cancer, acute myeloid leukemia, ovarian cancer, lung cancer, endometrial carcinoma, colon cancer, and oral squamous cell carcinoma. Overall, HOXB-AS3 emerges as a promising biomarker and novel therapeutic target in multiple human tumors.
Collapse
Affiliation(s)
- Hongze Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| | - Jiarong Ye
- Nanchang University Queen Mary School, Nanchang 330038, Jiangxi, China
| | - Mengqi Zhang
- The Second Clinical Medical College, Nanchang University, Nanchang 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| |
Collapse
|
5
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial-mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal-epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
7
|
Lu X, Chen X, Wang X, Qing J, Li J, Pan Y. Construction of lncRNA and mRNA co-expression network associated with nasopharyngeal carcinoma progression. Front Oncol 2022; 12:965088. [PMID: 35957889 PMCID: PMC9360529 DOI: 10.3389/fonc.2022.965088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Nasopharyngeal carcinoma is a type of head and neck cancer with a high incidence in men. In the past decades, the survival rate of NPC has remained around 70%, but it often leads to treatment failure due to its distant metastasis or recurrence. The lncRNA-mRNA regulatory network has not been fully elucidated. We downloaded the NPC-related gene expression datasets GSE53819 and GSE12452 from the Gene Expression Omnibus database; GSE53819 included 18 NPC tissues and 18 normal tissues, and GSE12452 included 31 NPC tissues and 10 normal tissues. Weighted gene co-expression network analysis was performed on mRNA and lncRNA to screen out modules that were highly correlated with tumor progression. The two datasets were subjected to differential analysis after removing batch effects, and then Venn diagrams were used to screen for overlapping genes in the module genes and differential genes. The lncRNA-mRNA co-expression network was then constructed, and key mRNAs were identified by MCODE analysis and expression analysis. GSEA analysis and qRT-PCR were performed on key mRNAs. Through a series of analyses, we speculated that BTK, CD72, PTPN6, and VAV1 may be independent predictors of the prognosis of NPC patients.Taken together, our study provides potential candidate biomarkers for NPC diagnosis, prognosis, or precise treatment.
Collapse
Affiliation(s)
- Xu Lu
- Ningbo First Hospital, Ningbo, China
- *Correspondence: Xu Lu,
| | - Xing Chen
- Ningbo First Hospital, Ningbo, China
| | - Xinke Wang
- Ninghai County Third Hospital, Ningbo, China
| | - Jing Qing
- Ningbo First Hospital, Ningbo, China
| | - Ji Li
- Ningbo First Hospital, Ningbo, China
| | | |
Collapse
|
8
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
9
|
Sharma U, Barwal TS, Khandelwal A, Rana MK, Rana APS, Singh K, Jain A. Circulating Long Non-Coding RNAs LINC00324 and LOC100507053 as Potential Liquid Biopsy Markers for Esophageal Squamous Cell Carcinoma: A Pilot Study. Front Oncol 2022; 12:823953. [PMID: 35237522 PMCID: PMC8882835 DOI: 10.3389/fonc.2022.823953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background Despite the availability of advanced technology to detect and treat esophageal squamous cell carcinoma (ESCC), the 5-year survival rate of ESCC patients is still meager. Recently, long non-coding RNAs (lncRNAs) have emerged as essential players in the diagnosis and prognosis of various cancers. Objective This pilot study focused on identifying circulating lncRNAs as liquid biopsy markers for the ESCC. Methodology We performed next-generation sequencing (NGS) to profile circulating lncRNAs in ESCC and healthy individuals’ blood samples. The expression of the top five upregulated and top five downregulated lncRNAs were validated through quantitative real-time PCR (qRT-PCR), including samples used for the NGS. Later, we explored the diagnostic/prognostic potential of lncRNAs and their impact on the clinicopathological parameters of patients. To unravel the molecular target and pathways of identified lncRNAs, we utilized various bioinformatics tools such as lncRnome, RAID v2.0, Starbase, miRDB, TargetScan, Gene Ontology, and KEGG pathways. Results Through NGS profiling, we obtained 159 upregulated, 137 downregulated, and 188 neutral lncRNAs in ESCC blood samples compared to healthy individuals. Among dysregulated lncRNAs, we observed LINC00324 significantly upregulated (2.11-fold; p-value = 0.0032) and LOC100507053 significantly downregulated (2.22-fold; p-value = 0.0001) in ESCC patients. Furthermore, we found LINC00324 and LOC100507053 could discriminate ESCC cancer patients’ from non-cancer individuals with higher accuracy of Area Under the ROC Curve (AUC) = 0.627 and 0.668, respectively. The Kaplan-Meier and log-rank analysis revealed higher expression levels of LINC00324 and lower expression levels of LOC100507053 well correlated with the poor prognosis of ESCC patients with a Hazard ratio of LINC00324 = 2.48 (95% CI: 1.055 to 5.835) and Hazard ratio of LOC100507053 = 4.75 (95% CI: 2.098 to 10.76)]. Moreover, we also observed lncRNAs expression well correlated with the age (>50 years), gender (Female), alcohol, tobacco, and hot beverages consumers. Using bioinformatics tools, we saw miR-493-5p as the direct molecular target of LINC00324 and interacted with the MAPK signaling pathway in ESCC pathogenesis. Conclusion This pilot study suggests that circulating LINC00324 and LOC100507053 can be used as a liquid biopsy marker of ESCC; however, multicentric studies are still warranted.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, India
| | | | | | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, Bathinda, India
| | - Amrit Pal Singh Rana
- Department of Surgery, Baba Farid University of Health Sciences, Faridkot, India
| | - Karuna Singh
- Department of Radiotherapy, Advanced Cancer Institute, Bathinda Affiliated with Baba Farid University of Health Sciences, Faridkot, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
- *Correspondence: Aklank Jain, ; orcid.org/0000-0001-5539-3225
| |
Collapse
|
10
|
Xiao J, He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res 2021; 13:8781-8794. [PMID: 34849030 PMCID: PMC8627240 DOI: 10.2147/cmar.s336265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
The crucial treatment for nasopharyngeal carcinoma (NPC) is radiation therapy supplemented by chemotherapy. However, long-term radiation therapy can cause some genetic and proteomic changes to produce radiation resistance, leading to tumour recurrence and poor prognosis. Therefore, the search for new markers that can overcome the resistance of tumor cells to drugs and radiotherapy and improve the sensitivity of tumor cells to drugs and radiotherapy is one of the most important goals of pharmacogenomics and cancer research, which is important for predicting treatment response and prognosis. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may play important roles in regulating chemo- and radiation resistance in nasopharyngeal carcinoma by controlling the cell cycle, proliferation, apoptosis, and DNA damage repair, as well as other signalling pathways. Recent research has suggested that selective modulation of ncRNA activity can improve the response to chemotherapy and radiotherapy, providing an innovative antitumour approach based on ncRNA-related gene therapy. Therefore, ncRNAs can serve as biomarkers for tumour prediction and prognosis, play a role in overcoming drug resistance and radiation resistance in NPC, and can also serve as targets for developing new therapeutic strategies. In this review, we discuss the involvement of ncRNAs in chemotherapy and radiation resistance in NPC. The effects of these molecules on predicting therapeutic cancer are highlighted.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| |
Collapse
|
11
|
Wu J, Pang R, Li M, Chen B, Huang J, Zhu Y. m6A-Induced LncRNA MEG3 Suppresses the Proliferation, Migration and Invasion of Hepatocellular Carcinoma Cell Through miR-544b/BTG2 Signaling. Onco Targets Ther 2021; 14:3745-3755. [PMID: 34163177 PMCID: PMC8214571 DOI: 10.2147/ott.s289198] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Long non-coding RNA plays an important role in the development of HCC. This study analyzed the impact of MEG3 on malignant behavior of HCC and explored its possible molecular mechanism. Methods Expression of MEG3 in HCC tissues and cell lines was measured by qRT-PCR. Transfection efficiency of MEG3 was verified by qRT-PCR. Cell proliferation, transwell migration, invasion and cell cloning assays were used to detect the effect of MEG3 on the proliferation, migration and invasion ability of HCC cells. The bioinformatics analysis was applied to predict the binding between miR-544b and MEG3 as well as BTG2. Luciferase reporter assay was performed to verify their interaction. Finally, the m6A modification of MEG3 by METTL3 was identified through RIP experiments. Results MEG3 was lowly expressed in HCC tissues and cells. Overexpression of MEG3 inhibits the proliferation, migration and invasion of HCC cells. MiR-544b can be sponged by MEG3, and overexpression of miR-544b reverses the anti-cancer effect of MEG3. We further confirmed that BTG2 gene is the target gene of miR-544b. Epigenetic studies have shown that METTL3-mediated N6-methyladenosine modification led to MEG3 downregulation. Conclusion In HCC, MEG3 and BTG2 are lowly expressed while miR-544b is highly expressed. MEG3 regulates the expression of BTG2 through miR-544b, thus affecting the malignant behavior of HCC. METTL3 regulates the m6A modification of MEG3 and its expression. This study clarified the role of MEG3/miR-544b/BTG2 axis in HCC and also provided new targets for HCC research.
Collapse
Affiliation(s)
- Jian Wu
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Runhua Pang
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Minan Li
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Bin Chen
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Junhai Huang
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yaqing Zhu
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| |
Collapse
|
12
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
13
|
Campion NJ, Ally M, Jank BJ, Ahmed J, Alusi G. The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene 2021; 40:1757-1774. [PMID: 33479496 DOI: 10.1038/s41388-020-01631-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Nasopharyngeal carcinoma (NPC) results from the aberrant and uncontrolled growth of the nasopharyngeal epithelium. It is highly associated with the Epstein-Barr virus, especially in regions where it is endemic. In the last decade, significant advances in genetic sequencing techniques have allowed the discovery of many new abnormal molecular processes that undoubtedly contribute to the establishment, growth and spread of this deadly disease. In this review, we consider NPC as EBV induced. We summarise the recent discoveries and how they add to our understanding of the pathophysiology of NPC in the context of genomics first in primary and then in recurrent disease. Overall, we find key early events lead to p16 inactivation and cyclin D1 expression, allowing latent viral infection. Host and viral factors work together to affect a variety of molecular pathways, the most fundamental being activation of NF-κB. Nonetheless, much still yearns to be discovered, especially in recurrent NPC.
Collapse
Affiliation(s)
- Nicholas J Campion
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK. .,Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Munira Ally
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jahangir Ahmed
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Ghassan Alusi
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| |
Collapse
|
14
|
Ghafouri-Fard S, Shoorei H, Abak A, Abbas Raza SH, Pichler M, Taheri M. Role of non-coding RNAs in modulating the response of cancer cells to paclitaxel treatment. Biomed Pharmacother 2020; 134:111172. [PMID: 33360156 DOI: 10.1016/j.biopha.2020.111172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel is a chemotherapeutic substance that is administered for treatment of an extensive spectrum of human malignancies. In spite of its potent short-term effects against tumor cells, resistance to paclitaxel occurs in a number of patients precluding its long-term application in these patients. Non-coding RNAs have been shown to influence response of cancer cells to this chemotherapeutic agent via different mechanisms. Mechanistically, these transcripts regulate expression of several genes particularly those being involved in the apoptotic processes. Lots of in vivo and in vitro assays have demonstrated the efficacy of oligonucleotide-mediated microRNAs (miRNA)/ long non-coding RNAs (lncRNA) silencing in enhancement of response of cancer cells to paclitaxel. Therefore, targeted therapies against non-coding RNAs have been suggested as applicable modalities for combatting resistance to this agent. In the present review, we provide a summary of studies which assessed the role of miRNAs and lncRNAs in conferring resistance to paclitaxel.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Łasińska I, Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Strzelecki NO, Lamperska K, Mackiewicz A, Mackiewicz J. Liquid lncRNA Biopsy for the Evaluation of Locally Advanced and Metastatic Squamous Cell Carcinomas of the Head and Neck. J Pers Med 2020; 10:E131. [PMID: 32947877 PMCID: PMC7564176 DOI: 10.3390/jpm10030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) are RNA molecules that are more than 200 nucleotides long and have the ability to modify the activity of genes. They can be found in both healthy and cancer tissues, as well as in plasma, saliva and other bodily fluids. They can also be used as biomarkers of early detection, prognosis and chemotherapy resistance in several cancer types. Treatment of head and neck squamous cell carcinoma (HNSCC) patients with locally advanced disease is still difficult, and choice of treatment should be based on more precise and available biomarkers, such as those obtained from a liquid biopsy. For improvement of treatment efficacy, identification and clinical implementation of new biomarkers are of the utmost importance. Methods: Plasma samples drawn before (p1) and three cycles post (p2) (TPF: docetaxel, cisplatin, 5-fluorouracil/PF: cisplatin, 5-fluorouracil) chemotherapy from 53 HNSCC patients (17 with locally advanced and 36 with metastatic disease) and 14 healthy volunteers were studied. Expression levels of 90 lncRNA expression were analyzed using the qRT-PCR method, and the obtained results were compared between proper groups. Statistical analyses were carried out using Jupyter Notebooks (5.7.2), Python (ver. 3.6) and GraphPad Prism 8. Results: The study demonstrated the differences between the expressions of several lncRNA in cancer patients' and healthy volunteers' plasma, as well as between locally advanced and metastatic patients' groups. A correlation between the response to systemic therapy and lncRNA expression levels was observed. Patients with a (high/low) expression of Alpha 250 and Emx2os showed statistically significant differences in progression free survival (PFS), as well as for overall survival (OS) depending on the level of Alpha 250, snaR, SNHG1. The univariate and multivariate Cox regression model showed Alpha 250 as the best prognostic factor for HNSCC patients. Conclusions: Liquid biopsies based on lncRNAs are promising diagnostic tools that can be used to differentiate between those with cancer and healthy individuals. Additionally, they can also serve as biomarkers for chemotherapy resistance. An identified, circulating lncRNA Alpha 250 seems to prove the best prognostic biomarker, associated with extended PFS and OS, and should be validated in a larger cohort in the future.
Collapse
Affiliation(s)
- Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznan, Poland
- Specialist Nursing Laboratory, Faculty of Medicine and Health Science, University of Zielona Góra, Energetyków Street 2, 65-00 Zielona Gora, Poland
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.K.); (J.S.); (N.O.S.); (A.M.)
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, room 5025, 61-866 Poznan, Poland; (K.G.); (A.T.); (K.L.)
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, room 5025, 61-866 Poznan, Poland; (K.G.); (A.T.); (K.L.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warszawa, Poland
| | - Magda Kopczyńska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.K.); (J.S.); (N.O.S.); (A.M.)
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, room 5025, 61-866 Poznan, Poland; (K.G.); (A.T.); (K.L.)
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.K.); (J.S.); (N.O.S.); (A.M.)
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, room 5025, 61-866 Poznan, Poland; (K.G.); (A.T.); (K.L.)
| | - Norbert Oksza Strzelecki
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.K.); (J.S.); (N.O.S.); (A.M.)
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, room 5025, 61-866 Poznan, Poland; (K.G.); (A.T.); (K.L.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.K.); (J.S.); (N.O.S.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Oncology, Poznan University of Medical Sciences, 82-84 Szamarzewskiego, 60-569 Poznan, Poland
| |
Collapse
|
16
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
17
|
Zeng J, Liu Z, Zhang C, Hong T, Zeng F, Guan J, Tang S, Hu Z. Prognostic value of long non-coding RNA SNHG20 in cancer: A meta-analysis. Medicine (Baltimore) 2020; 99:e19204. [PMID: 32118721 PMCID: PMC7478608 DOI: 10.1097/md.0000000000019204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Small nucleolar RNA host gene 20 (SNHG20) is a newly identified long non-coding RNA (lncRNA). Accumulative evidence suggest that SNHG20 is highly related to tumorigenesis. However, whether the levels of SNHG20 can be used for prognosis of patients with different cancer types was unclear. The present study aims to explore the role of SNHG20 in tumor prognosis and its clinical significance. METHODS Related articles published before March 14, 2019 were searched in PubMed, Excerpta Medica Database (EMBASE), ISI Web of Science, and China National Knowledge Infrastructure (CNKI). Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were obtained using Stata 11.0 software and used to for determination of the link between the levels of SNHG20 and overall survival (OS). Fixed or random model was chosen depending on the heterogeneity of the studies. A quality assessment of the included studies was performed according to the Newcastle-Ottawa scale. This study was approved by the Medical Ethics Committee of Xiangya Hospital of Central South University. RESULTS After a strict filtering process, a total of 1149 patients from 15 studies were enrolled in this study. Pooled data showed that elevated level of SNHG20 was correlated not only with poor overall survival (HR = 2.49, 95% confidence interval (CI): 2.05-2.98), but also with tumor-node-metastasis stage (TNM) (odds ratio (OR) = 3.32, 95% CI: 2.27-4.86), high histological grade (OR = 2.11, 95% CI: 1.55-2.87), tumor size (OR = 2.92, 95% CI: 2.17-3.91), and lymph node metastasis (OR = 4.48, 95% CI: 2.90-6.92). Of note, there is no significant heterogeneity difference among the studies. CONCLUSION Up-regulated SNHG20 predicts unfavorable prognosis for multiple kinds of cancers although further studies are in need to verify its clinical applications.
Collapse
Affiliation(s)
- Jiling Zeng
- Department of Neurology, The Second Affiliated Hospital of Xiangya
| | - Zhuoyi Liu
- Department of Neurosurgery, Xiangya Hospital
| | - Chao Zhang
- Department of Neurosurgery, Xiangya Hospital
| | - Tao Hong
- Department of Urinary Surgery, The Third Affiliated Hospital of Xiangya
| | | | - Jing Guan
- Department of Radiology, The Second Affiliated Hospital of Xiangya
| | - Siyuan Tang
- Department of Tumor Radiotherapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Affiliated Hospital of Xiangya
| |
Collapse
|
18
|
Zhao W, Shan B, He D, Cheng Y, Li B, Zhang C, Duan C. Recent Progress in Characterizing Long Noncoding RNAs in Cancer Drug Resistance. J Cancer 2019; 10:6693-6702. [PMID: 31777598 PMCID: PMC6856905 DOI: 10.7150/jca.30877] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is an important cause of failure in cancer chemotherapies. A large number of long noncoding RNAs (lncRNAs) have been found to be related to drug resistance in cancers. Therefore, lncRNAs provide potential targets for cancer therapies. The lncRNAs involved in cancer drug resistance are attracting interest from an increasing number of researchers. This review summarizes the latest research on the mechanisms and functions of lncRNAs in cancer drug resistance and envisages their future developments and therapeutic applications. This research suggests that lncRNAs regulate drug resistance through multiple mechanisms. LncRNAs do not affect drug resistance directly; usually, they do so by regulating the expression of some intermediate regulatory factors. In addition, lncRNAs exhibit a diversity of functions in cancer drug resistance. The overexpression of most lncRNAs promotes drug resistance, while a few lncRNAs have inhibitory effects.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bin Shan
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Dan He
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, PR China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, PR China
| | - Chaojun Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
19
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
20
|
Zhang B, Yan M, Zhang W, Ke ZY, Ma LG. Glycyrrhiza glabra suppresses nasopharyngeal carcinoma cell proliferation through inhibiting the expression of lncRNA, AK027294. Biosci Biotechnol Biochem 2019; 84:314-320. [PMID: 31589096 DOI: 10.1080/09168451.2019.1673695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycyrrhiza glabra is considered as potential drug for nasopharyngeal carcinoma (NPC). However, whether the long noncoding RNAs' (lncRNAs) contributes to the anti-cancer function of this herb is unknown. In present study, we analyzed the differential expression of lncRNA between G. glabra-treated and untreated C666-1 cells. Out of those tumor-related lncRNAs, AK027294 had a strongest down-regulation upon G. glabra treatment. Knockdown of AK027294 suppresses the proliferation of C666-1 cells by inducing the apoptosis. Moreover, either G. glabra treatment or knockdown of AK027294 significantly increases the production of EZH1 (Enhancer of zeste 1 polycomb repressive complex 2 subunit). Collectively, we have identified a potential mechanism that the down-regulation of AK027294 contributes to the anti-cancer function of G. glabra and also provide the potential inter-relationship between AK027294 and EZH1.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Min Yan
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhao-Yang Ke
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ling-Guo Ma
- Department of Otorhinolaryngology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
21
|
Wang H, Li W, Tan G. [Long non-coding RNA XIST modulates cisplatin resistance by altering PDCD4 and Fas-Lexpressions in human nasopharyngeal carcinoma HNE1 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:357-363. [PMID: 31068307 DOI: 10.12122/j.issn.1673-4254.2019.03.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the role of long non-coding RNA (lncRNA) X inactive specific transcript (XIST) in modulating cisplatin (DDP) resistance of human nasopharyngeal carcinoma cells and investigate the possible mechanism. METHODS Realtime PCR was performed to detect the expression of XIST in cisplatin-resistant human nasopharyngeal carcinoma cell line HNE1/DDP. The effects of up-regulation and down-regulation of XIST on DDP resistance, proliferation and apoptosis of HNE1/ DDP cells were assessed using MTT assay, EdU assay and flow cytometry. Western blotting was used to detect the changes in the expressions of programmed cell death 4 (PDCD4) and Fas ligand (Fas-L) proteins in the cells in response to up-regulation or down-regulation of XIST. RESULTS The expression of XIST was significantly up-regulated in HNE1/DDP cells in comparison with HNE1 cells (0.57±0.06 vs 0.1±0.02, P < 0.05). Down-regulation of XIST significantly decreased while up-regulation of XIST obviously increased DDP resistance of HNE1/DDP cells (P < 0.05). Down-regulation of XIST significantly reduced the proliferation (6.17 ± 1.93 vs 16.59 ± 4.86, P < 0.05) and enhanced apoptosis [(18.04 ± 4.72)% vs (4.22 ± 1.65)%, P < 0.05], while upregulating XIST enhanced the proliferation (25.40±7.21 vs 13.16±3.95, P < 0.05) and inhibited apoptosis [(2.82±0.88)% vs (6.46± 1.75)%, P < 0.05] in HNE1/DDP cells. Down-regulation of XIST significantly increased the protein expressions of PDCD4 and Fas-L (P < 0.05) in HNE1/DDP cells, and up-regulation of XIST resulted in reverse changes in PDCD4 and Fas-L expressions (P < 0.05). CONCLUSIONS XIST is up-regulated in HNE1/DDP cells, and down-regulation and up-regulation of XIST expression reduce and increase DDP resistance of the cells, respectively, possibly as a result of changes in the expressions of PDCD4 and Fas-L.
Collapse
Affiliation(s)
- Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
22
|
Tian X, Gao S, Liu Y, Xuan Y, Wu R, Zhang Z. Long non-coding RNA ENST00000500843 is downregulated and promotes chemoresistance to paclitaxel in lung adenocarcinoma. Oncol Lett 2019; 18:3716-3722. [PMID: 31516584 PMCID: PMC6732953 DOI: 10.3892/ol.2019.10704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Adenocarcinoma is one of the most common pathological types of human lung cancer and has the highest incidence and mortality rates worldwide. Resistance to paclitaxel (PTX), the standard chemotherapy agent for treatment of lung adenocarcinoma, is a major clinical obstacle. Sensitive markers are urgently required for the diagnosis and characterization of lung cancer, as well as to manage drug resistance. Previous studies have described the activity of long non-coding RNAs (lncRNAs) in human lung cancer and chemotherapy resistance. In previous studies, lncRNA ENST00000500843 was identified to be downregulated in PTX-resistant A549 human lung cancer cells. However, the roles of this lncRNA in the development of lung adenocarcinoma and its mechanism in PTX resistance, to the best of our knowledge, have not been described. In the present study, 56 pairs of lung adenocarcinoma and normal adjacent tissue samples were collected. Reverse transcription-quantitative PCR revealed that the expression levels of lncRNA ENST00000500843 were lower in lung adenocarcinoma tissues and PTX-resistant A549 cells when compared with normal adjacent tissues and A549 cells. Decreased expression levels of lncRNA ENST00000500843 in lung adenocarcinoma tissues were associated with tumor diameter, the degree of pathological differentiation and metastasis of lymph nodes. Additionally, patients with low expression levels of ENST00000500843 exhibited poorer overall survival and progression-free survival rates. Furthermore, the present study demonstrated that knockdown of lncRNA ENST00000500843 with small interfering RNA decreased the likelihood of apoptosis in A549 cells and promoted resistance to PTX. This indicated that lncRNA ENST00000500843 may be a useful diagnostic marker of lung cancer and a good prognostic marker for resistance to treatment with PTX.
Collapse
Affiliation(s)
- Xin Tian
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Song Gao
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Liu
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Xuan
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Rong Wu
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhenyong Zhang
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
23
|
Zhu Y, He D, Bo H, Liu Z, Xiao M, Xiang L, Zhou J, Liu Y, Liu X, Gong L, Ma Y, Zhou Y, Zhou M, Xiong W, Yang F, Xing X, Li R, Li W, Cao K. The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway. Oncogene 2019; 38:6065-6081. [DOI: 10.1038/s41388-019-0858-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
|
24
|
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76:1947-1966. [PMID: 30879091 PMCID: PMC7775409 DOI: 10.1007/s00018-019-03053-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sumit S Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
25
|
Liu S, Zou B, Tian T, Luo X, Mao B, Zhang X, Lei H. Overexpression of the lncRNA FER1L4 inhibits paclitaxel tolerance of ovarian cancer cells via the regulation of the MAPK signaling pathway. J Cell Biochem 2019; 120:7581-7589. [PMID: 30444026 DOI: 10.1002/jcb.28032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
To determine how the lncRNA FER1L4 in ovarian cancer cells influences paclitaxel (PTX) resistance, we examined the expression level of FER1L4 in human ovarian epithelial cell lines IOSE80 and HOSEpiC and human ovarian cancer cell lines OVCAR-3, Caov-3, and SKOV3 through RNA isolation and quantitative polymerase chain reaction (qRT-PCR). SKOV3 cell lines were treated with PTX. The cell survival rate and apoptosis rate of SKOV3 and SKOV3-PR at different PTX dose levels were evaluated. Next, qRT-PCR was performed to detect the expression of FER1L4 in SKOV3 and SKOV3-PR cell lines. SKOV3-PR cell lines were transfected with pcDNA3.1 as the control group (SKOV3-PR/pcDNA3.1) or pcDNA3.1-FER1L4 to upregulate the expression level of FER1L4 (SKOV3-PR/pcDNA3.1-FER1L4). The level of cell survival, apoptosis, and colony formation were compared between the two groups using MTT, flow cytometry analysis, and colony formation assay. To reveal the molecular mechanism, we measured the relative protein phosphorylation level of ERK and MAPK in SKOV3, SKOV3-PR, SKOV3-PR/pcDNA3.1, and SKOV3-PR/pcDNA3.1-FER1L4 groups using an enzyme-linked immunosorbent assay. The effects of SB203580 (a p38 MAPK inhibitor) on PTX were also investigated to reveal the function of the MAPK pathway on the PTX tolerance of SKOV3. In comparison with normal ovarian epithelial cells, FER1L4 was downregulated. The FER1L4 level was decreased in human ovarian cancer cells with drug resistance than in common ovarian cancer cells. The upregulation of FER1L4 could promote the PTX sensitivity of ovarian cancer cells. The increased level of FER1L4 could suppress the PTX resistance of ovarian cancer cells through the inhibition of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bingyu Zou
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Tian Tian
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiaohui Luo
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Banyun Mao
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xun Zhang
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Huajiang Lei
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Huang L, Hu C, Chao H, Wang R, Lu H, Li H, Chen H. miR-29c regulates resistance to paclitaxel in nasopharyngeal cancer by targeting ITGB1. Exp Cell Res 2019; 378:1-10. [DOI: 10.1016/j.yexcr.2019.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/20/2023]
|
27
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
28
|
Zhang S, Jiang H, Xu Z, Jiang Y, She Y, Huang X, Feng S, Chen W, Chen S, Chen Y, Qiu G, Zhong S. The resistance of esophageal cancer cells to paclitaxel can be reduced by the knockdown of long noncoding RNA DDX11-AS1 through TAF1/TOP2A inhibition. Am J Cancer Res 2019; 9:2233-2248. [PMID: 31720085 PMCID: PMC6834486 DOI: pmid/31720085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/18/2019] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies in the world. The currently used chemotherapeutic drug for the treatment of EC is paclitaxel (PTX), the efficacy of which is affected by the development of drug resistance. The present study aims to define the role of the long noncoding RNA (lncRNA) DDX11-AS1 in the progression of EC with the involvement of PTX-resistant EC cells. First, EC and adjacent normal tissue samples were collected from 82 patients with EC, after which the expression levels of DDX11-AS1, TOP2A and TAF1 were determined. The results showed that DDX11-AS1, TOP2A and TAF1 were highly expressed in EC tissues, and there was a positive correlation between the expression levels of DDX11-AS1 and TOP2A. A PTX-resistant EC cell line was constructed. Next, we evaluated the effects of DDX11-AS1 and TOP2A on the resistance of EC cells to PTX, and the regulatory relationships between DDX11-AS1, TOP2A and TAF1 were investigated. DDX11-AS1 could promote TOP2A transcription via TAF1, and the knockdown of TOP2A or DDX11-AS1 could increase the sensitivity of EC cells to PTX. The effect of DDX11-AS1 on the growth of PTX-inhibited tumors was confirmed using a tumor formation assay in nude mice. It was verified that knocking down DDX11-AS1 reduced the expression level of TOP2A and inhibited tumor growth. In conclusion, our findings suggest that DDX11-AS1 knockdown results in reduced resistance of EC cells to PTX by inhibiting TOP2A transcription via TAF1. Therefore, DDX11-AS1 knockdown could be a promising therapeutic strategy for EC.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical CollegeGuangzhou 510220, Guangdong Province, P. R. China
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Hong Jiang
- Department of Nursing, Guangzhou Red Cross Hospital Affiliated of Ji-Nan University Medical CollegeGuangzhou 510220, Guangdong Province, P. R. China
| | - Zhe Xu
- Department of Urology, Cancer Hospital of Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yi Jiang
- Department of Digestive Oncology, Cancer Hospital of Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yuqi She
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Xiaoting Huang
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shanna Feng
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Wanying Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shuang Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Yun Chen
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Guodong Qiu
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
| | - Shilong Zhong
- Clinical Pharmacy Research Center, Shantou University Medical CollegeShantou 515031, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong Province, P. R. China
| |
Collapse
|
29
|
Gao L, Cheng XL, Cao H. LncRNA THOR attenuates cisplatin sensitivity of nasopharyngeal carcinoma cells via enhancing cells stemness. Biochimie 2018; 152:63-72. [DOI: 10.1016/j.biochi.2018.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
|
30
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Liu F, Tai Y, Ma J. LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol Ther 2018; 19:534-542. [PMID: 29565706 PMCID: PMC5927658 DOI: 10.1080/15384047.2018.1450119] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/10/2018] [Accepted: 03/03/2018] [Indexed: 12/13/2022] Open
Abstract
The long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) was reported to be upregulated and be involved in oncogenic growth and drug resistance in nasopharyngeal carcinoma (NPC). However, the exact roles of NEAT1 and its underlying mechanisms in the drug resistance of NPC remain largely unclear. In this study, the expressions of NEAT1, let-72-5p and Rsf-1 mRNA were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of NEAT1 and let-72-5p on cell proliferation and cisplatin resistance of NPC cells were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and 5-ethynyl-20-deoxyuridine (EdU) assay. Western blot analysis was performed to detect the protein levels of Rsf-1, Ras, p-Raf1, Raf1, p-MEK1, MEK1, p-ERK1/2 and ERK1/2. Xenograft tumor assay was done to elucidate the role of NEAT1 involved in NPC tumor growth in vivo. We found that NEAT1 was upregulated and let-7a-5p was downregulated in NPC tissues, as well as NPC cell lines. Inhibition of NEAT1 markedly repressed the cisplatin resistance of NPC cells. NEAT1 was demonstrated to interact with let-7a-5p. Besides, a negative correlation between NEAT1 and let-7a-5p expression was observed in NPC tissues. Rsf-1 was confirmed as a target of let-7a-5p. NEAT1 remarkably reversed the inhibitory effect of let-7q-5p on the cisplatin resistance of NPC cells in vitro. Additionally, NEAT1 knockdown inhibited the Ras-MAPK pathway in NPC cells. NEAT1 knockdown suppressed tumor growth in the presence of cisplatin in vivo. Overall, these findings suggest that NEAT1/let-7a-5p axis regulates the cisplatin resistance in NPC by targeting Rsf-1 and modulating the Ras-MAPK signaling pathway.
Collapse
Affiliation(s)
- Fei Liu
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, 7 WeiWu Road, Zhengzhou, China
| | - Yong Tai
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, 7 WeiWu Road, Zhengzhou, China
| | - Jiqing Ma
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, 7 WeiWu Road, Zhengzhou, China
| |
Collapse
|
32
|
Su M, Wang H, Wang W, Wang Y, Ouyang L, Pan C, Xia L, Cao D, Liao Q. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:433-439. [PMID: 29554194 DOI: 10.1093/abbs/gmy022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
In order to maintain integrity of the genome, eukaryotic cells develop a complex DNA damage/repair response network, which can induce cell cycle arrest, apoptosis, or DNA repair. Chemo- and radiation therapies, which act primarily through the induction of DNA damage, are the most commonly used therapies for cancer. Impairment in the DNA damage response and repair system that protect cells from persistent DNA damage can affect the therapeutic efficacy of cancer. To date, accumulating evidence has suggested that long non-coding RNAs (lncRNAs) are involved in the regulation of the DNA damage/repair network. LncRNAs have been demonstrated to be master regulators of the genome at the transcriptional and post-transcriptional levels and play a key role in many physiological and pathological processes of cells. In this review, we will discuss the function of lncRNAs in regulating the cellular response to DNA damage.
Collapse
Affiliation(s)
- Min Su
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Heran Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Wenxiang Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Ying Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Linda Ouyang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Chen Pan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Longzheng Xia
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Deliang Cao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| |
Collapse
|
33
|
Li XX, Liang XJ, Zhou LY, Liu RJ, Bi W, Zhang S, Li SS, Yang WH, Chen ZC, Yang XM, Zhang PF. Analysis of Differential Expressions of Long Non-coding RNAs in Nasopharyngeal Carcinoma Using Next-generation Deep Sequencing. J Cancer 2018; 9:1943-1950. [PMID: 29896278 PMCID: PMC5995947 DOI: 10.7150/jca.23481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Little knowledge about long non-coding RNAs(lncRNAs) in nasopharyngeal carcinoma (NPC) has been acquired. Methods: Next-generation sequencing was applied in 7 cases of NPC tissues and 7 cases of normal tissues in nasopharynx. PLEX, CNCI and CPAT soft-wares were used to predict novel lncRNAs. Real-time Quantitative PCR (qPCR) further validated the data in 20 cases of NPC tissues and 14 cases of normal tissues. Then the cis-regulators and trans-regulators and potential biological functions together with pathways were predicted by Bioinformatics. Results: Totally, 4248 novel lncRNAs were found to be expressed in our samples. And 2192 lncRNAs and 23342 mRNAs were considered to be differentially expressed in NPC. Among the results, 306 lncRNAs and 4599 mRNAs were significantly up-regulated, whereas 204 lncRNAs and 2059 mRNAs were significantly down-regulated, respectively. Moreover, 62 lncRNAs trans-regulated genes were involved in Epstein-Barr virus (EBV) infection pathway in our study. Jun proto-oncogene (JUN), which was related to a cis-regulator lncRNA RP4-794H19.1, was enriched in cancers and involved in Tumor Necrosis Factor (TNF) signaling pathway, might play a key role in NPC. Conclusion: These findings broadened the lncRNAs landscape of NPC tissues and shed light on the roles of these lncRNAs, which might be conducive to the comprehensive management of NPC.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xu-Jun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liu-Ying Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rui-Jie Liu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Sai Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shi-Sheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Wen-Hui Yang
- International College, Guangdong University of Foreign Studies, Guangzhou, Guangdong, 510420, P.R. China
| | - Zhu-Chu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xin-Ming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan,410011, P.R. China
| | - Peng-Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
34
|
Song W, Sun Y, Lin J, Bi X. Current research on head and neck cancer-associated long noncoding RNAs. Oncotarget 2018; 9:1403-1425. [PMID: 29416703 PMCID: PMC5787447 DOI: 10.18632/oncotarget.22608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancers (HNC) are one of the ten leading cancers worldwide, including a range of malignant tumors arising from the upper neck. Due to the complex mechanisms of HNC and lack of effective biomarkers, the 5-year survival rate of HNC has been low and the mortality rate has been high in recent decades. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 bps, are a focus of current cancer research, closely related to tumor biology. LncRNAs have been revealed to be aberrantly expressed in various types of HNC, and the dysregulated lncRNAs participate in HNC progression and induce malignant behavior by modulating gene expression at diverse levels. This review will focus on the functions and molecular mechanisms of dysregulated lncRNAs in HNC tumorigenesis and progression, as well as their diagnostic, therapeutic or prognostic implications in HNC.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Lin
- Department of Dental Anesthesiology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqin Bi
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
35
|
Guglas K, Bogaczyńska M, Kolenda T, Ryś M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska K. lncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn) 2017; 21:259-266. [PMID: 29416430 PMCID: PMC5798417 DOI: 10.5114/wo.2017.72382] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world. Some progress has been made in the therapy of HNSCC, however treatment remains unsatisfactory. Recent studies have shown that different types of long non-coding RNAs (lncRNAs) are dysregulated in HNSCC and correlate with tumor progression, lymph node metastasis, clinical stage and poor prognosis. lncRNAs are a class of functional RNA molecules that can not be translated into proteins but can modulate the activity of transcription factors or regulate changes in chromatin structure. The lncRNAs might have potential of biomarker in HNSCC diagnosis, prognosis, prediction and targeted treatment. In this review we describe the potential role of lncRNAs as new biomarkers and discuss their features including source of origin, extraction methods, stability, detection methods and data normalization and potential function as biomarkers in HNSCC.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Bogaczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Marcel Ryś
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poland
- Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
36
|
Dong Q, Zhou L, Liu F, Ao F, Gong X, Jiang C, Yuan Z, Li J. Long non-coding RNAs in the development, diagnosis and prognosis of nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8098-8105. [PMID: 31966662 PMCID: PMC6965397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs), which transcripts longer than 200 nucleotides, are lack of protein coding potential. Emerging studies have shown that lncRNAs play critical roles in carcinogenesis and progression, including human nasopharyngeal carcinoma (NPC). In this article, we first provide an overview on the molecular mechanisms of lncRNAs in NPC, and then discuss the influence of lncRNAs on the diagnosis and treatment of patients with nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Qing Dong
- Medical School of Nanchang UniversityP. R. China
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang, P. R. China
| | - Liang Zhou
- Medical School of Nanchang UniversityP. R. China
- Department of Ocular Oncology, The Eye Hospital of Nanchang UniversityP. R. China
| | - Fangteng Liu
- Medical School of Nanchang UniversityP. R. China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityP. R. China
| | - Fan Ao
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang, P. R. China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang, P. R. China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang, P. R. China
| | - Zheng Yuan
- Medical School of Nanchang UniversityP. R. China
- Department of Hematology, The Second Affiliated Hospital of Nanchang UniversityP. R. China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer HospitalNanchang, P. R. China
| |
Collapse
|
37
|
Kolenda T, Guglas K, Ryś M, Bogaczyńska M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J, Lamperska KM. Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother 2017; 22:378-388. [PMID: 28794691 DOI: 10.1016/j.rpor.2017.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) are one of the worst prognosis cancers with high mortality of patients. The treatment strategy is primarily based on surgery and radiotherapy but chemotherapy is also used. Every year the knowledge concerning HNSCC biology is updated with new elements such as the recent discovered molecules - long non-coding RNAs. Long non-coding RNAs are involved in regulatory processes in the cells. It has been revealed that the expression levels of lncRNAs are disturbed in tumor cells what results in the acquisition of their specific phenotype. lncRNAs influence cell growth, cell cycle, cell phenotype, migration and invasion ability as well as apoptosis. Development of the lncRNA panel characteristic for HNSCC and validation of specific lncRNA functions are yet to be elucidated. In this work, we collected available data concerning lncRNAs in HNSCC and characterized their biological role. We believe that the tumor examination, in the context of lncRNA expression, may lead to understanding complex biology of the cancer and improve therapeutic methods in the future.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61th Zwirki i Wigury Street, 02-091 Warszawa, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Marcel Ryś
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland
| | - Marta Bogaczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland.,HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| | - Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18th Grunwaldzka Street, 60-786 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18th Grunwaldzka Street, 60-786 Poznan, Poland.,Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, 8th Rokietnicka Street, 60-806 Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15th Garbary Street, 61-866 Poznan, Poland
| | - Katarzyna M Lamperska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, 15th Garbary Street, Room 5025, 61-866 Poznan, Poland
| |
Collapse
|
38
|
Tian X, Zhang H, Zhang B, Zhao J, Li T, Zhao Y. Microarray expression profile of long non-coding RNAs in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Rep 2017; 38:293-300. [DOI: 10.3892/or.2017.5691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/15/2017] [Indexed: 11/05/2022] Open
|
39
|
Hu X, Jiang H, Jiang X. Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol Ther 2017; 18:331-338. [PMID: 28402230 DOI: 10.1080/15384047.2017.1310348] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence demonstrated that long non-coding RNA ANRIL serves as a fatal oncogene in many cancers, including nasopharyngeal carcinoma (NPC). However, little is known whether ANRIL regulated NPC cell radioresistance. Quantitative real-time PCR (qRT-PCR) was performed to examine the expression of lncRNA ANRIL and miR-125a in NPC tissues and cell lines. MTT assay was conducted to measure the cell viability of CNE2 and HONE1 cells. The apoptotic rate of CNE2 and HONE1 cells was determined by flow cytometry analysis. Colony survival was determined by clonogenic assay. Luciferase reporter assay was performed to verity the direct target of miR-125a. LncRNA ANRIL was evidently elevated in NPC tissues and cell lines. ANRIL inhibition suppressed proliferation, induced apoptosis, and enhanced radiosensitivity in NPC. Moreover, ANRIL could negatively modulate miR-125a expression. Furethermore, ANRIL upregulation reserved the inhibited proliferation, induced apoptosis, and enhanced radiosensitivity triggered by miR-125a overexpression. The expression of lncRNA ANRIL was upregulated in NPC tissues and cells. Moreover, knockdown of ANRIL repressed proliferation, promoted apoptosis, and improved radiosensitivity in NPC via functioning as a miR-125a sponge.
Collapse
Affiliation(s)
- Xigang Hu
- a Department of Radiotherapy , Huaihe Hospital of Henan University , Kaifeng , China
| | - Huijuan Jiang
- a Department of Radiotherapy , Huaihe Hospital of Henan University , Kaifeng , China
| | - Xiaojun Jiang
- b Department of Oncology , The Second Division Korla Hospital of Xinjiang Production and Construction Corps , Korla , China
| |
Collapse
|
40
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
41
|
Wang Y, Cheng N, Luo J. Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J Biochem Mol Toxicol 2017; 31. [PMID: 28117929 DOI: 10.1002/jbt.21904] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yandan Wang
- Department of Otorhinolaryngology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| | - Nan Cheng
- Department of Otorhinolaryngology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| | - Junpeng Luo
- Department of Oncology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| |
Collapse
|