1
|
Ndou L, Chambuso R, Algar U, Boutall A, Goldberg P, Ramesar R. Genomic Medicine in the Developing World: Cancer Spectrum, Cumulative Risk and Survival Outcomes for Lynch Syndrome Variant Heterozygotes with Germline Pathogenic Variants in the MLH1 and MSH2 Genes. Biomedicines 2024; 12:2906. [PMID: 39767815 PMCID: PMC11672899 DOI: 10.3390/biomedicines12122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Although genetic testing has improved our ability to diagnose Lynch syndrome (LS), there is still limited information on the extent of variations in the clinical and genetic landscape among LS variant heterozygotes (LSVH) in Africa. We sought to investigate the cancer spectrum, cumulative risk, and survival outcomes of LSVH with pathogenic/likely pathogenic variants (P/LPVs) in the MLH1 and MSH2 genes using a LS registry in South Africa over the last 30 years. Methods: A retrospective study was conducted to retrieve demographic, clinical, and genetic data of all LSVH with P/LPVs in the MLH1 and MSH2 genes from our LS registry. Genetic data were analyzed according to cancer spectrum, cumulative risk, and crude survival. We used the Chi-squared and t-test to assess differences between groups, and Kaplan-Meier survival analyses were used to analyze the cumulative risk and crude survival outcomes. A p-value < 0.05 at a 95% confidence interval was considered statistically significant. Results: We analyzed a total of 577 LSVH from 109 families. About 450 (78%) and 127 (22%) LSVH harbored a disease-causing mutation in MLH1 and MSH2, respectively. A South African founder PV (MLH1:c.1528C>T) accounted for 74% (n = 426) of all LSVH. CRC was the most common diagnosed cancer in both MLH1 and MSH2 LSVH. MLH1 LSVH had a younger age at cancer diagnosis than MSH2 LSVH (43 vs. 47 years, respectively, p = 0.015). Extracolonic cancers were predominantly higher in female LSVH (n = 33, 35%) than in male LSVH (n = 8, 7%) with the MLH1:c.1528C>T founder PV. The cumulative risk of any cancer and CRC at any age was higher in MLH1 LSVH than in MSH2 LSVH (p = 0.020 and p = 0.036, respectively). LSVH with the MLH1:c.1528C>T PV had a better 10-year overall survival after the first cancer diagnosis, particularly for CRC. Conclusions: LSVH with P/LPVs in the MLH1 and MSH2 genes exhibited significant gene- and sex-specific differences in cancer spectrum, cumulative risk and survival outcomes. Cancer risk and survival estimates described in this study can be used to guide surveillance and genetic counselling for LSVH in our population.
Collapse
Affiliation(s)
- Lutricia Ndou
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ramadhani Chambuso
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ursula Algar
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Adam Boutall
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Paul Goldberg
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| |
Collapse
|
2
|
Stylianou CE, Wiggins GAR, Lau VL, Dennis J, Shelling AN, Wilson M, Sykes P, Amant F, Annibali D, De Wispelaere W, Easton DF, Fasching PA, Glubb DM, Goode EL, Lambrechts D, Pharoah PDP, Scott RJ, Tham E, Tomlinson I, Bolla MK, Couch FJ, Czene K, Dörk T, Dunning AM, Fletcher O, García-Closas M, Hoppe R, Jernström H, Kaaks R, Michailidou K, Obi N, Southey MC, Stone J, Wang Q, Spurdle AB, O'Mara TA, Pearson J, Walker LC. Germline copy number variants and endometrial cancer risk. Hum Genet 2024; 143:1481-1498. [PMID: 39495297 DOI: 10.1007/s00439-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10-63). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.
Collapse
Affiliation(s)
- Cassie E Stylianou
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Vanessa L Lau
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Michelle Wilson
- Te Pūriri o Te Ora Regional Cancer and Blood Service, Auckland Hospital, Auckland, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Frederic Amant
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Leuven, Belgium
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ellen L Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Rodney J Scott
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
- Faculty of Health, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Public Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Pearson
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
3
|
Munteanu CV, Marian C, Chiriță-Emandi A, Puiu M, Trifa AP. In silico splicing analysis of the PMS2 gene: exploring alternative molecular mechanisms in PMS2-associated Lynch syndrome. BMC Genom Data 2024; 25:100. [PMID: 39592919 PMCID: PMC11600730 DOI: 10.1186/s12863-024-01281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Lynch syndrome (LS) is one of the most common hereditary cancer syndrome in human populations, associated with germline variants in MLH1, MSH2/EPCAM, MSH6 and PMS2 genes. The advent of next generation sequencing has proven a significant impact in germline variant detection in the causative genes; however, a large proportion of patients with clinical criteria still receive uncertain or negative results. PMS2 is the least frequent reported gene, associated with up to 15% of LS cases with late-onset disease and low penetrance phenotype; however, the proportion of PMS2-LS cases is considered to be highly underestimated. In this context, our analysis aimed to improve the current diagnostic yield by focusing on missense and intronic PMS2 variants available in public clinical databases (ClinVar, LOVD). We performed an in silico assessment of the wild-type DNA sequence and the reported genetic variants, employing splicing bioinformatics tools known for their effectiveness in other genes. Splicing variants were predicted in silico and using GTEx short-read RNA expression data. Out of the 2384 missense variants discovered, 90% were classified with uncertain significance (VUS). 4.9% of missense variants were shown to have a potential splicing consequence (DS > 0.2) using SpliceAI. As described in the original publication, SpliceAI-visual was proven effective in annotation of short intronic variants (< 50 bp). Four short intronic variants were identified using SpliceAI-visual as potentially splicing disturbing, in spite of using a lower threshold (DS > 0.1). Exons 2, 3, 4, 5, 6, 7, 8, 11, 12 and 14 were consistently predicted in at least three out of eight software with weak canonical splice sites. Additionally, we noted that both Exonic Splicing Enhancers (ESEs) and Exonic Splicing Silencers (ESSs) contribute significantly to alternative splicing and exonic selection in PMS2 gene. Specifically, ESE motifs were consistently more abundant in highly expressed exons 5, 11 and 14, while ESS motifs played a fundamental role in exons 6, 7 and 10. Computational analysis performed in our study serves as a valuable filtering step for guiding further RNA experiments. Additional functional data is necessary to validate our findings.
Collapse
Affiliation(s)
- Cătălin Vasile Munteanu
- Doctoral School, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania.
- Regional Center of Medical Genetics Timiș, Louis Țurcanu Clinical Emergency Hospital for Children, 2 Iosif Nemoianu Street, Timișoara, 300011, Romania.
| | - Cătălin Marian
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Center of Expertise on Rare Pulmonary Diseases, Victor Babeș Clinical Hospital of Infectious Diseases and Pneumophysiology, 13 Gheorghe Adam Street, Timișoara, 300310, Romania
| | - Adela Chiriță-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Regional Center of Medical Genetics Timiș, Louis Țurcanu Clinical Emergency Hospital for Children, 2 Iosif Nemoianu Street, Timișoara, 300011, Romania
- Center for Genomic Medicine, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timisoara, 300041, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Regional Center of Medical Genetics Timiș, Louis Țurcanu Clinical Emergency Hospital for Children, 2 Iosif Nemoianu Street, Timișoara, 300011, Romania
- Center for Genomic Medicine, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timisoara, 300041, Romania
| | - Adrian Pavel Trifa
- Department of Microscopic Morphology, Genetics Discipline, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babeș University of Medicine and Pharmacy, 2 Eftimie Murgu Square Street, Timișoara, 300041, Romania
- Center of Expertise on Rare Pulmonary Diseases, Victor Babeș Clinical Hospital of Infectious Diseases and Pneumophysiology, 13 Gheorghe Adam Street, Timișoara, 300310, Romania
- Breast Cancer Center, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, 400015, Romania
| |
Collapse
|
4
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
5
|
Gallon R, Brekelmans C, Martin M, Bours V, Schamschula E, Amberger A, Muleris M, Colas C, Dekervel J, De Hertogh G, Coupier J, Colleye O, Sepulchre E, Burn J, Brems H, Legius E, Wimmer K. Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. NPJ Precis Oncol 2024; 8:119. [PMID: 38789506 PMCID: PMC11126593 DOI: 10.1038/s41698-024-00603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are distinct cancer syndromes caused, respectively, by mono- and bi-allelic germline mismatch repair (MMR) variants. LS predisposes to mainly gastrointestinal and genitourinary cancers in adulthood. CMMRD predisposes to brain, haematological, and LS-spectrum cancers from childhood. Two suspected LS patients with first cancer diagnosis aged 27 or 38 years were found to be homozygous for an MMR (likely) pathogenic variant, MSH6 c.3226C>T (p.(Arg1076Cys)), or variant of uncertain significance (VUS), MLH1 c.306G>A (p.(Glu102=)). MLH1 c.306G>A was shown to cause leaky exon 3 skipping. The apparent genotype-phenotype conflict was resolved by detection of constitutional microsatellite instability in both patients, a hallmark feature of CMMRD. A hypomorphic effect of these and other variants found in additional late onset CMMRD cases, identified by literature review, likely explains a LS-like phenotype. CMMRD testing in carriers of compound heterozygous or homozygous MMR VUS may find similar cases and novel hypomorphic variants. Individualised management of mono- and bi-allelic carriers of hypomorphic MMR variants is needed until we better characterise the associated phenotypes.
Collapse
Affiliation(s)
- Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martine Muleris
- Département de Génétique, AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inserm UMRS_938, Sorbonne Université, Centre de Recherche Saint Antoine, Paris, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Paris, France
- INSERM U830, Université de Paris, Paris, France
| | - Jeroen Dekervel
- Department of Digestive Oncology, University Hospital Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | | | | | | | - John Burn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hilde Brems
- Centre for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Eric Legius
- Centre for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Bjørnstad PM, Aaløkken R, Åsheim J, Sundaram AYM, Felde CN, Østby GH, Dalland M, Sjursen W, Carrizosa C, Vigeland MD, Sorte HS, Sheng Y, Ariansen SL, Grindedal EM, Gilfillan GD. A 39 kb structural variant causing Lynch Syndrome detected by optical genome mapping and nanopore sequencing. Eur J Hum Genet 2024; 32:513-520. [PMID: 38030917 PMCID: PMC11061271 DOI: 10.1038/s41431-023-01494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lynch Syndrome (LS) is a hereditary cancer syndrome caused by pathogenic germline variants in one of the four mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. It is characterized by a significantly increased risk of multiple cancer types, particularly colorectal and endometrial cancer, with autosomal dominant inheritance. Access to precise and sensitive methods for genetic testing is important, as early detection and prevention of cancer is possible when the variant is known. We present here two unrelated Norwegian families with family histories strongly suggestive of LS, where immunohistochemical and microsatellite instability analyses indicated presence of a pathogenic variant in MSH2, but targeted exon sequencing and multiplex ligation-dependent probe amplification (MLPA) were negative. Using Bionano optical genome mapping, we detected a 39 kb insertion in the MSH2 gene. Precise mapping of the insertion breakpoints and inserted sequence was performed by low-coverage whole-genome sequencing with an Oxford Nanopore MinION. The same variant was present in both families, and later found in other families from the same region of Norway, indicative of a founder event. To our knowledge, this is the first diagnosis of LS caused by a structural variant using these technologies. We suggest that structural variant detection be performed when LS is suspected but not confirmed with first-tier standard genetic testing.
Collapse
Affiliation(s)
- Pål Marius Bjørnstad
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ragnhild Aaløkken
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y M Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Caroline N Felde
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - G Henriette Østby
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marianne Dalland
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Wenche Sjursen
- Department of Clinical & Molecular Medicine, NTNU and Department of Medical Genetics, St Olavs Hospital, Trondheim, Norway
| | - Christian Carrizosa
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Magnus D Vigeland
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Forensic Sciences, Oslo University Hospital, 0372, Oslo, Norway
| | - Hanne S Sorte
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ying Sheng
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sarah L Ariansen
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eli Marie Grindedal
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Li Y, Yu L, Cui J, Yin J, Wu W. The MSH2 c.793-1G>A variant disrupts normal splicing and is associated with Lynch syndrome. Front Oncol 2023; 13:1131011. [PMID: 37538120 PMCID: PMC10395827 DOI: 10.3389/fonc.2023.1131011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/05/2023] [Indexed: 08/05/2023] Open
Abstract
Instruction Lynch syndrome (LS) is the most common inherited cancer predisposition disorder of colorectal cancer (CRC) which is associated with pathogenic variants in 4 mismatch repair (MMR) genes. Here, we reported a multi-generation Chinese family clinically diagnosed with LS. Methods To identify the underlying pathogenic gene variants, 30 whole blood samples and 4 colorectal cancer tissue samples and their clinical data were obtained from this four-generation family. Microsatellite instability-high (MSI) testing, immunohistochemistry (IHC), and Whole-Exome Sequencing (WES) were performed to identify the MMR/MSI and the underlying gene variants. The minigene splicing assay and in vitro splicing assay were used to explore the function of this variant. Results MSI-H and dMMR was revealed by the MSI testing and IHC, Whole-Exome Sequencing (WES) in 3 patients successfully identified a splicing variant (c.793-1G>A) in intron 4 of MSH2. Sanger sequencing validated the WES results, and all the "healthy" individuals carrying the variant have been identified in the family by PCR. Bioinformatics analysis and in vitro minigene assay showed that the pathogenic variant affected the splicing process of MSH2 gene to generate 2 kinds defective transcription products, and consequently reduced the expression of MSH2 protein. The mutation carriers were later recommended for colonoscopy and other important cancer diagnostic inspections every 1-2 years because they both have a higher risk of LS. Discussion We found a pathogenic splicing variant (rs863225397, c.793-1G>A) of MSH2 gene, and furtherly confirmed that this mutation plays an important role in LS patients of this pedigree based on the vitro study. Our study indicates that one splicing mutation in the MSH2 gene (c.793-1G>A) causes LS and highlights the importance of LS gene testing.
Collapse
Affiliation(s)
- Yiming Li
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lulu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Jiajia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
| | - Wei Wu
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Roht L, Laidre P, Tooming M, Tõnisson N, Nõukas M, Nurm M, Estonian Biobank Research Team, Roomere H, Rekker K, Toome K, Fjodorova O, Murumets Ü, Šamarina U, Pajusalu S, Aaspõllu A, Salumäe L, Muhu K, Soplepmann J, Õunap K, Kahre T. The Prevalence and Molecular Landscape of Lynch Syndrome in the Affected and General Population. Cancers (Basel) 2023; 15:3663. [PMID: 37509324 PMCID: PMC10377710 DOI: 10.3390/cancers15143663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is the most frequent genetically pre-disposed colorectal cancer (CRC) syndrome, accounting for 2-3% of all CRC cases. In Estonia, ~1000 new cases are diagnosed each year. This retroactive and prospective study aimed to estimate the prevalence of LS and describe disease-causing variants in mismatch repair (MMR) genes in a diagnostic setting and in the Estonian general population. METHODS LS data for the diagnostic cohort were gathered from 2012 to 2022 and data for the general population were acquired from the Estonian Biobank (EstBB). Furthermore, we conducted a pilot study to estimate the improvement of LS diagnostic yield by raising the age limit to >50 years for immunohistochemistry analysis of MMR genes. RESULTS We estimated LS live birth prevalence between 1930 and 2003 in Estonia at 1:8638 (95% CI: 1: 9859-7588). During the study period, we gathered 181 LS individuals. We saw almost a six-fold increase in case prevalence, probably deriving from better health awareness, improved diagnostic possibilities and the implementation of MMR IHC testing in a broader age group. CONCLUSION The most common genes affected in the diagnostic and EstBB cohorts were MLH1 and PMS2 genes, respectively. The LS diagnosis mean age was 44.8 years for index cases and 36.8 years (p = 0.003) for family members. In the MMR IHC pilot study, 29% had LS.
Collapse
Affiliation(s)
- Laura Roht
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Piret Laidre
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Mikk Tooming
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Neeme Tõnisson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Margit Nõukas
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Miriam Nurm
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Hanno Roomere
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kadri Rekker
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kadri Toome
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ülle Murumets
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ustina Šamarina
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | | | - Liis Salumäe
- Pathology Service, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kristina Muhu
- Estonian Unemployment Insurance Fund, 10142 Tallinn, Estonia
| | - Jaan Soplepmann
- Department of Surgical and Gynecological Oncology, Surgery Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| |
Collapse
|
9
|
Germline variants associated with breast cancer in Khakass women of North Asia. Mol Biol Rep 2023; 50:2335-2341. [PMID: 36577833 DOI: 10.1007/s11033-022-08215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Variants in the BRCA1/2 genes are responsible for familial breast cancer. Numerous studies showed a different spectrum of BRCA variants among breast cancer patients of different Ethnicity origin. In the available literature, no previous research has focused on breast cancer-associated variants among the Khakass people (the indigenous people of the Russian Federation). METHODS Twenty-six Khakass breast cancer patients were enrolled in the study. Genomic DNA was isolated from blood samples and used to prepare libraries using a Hereditary Cancer Solution kit. Next-generation sequencing (NGS) was performed using the MiSeq System (Illumina, USA). RESULTS In our study, 12% of patients (3/26) carried a single pathogenic variant; 54% of patients (14/26) carried variants of uncertain significance (VUS) or conflicting variants; and 35% of patients (9/26) did not carry any clinically significant variants. Germline pathogenic variant in the ATM gene (rs780619951, NC_000011.10:g.108259022C > T) was identified in two unrelated patients with a family history of cancer (7.6%, 2/26). The pathogenic truncating variant in the ATM gene (p. R805* or c.2413C > T) leads to the nonfunctional version of the protein. This variant has been earlier reported in individuals with a family history of breast cancer. CONCLUSIONS Our pilot study describes the germline variant in the ATM gene associated with breast cancer in Khakass women of North Asia.
Collapse
|
10
|
Bryant P, Walton Bernstedt S, Thutkawkorapin J, Backman AS, Lindblom A, Lagerstedt-Robinson K. Exome sequencing in a Swedish family with PMS2 mutation with varying penetrance of colorectal cancer: investigating the presence of genetic risk modifiers in colorectal cancer risk. Eur J Cancer Prev 2023; 32:113-118. [PMID: 36134613 DOI: 10.1097/cej.0000000000000769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes, such as the PMS2 gene, and is characterised by a familial accumulation of colorectal cancer. The penetrance of cancer in PMS2 carriers is still not fully elucidated as a colorectal cancer risk has been shown to vary between PMS2 carriers, suggesting the presence of risk modifiers. METHODS Whole exome sequencing was performed in a Swedish family carrying a PMS2 missense mutation [c.2113G>A, p.(Glu705Lys)]. Thirteen genetic sequence variants were further selected and analysed in a case-control study (724 cases and 711 controls). RESULTS The most interesting variant was an 18 bp deletion in gene BAG1. BAG1 has been linked to colorectal tumour progression with poor prognosis and is thought to promote colorectal tumour cell survival through increased NF-κB activity. CONCLUSIONS We conclude the genetic architecture behind the incomplete penetrance of PMS2 is complicated and must be assessed in a genome wide manner using large families and multifactorial analysis.
Collapse
Affiliation(s)
- Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Science for Life Laboratory Department of Biochemistry and Biophysics, Stockholm University
| | - Sophie Walton Bernstedt
- Department of Medicine, Solna, Karolinska Institutet, Stockholm
- Karolinska University Hospital, Division of Gastroenterology, Medical Unit Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn 20 University, Bangkok, Thailand
| | - Ann-Sofie Backman
- Department of Medicine, Solna, Karolinska Institutet, Stockholm
- Hereditary Cancer, Medical Unit Breast Endocrine and Sarcoma tumour, Karolinska University Hospital
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Shi Y, Mathis BJ, He Y, Yang X. The Current Progress and Future Options of Multiple Therapy and Potential Biomarkers for Muscle-Invasive Bladder Cancer. Biomedicines 2023; 11:biomedicines11020539. [PMID: 36831075 PMCID: PMC9953154 DOI: 10.3390/biomedicines11020539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Bladder cancer is a common disease in men and the elderly. Current treatment paradigms include radical resection of the bladder and lymph nodes or transurethral resection, both supported by chemotherapy and/or radiation. New modalities, such as illumination-based therapies are also being translationally pursued. However, while survival rates have increased due to combined therapies (particularly chemotherapy, radiation, immune checkpoint inhibitors, and surgery), a lack of diagnostic markers leads clinical professionals to rely on frequently invasive and expensive means of monitoring, such as magnetic resonance imaging or bladder cystoscopy. To improve real-time diagnostic capabilities, biomarkers that reflect both the metabolic and metastatic potential of tumor cells are needed. Furthermore, indicators of therapy resistance would allow for rapid changes in treatment to optimize survival outcomes. Fortunately, the presence of nanoscale extracellular vesicles in the blood, urine, and other peripheral fluids allow for proteomic, genomic, and transcriptomic analyses while limiting the invasiveness of frequent sampling. This review provides an overview of the pathogenesis and progression of bladder cancer, standard treatments and outcomes, some novel treatment studies, and the current status of biomarker and therapy development featuring exosome-based analysis and engineering.
Collapse
Affiliation(s)
- Ying Shi
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
| | - Yayun He
- Department of Urology, The Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan 430082, China
| | - Xiong Yang
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
12
|
Interdisciplinary risk counseling for hereditary breast and ovarian cancer: real-world data from a specialized center. Arch Gynecol Obstet 2022; 307:1585-1592. [PMID: 36307613 PMCID: PMC10110675 DOI: 10.1007/s00404-022-06819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
Abstract
Purpose
Hereditary breast and ovarian cancer has long been established to affect a considerable number of patients and their families. By identifying those at risk ideally before they have been diagnosed with breast and/or ovarian cancer, access to preventive measures, intensified screening and special therapeutic options can be obtained, and thus, prognosis can be altered beneficially. Therefore, a standardized screening and counseling process has been established in Germany under the aegis of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). As one of these specialized clinics, the HBOC-Center at Charité offers genetic counseling as well as genetic analysis based on the GC-HBOC standards. This analysis aims first at depicting this process from screening through counseling to genetic analysis as well as the patient collective and second at correlating the results of genetic analysis performed. Thus, real-world data from an HBOC-Center with a substantial patient collective and a high frequency of pathogenic variants in various genes shall be presented.
Methods
The data of 2531 people having been counseled at the HBOC-Center at Charité in 2016 and 2017 were analyzed in terms of patient and family history as well as pathogenic variants detected during genetic analysis with the TruRisk® gene panel when genetic analysis was conducted. This standardized analysis is compiled and regularly adjusted by the GC-HBOC. The following genes were included at time of research: BRCA1, BRCA2, ATM, CDH1, CHEK2, PALB2, RAD51C, RAD51D, NBN, and TP53.
Results
Genetic analysis was conducted in 59.8% of all cases meeting the criteria for genetic analysis and 286 pathogenic variants were detected among 278 (30.3%) counselees tested using the TruRisk® gene panel. These were primarily found in the genes BRCA1 (44.8%) and BRCA2 (28.3%) but also in CHEK2 (12.2%), ATM (5.6%) and PALB2 (3.5%). The highest prevalence of pathogenic variants was seen among the families with both ovarian and breast cancer (50.5%), followed by families with ovarian cancer only (43.2%) and families with breast cancer only (35.6%)—these differences are statistically significant (p < 0.001). Considering breast cancer subtypes, the highest rate of pathogenic variants was detected among patients with triple-negative breast cancer (40.7%) and among patients who had had been diagnosed with triple-negative breast cancer before the age of 40 (53.4%)—both observations proved to be statistically significant (p = 0.003 and p = 0.001).
Conclusion
Genetic counseling and analysis provide the foundation in the prevention and therapy of hereditary breast and ovarian cancer. The rate of pathogenic variants detected is associated with family history as well as breast cancer subtype and age at diagnosis, and can reach considerable dimensions. Therefore, a standardized process of identification, genetic counseling and genetic analysis deems mandatory.
Collapse
|
13
|
Vostrukhina OA, Mirlina ED, Khmelkova DN, Butrovich GM, Shakhmatova AD, Kil YV, Polyatskin YL, Artemyeva AS, Gulyaev AV, Verbenko VN. An MSH6 germline pathogenic variant p.Gly162Ter associated with Lynch syndrome. Hum Genome Var 2022; 9:37. [PMID: 36289196 PMCID: PMC9605995 DOI: 10.1038/s41439-022-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
We identified a three-generation Russian family with Lynch syndrome with a novel germline variant of the MSH6 gene. An 84-year-old female was diagnosed with endometrial adenocarcinoma at the age of 49 years. Her son was diagnosed with colorectal tubular adenoma at the age of 32 years. A germline nonsense variant (c.484 G > T:p.Gly162Ter) in exon 3 of the MSH6 gene was revealed by whole-exome sequencing. Sanger sequencing confirmed the cosegregation of the MSH6 nonsense variant in family members.
Collapse
Affiliation(s)
- Olga A. Vostrukhina
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| | - Elena D. Mirlina
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| | - Darya N. Khmelkova
- Centre of Genetics and Reproductive Medicine “Genetico”, Moscow, 119333 Russia
| | - Galina M. Butrovich
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| | - Alexandra D. Shakhmatova
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| | - Yury V. Kil
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| | - Yliya L. Polyatskin
- grid.465337.00000 0000 9341 0551N.N. Petrov National Medical Research Centre of Oncology, St. Petersburg, 197758 Russia
| | - Anna S. Artemyeva
- grid.465337.00000 0000 9341 0551N.N. Petrov National Medical Research Centre of Oncology, St. Petersburg, 197758 Russia
| | - Alexey V. Gulyaev
- grid.465337.00000 0000 9341 0551N.N. Petrov National Medical Research Centre of Oncology, St. Petersburg, 197758 Russia
| | - Valery N. Verbenko
- grid.430219.d0000 0004 0619 3376Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina, 188300 Russia
| |
Collapse
|
14
|
A Previously Unrecognized Molecular Landscape of Lynch Syndrome in the Mexican Population. Int J Mol Sci 2022; 23:ijms231911549. [PMID: 36232851 PMCID: PMC9569652 DOI: 10.3390/ijms231911549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Lynch syndrome (LS) is the main hereditary colorectal cancer syndrome. There have been few reports regarding the clinical and molecular characteristics of LS patients in Latin America; this is particularly true in the Mexican population, where no information is available. The present study aims to describe the clinical and molecular spectrum of variants in a cohort of patients diagnosed with LS in Mexico. We present a retrospective analysis of 412 patients with suspected LS, whose main site of cancer diagnosis was the colon (58.25%), followed by the endometrium (18.93%). Next-generation sequencing analysis, with an extensive multigene panel, showed that 27.1% (112/414) had a variant in one of the genes of the mismatch repair pathway (MMR); 30.4% (126/414) had a variant in non-MMR genes such as CHEK2, APC, MUTYH, BRCA1, and BRCA2; and 42.5% (176/414) had no genetic variants. Most of the variants were found in MLH1. Pathogenic variants (PVs) in MMR genes were identified in 65.7% (96/146) of the total PVs, and 34.24% (45/146) were in non-MMR genes. Molecular and clinical characterization of patients with LS in specific populations allowed personalized follow-up, with the option for targeted treatment with immune checkpoint inhibitors and the development of public health policies. Moreover, such characterization allows for family cascade testing and consequent prevention strategies.
Collapse
|
15
|
Boumehdi AL, Cherbal F, Khider F, Oukkal M, Mahfouf H, Zebboudj F, Maaoui M. Germline variants screening of MLH1, MSH2, MSH6 and PMS2 genes in 64 Algerian Lynch syndrome families: The first nationwide study. Ann Hum Genet 2022; 86:328-352. [PMID: 36073783 DOI: 10.1111/ahg.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in women and men in Algeria. Lynch syndrome (LS) is an autosomal dominant disease caused by heterozygous germline pathogenic variants in mismatch repair genes (MMR) and frequently predisposes to colorectal cancer. However, data about MMR germline pathogenic variants in Algerian patients are limited. This first nationwide study aims to describe clinicopathologic features and germline variants in MMR genes in Algerian families with suspected LS. Sixty-four (64) families with suspected LS were studied. Index cases with LS who fulfilled Amsterdam criteria were screened by PCR-direct sequencing for germline variants in MMR genes: MLH1 (exons 1, 9, 10, 13, 16), MSH2 (exons 5, 6, 7, 12), MSH6 (exons 4 and 8) and PMS2 (exons 6 and 10). We selected these specific risk exons genes since they have a higher probability of harboring pathogenic variants. In addition, two unrelated LS patients were screened by next-generation sequencing using a cancer panel of 30 hereditary cancer genes. Six germline pathogenic variants and one germline likely pathogenic variant were identified in 19 (29.68%) families (4 MLH1, 2 MSH2 and 1 MSH6). Of index cases and relatives who underwent genetic testing (n = 76), 30 (39.47%) had MMR pathogenic gene variants, one (0.13%) had MMR gene likely pathogenic variant and three had MMR variant of uncertain significance, respectively. Two novel germline pathogenic variants in MLH1 (2) and one germline likely pathogenic variant in MSH6 (1) never published in individuals with LS have been detected in the present study. The recurrent MLH1 germline pathogenic variant c.1546C>T has been found in nine LS families, six of them related with two large kindreds, from four North central provinces of Algeria. In addition, the common MSH2 germline pathogenic variant c.942+3A>T has been detected in five unrelated patients with a strong LS family history. The accumulative knowledge about clinicopathological and genetic characteristics of LS in Algerian patients will impact clinical management in the areas of both prevention and treatment.
Collapse
Affiliation(s)
- Asma-Lamia Boumehdi
- Molecular Genetics Team, LMCB, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Farid Cherbal
- Molecular Genetics Team, LMCB, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Feriel Khider
- Molecular Genetics Team, LMCB, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Mohammed Oukkal
- Clinic of Medical Oncology Amine Zirout, University Hospital of Beni-Messous, School of Medicine, University of Algiers-1, Algiers, Algeria
| | - Hassen Mahfouf
- Mohamed El Kolli Public Hospital, Academic Medical Oncology Services, School of Medicine, University of Algiers-1, Rouiba, Algeria
| | - Ferhat Zebboudj
- Mohamed El Kolli Public Hospital, Academic General Surgery Services, School of Medicine, University of Algiers-1, Rouiba, Algeria
| | - Mustapha Maaoui
- Bachir Mentouri Public Hospital, Academic General Surgery Services, School of Medicine, University of Algiers-1, Kouba, Algeria
| |
Collapse
|
16
|
Imbriano C, Belluti S. Histone Marks-Dependent Effect on Alternative Splicing: New Perspectives for Targeted Splicing Modulation in Cancer? Int J Mol Sci 2022; 23:ijms23158304. [PMID: 35955433 PMCID: PMC9368390 DOI: 10.3390/ijms23158304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is a tightly regulated mechanism that generates the complex human proteome from a small number of genes. Cis-regulatory RNA motifs in exons and introns control AS, recruiting positive and negative trans-acting splicing regulators. At a higher level, chromatin affects splicing events. Growing evidence indicates that the popular histone code hypothesis can be extended to RNA-level processes, such as AS. In addition to nucleosome positioning, which can generate transcriptional barriers to shape the final splicing outcome, histone post-translational modifications can contribute to the detailed regulation of single exon inclusion/exclusion. A histone-based system can identify alternatively spliced chromatin stretches, affecting RNAPII elongation locally or recruiting splicing components via adaptor complexes. In tumor cells, several mechanisms trigger misregulated AS events and produce cancer-associated transcripts. On a genome-wide level, aberrant AS can be the consequence of dysfunctional epigenetic splicing code, including altered enrichment in histone post-translational modifications. This review describes the main findings related to the effect of histone modifications and variants on splicing outcome and how a dysfunctional epigenetic splicing code triggers aberrant AS in cancer. In addition, it highlights recent advances in programmable DNA-targeting technologies and their possible application for AS targeted epigenetic modulation.
Collapse
|
17
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Zhang XW, Jia ZH, Zhao LP, Wu YS, Cui MH, Jia Y, Xu TM. MutL homolog 1 germline mutation c.(453+1_454-1)_(545+1_546-1)del identified in lynch syndrome: A case report and review of literature. World J Clin Cases 2022; 10:7105-7115. [PMID: 36051147 PMCID: PMC9297429 DOI: 10.12998/wjcc.v10.i20.7105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal dominant hereditary disorder because of germline mutations in DNA mismatch repair genes, such as MutL homolog 1 (MLH1), PMS1 homolog 2, MutS homolog 2, and MutS homolog 6. Gene mutations could make individuals and their families more susceptible to experiencing various malignant tumors. In Chinese, MLH1 germline mutation c.(453+1_454-1)_(545+1_546-1)del-related LS has been infrequently reported. Therefore, we report a rare LS patient with colorectal and endometrioid adenocarcinoma and describe her pedigree characteristics. CASE SUMMARY A 57-year-old female patient complained of irregular postmenopausal vaginal bleeding for 6 mo. She was diagnosed with LS, colonic malignancy, endometrioid adenocarcinoma, secondary fallopian tube malignancy, and intermyometrial leiomyomas. Then, she was treated by abdominal hysterectomy, bilateral oviduct oophorectomy, and sentinel lymph node resection. Genetic testing was performed using next-generation sequencing technology to detect the causative genetic mutations. Moreover, all her family members were offered a free genetic test, but no one accepted it. CONCLUSION No tumor relapse or metastasis was found in the patient during the 30-mo follow-up period. The genetic panel sequencing showed a novel pathogenic germline mutation in MLH1, c.(453+1_454-1)_(545+1_546-1)del, for LS. Moreover, cancer genetic counseling and testing are still in the initial development state in China, and maybe face numerous challenges in the further.
Collapse
Affiliation(s)
- Xi-Wen Zhang
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Zan-Hui Jia
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Li-Ping Zhao
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yi-Shi Wu
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Man-Hua Cui
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yan Jia
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Tian-Min Xu
- Department of Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
19
|
Li Y, Fan L, Zheng J, Nie X, Sun Y, Feng Q, Lian S, Bai W, Cai W, Yang Y, Su B, Xi Y, Lin D. Lynch syndrome pre-screening and comprehensive characterization in a multi-center large cohort of Chinese patients with colorectal cancer. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0585. [PMID: 35638907 PMCID: PMC9425183 DOI: 10.20892/j.issn.2095-3941.2021.0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective: Lynch syndrome (LS) pre-screening methods remain under-investigated in colorectal cancers (CRCs) in Asia. Here, we aimed to systematically investigate LS pre-screening and comprehensively characterize LS CRCs. Methods: Microsatellite instability (MSI) and germline variants of DNA mismatch repair (MMR) genes were examined in 406 deficient MMR (dMMR) and 250 proficient MMR CRCs. The genetic differences between LS and sporadic CRCs were studied with whole exome sequencing analysis. Results: The incidence of dMMR in Chinese patients with CRCs was 13.8%. Consistency analysis between MMR immunohistochemistry (IHC) and MSI testing showed the kappa value was 0.758. With next-generation sequencing (NGS), germline variants were detected in 154 CRCs. Finally, 88 patients with CRC were identified as having LS by Sanger sequencing. Among them, we discovered 21 previously unreported pathogenic germline variants of MMR genes. Chinese patients with LS, compared with sporadic CRCs, tended to be early-onset, right-sided, early-stage and mucinous. Overall, the performance of MMR IHC and MSI testing for LS pre-screening was comparable: the area under the ROC curve for dMMR, MSI-H, and MSI-H/L was 0.725, 0.750, and 0.745, respectively. dMMR_MSI-H LS and sporadic CRCs showed substantial differences in somatic genetic characteristics, including different variant frequencies of APC, CREBBP, and KRAS, as well as different enriched pathways of VEGF, Notch, TGFβR, mTOR, ErbB, and Rac protein signal transduction. Conclusions: MMR IHC and MSI testing were effective methods for LS pre-screening. The revealed clinical and somatic genetic characteristics in LS CRCs may have the potential to improve the performance of LS pre-screening in combination with dMMR/MSI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lihong Fan
- Department of Respiration Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital of Shanghai, Shanghai 200433, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qin Feng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shenyi Lian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd, Shanghai 200120, China
| | - Yanan Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Dongmei Lin
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
20
|
Hereditary evaluation and genetic counselling in young individuals with colorectal cancer in a population-based cohort. Surg Oncol 2022; 41:101741. [DOI: 10.1016/j.suronc.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
|
21
|
Svensson S, Zagoras T, Aravidis C, Stenmark Askmalm M, Björck E, Borg Å, Kuchinskaya E, Nilbert M, Nordling M, Rohlin A, Silander G, Lagerstedt‐Robinson K, Gebre‐Medhin S. Merged Testing for Colorectal Cancer Syndromes and Re‐evaluation of Genetic Variants Improve Diagnostic Yield: results from a nation‐wide prospective cohort. Genes Chromosomes Cancer 2022; 61:585-591. [PMID: 35430768 PMCID: PMC9540764 DOI: 10.1002/gcc.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Approximately 5% of patients with colorectal cancer (CRC) have a Mendelian predisposition for the disease. Identification of the disease‐causing genetic variant enables carrier testing and tailored cancer prevention within affected families. To determine the panorama and genetic variation of Mendelian CRC syndromes among referrals at the cancer genetics clinics in Sweden, 850 patients clinically selected for CRC genetic investigation were included in a prospective study that tested for all major hereditary polyposis and nonpolyposis CRC conditions. Genetically defined syndromes were diagnosed in 11% of the patients. Lynch syndrome was predominant (n = 73) followed by familial adenomatous polyposis (n = 12) and MUTYH‐associated polyposis (n = 8); the latter of which two patients presented with CRC before polyposis was evident. One patient with a history of adolescent‐onset CRC and polyposis had biallelic disease‐causing variants diagnostic for constitutional mismatch repair deficiency syndrome. Post‐study review of detected variants of unknown clinical significance (n = 129) resulted in the reclassification of variants as likely benign (n = 59) or as diagnostic for Lynch syndrome (n = 2). Our results reveal the panorama of Mendelian CRC syndromes at the cancer genetics clinics in Sweden and show that unified testing for polyposis and nonpolyposis CRC conditions as well as regular reexamination of sequence data improve the diagnostic yield.
Collapse
Affiliation(s)
- Sara Svensson
- Division of Clinical Genetics, Department of Laboratory Medicine Lund University Lund Sweden
- Department of Clinical Genetics and Pathology Office for Medical Service Lund Sweden
| | - Theofanis Zagoras
- Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
| | - Christos Aravidis
- Department of Clinical Genetics Akademiska University Hospital Uppsala Sweden
| | - Marie Stenmark Askmalm
- Division of Clinical Genetics, Department of Laboratory Medicine Lund University Lund Sweden
- Department of Clinical Genetics and Pathology Office for Medical Service Lund Sweden
| | - Erik Björck
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Laboratory, Karolinska University Hospital Stockholm Sweden
| | - Åke Borg
- Institute of Clinical Sciences, Division of Oncology Lund University Lund Sweden
| | - Ekaterina Kuchinskaya
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Laboratory, Karolinska University Hospital Stockholm Sweden
| | - Mef Nilbert
- Institute of Clinical Sciences, Division of Oncology Lund University Lund Sweden
| | - Margareta Nordling
- Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Department of Biomedical and Clinical Sciences, Division of Cell Biology Linköping University Linköping Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
| | - Gustav Silander
- Department of Radiation Sciences Oncology, Umeå University Umeå Sweden
| | - Kristina Lagerstedt‐Robinson
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Laboratory, Karolinska University Hospital Stockholm Sweden
| | - Samuel Gebre‐Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine Lund University Lund Sweden
- Department of Clinical Genetics and Pathology Office for Medical Service Lund Sweden
| |
Collapse
|
22
|
Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int J Mol Sci 2022; 23:ijms23084284. [PMID: 35457101 PMCID: PMC9029375 DOI: 10.3390/ijms23084284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited cancer predisposition disorder, which may manifest as colorectal cancer (CRC), endometrial cancer (EC) or other malignancies of the gastrointestinal and genitourinary tract as well as the skin and brain. Its genetic cause is a defect in one of the four key DNA mismatch repair (MMR) loci. Testing of patients at risk is currently based on the absence of MMR protein staining and detection of mutations in cancer tissue and the germline, microsatellite instability (MSI) and the hypermethylated state of the MLH1 promoter. If LS is shown to have caused CRC, lifetime follow-up with regular screening (most importantly, colonoscopy) is required. In recent years, DNA and RNA markers extracted from liquid biopsies have found some use in the clinical diagnosis of LS. They have the potential to greatly enhance the efficiency of the follow-up process by making it minimally invasive, reproducible, and time effective. Here, we review markers reported in the literature and their current clinical applications, and we comment on possible future directions.
Collapse
|
23
|
Wang LL, Zou SM, Dong L, Yang M, Qi D, Lu Z, Chen JN, Mei SW, Zhao ZX, Guan X, Jiang Z, Liu Q, Liu Z, Wang XS. Classification and genetic counselling for a novel splicing mutation of the MLH1 intron associated with Lynch syndrome in colorectal cancer. Gastroenterol Rep (Oxf) 2021; 9:552-559. [PMID: 34925852 PMCID: PMC8677562 DOI: 10.1093/gastro/goab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lynch-syndrome-associated cancer is caused by germline pathogenic mutations in mismatch repair genes. The major challenge to Lynch-syndrome screening is the interpretation of variants found by diagnostic testing. This study aimed to classify the MLH1 c.1989 + 5G>A mutation, which was previously reported as a variant of uncertain significance, to describe its clinical phenotypes and characteristics, to enable detailed genetic counselling. METHODS We reviewed the database of patients with Lynch-syndrome gene detection in our hospital. A novel variant of MLH1 c.1989 + 5G>A identified by next-generation sequencing was further investigated in this study. Immunohistochemical staining was carried out to assess the expression of MLH1 and PMS2 protein in tumour tissue. In silico analysis by Alamut software was used to predict the MLH1 c.1989 + 5G>A variant function. Reverse transcription-polymerase chain reaction and sequencing of RNA from whole blood were used to analyse the functional significance of this mutation. RESULTS Among affected family members in the suspected Lynch-syndrome pedigree, the patient suffered from late-stage colorectal cancer but had a good prognosis. We found the MLH1 c.1989 + 5G>A variant, which led to aberrant splicing and loss of MLH1 and PMS2 protein in the nuclei of tumour cells. An aberrant transcript was detectable and skipping of MLH1 exon 17 in carriers of MLH1 c.1989 + 5G>A was confirmed. CONCLUSIONS MLH1 c.1989 + 5G>A was detected in a cancer family pedigree and identified as a pathological variant in patients with Lynch syndrome. The mutation spectrum of Lynch syndrome was enriched through enhanced genetic testing and close surveillance might help future patients who are suspected of having Lynch syndrome to obtain a definitive early diagnosis.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shuang-Mei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Dan Qi
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhao Lu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shi-Wen Mei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi-Xun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
24
|
Yamaguchi K, Kasajima R, Takane K, Hatakeyama S, Shimizu E, Yamaguchi R, Katayama K, Arai M, Ishioka C, Iwama T, Kaneko S, Matsubara N, Moriya Y, Nomizu T, Sugano K, Tamura K, Tomita N, Yoshida T, Sugihara K, Nakamura Y, Miyano S, Imoto S, Furukawa Y, Ikenoue T. Application of targeted nanopore sequencing for the screening and determination of structural variants in patients with Lynch syndrome. J Hum Genet 2021; 66:1053-1060. [PMID: 33958709 DOI: 10.1038/s10038-021-00927-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022]
Abstract
Lynch syndrome is a hereditary disease characterized by an increased risk of colorectal and other cancers. Germline variants in the mismatch repair (MMR) genes are responsible for this disease. Previously, we screened the MMR genes in colorectal cancer patients who fulfilled modified Amsterdam II criteria, and multiplex ligation-dependent probe amplification (MPLA) identified 11 structural variants (SVs) of MLH1 and MSH2 in 17 patients. In this study, we have tested the efficacy of long read-sequencing coupled with target enrichment for the determination of SVs and their breakpoints. DNA was captured by array probes designed to hybridize with target regions including four MMR genes and then sequenced using MinION, a nanopore sequencing platform. Approximately, 1000-fold coverage was obtained in the target regions compared with other regions. Application of this system to four test cases among the 17 patients correctly mapped the breakpoints. In addition, we newly found a deletion across an 84 kb region of MSH2 in a case without the pathogenic single nucleotide variants. These data suggest that long read-sequencing combined with hybridization-based enrichment is an efficient method to identify both SVs and their breakpoints. This strategy might replace MLPA for the screening of SVs in hereditary diseases.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Rika Kasajima
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa, 241-8518, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Rui Yamaguchi
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, 464-8681, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masami Arai
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Chikashi Ishioka
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Takeo Iwama
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Satoshi Kaneko
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Nagahide Matsubara
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Yoshihiro Moriya
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Tadashi Nomizu
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kokichi Sugano
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kazuo Tamura
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Naohiro Tomita
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Teruhiko Yoshida
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Kenichi Sugihara
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Satoru Miyano
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Systems Biology for Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- The Committee of HNPCC Registry and Genetic Testing Project, Japanese Society for Cancer of the Colon and Rectum (JSCCR), Tokyo, 102-0075, Japan.
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
25
|
Familial Risks and Proportions Describing Population Landscape of Familial Cancer. Cancers (Basel) 2021; 13:cancers13174385. [PMID: 34503195 PMCID: PMC8430802 DOI: 10.3390/cancers13174385] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Familial cancer can be defined through the occurrence of the same cancer in two or more family members. Hereditary cancer is a narrower definition of high-risk familial aggregation through identified predisposing genes. The absence of correlation between spouses for risk of most cancers, particularly those not related to tobacco smoking or solar exposure, suggests that familial cancers are mainly due to genetic causes. The aim of the present study was to define the frequency and increased risk for familial cancer. Data on 31 of the most common cancers were obtained from the Swedish Family-Cancer Database and familial relative risks (SIRs) were estimated between persons with or without family history of the same cancer in first-degree relatives. Practically all cancers showed a familial risk, with an SIR most commonly around two, or a doubling of the risk because of family history. Abstract Background: Familial cancer can be defined through the occurrence of the same cancer in two or more family members. We describe a nationwide landscape of familial cancer, including its frequency and the risk that it conveys, by using the largest family database in the world with complete family structures and medically confirmed cancers. Patients/methods: We employed standardized incidence ratios (SIRs) to estimate familial risks for concordant cancer among first-degree relatives using the Swedish Cancer Registry from years 1958 through 2016. Results: Cancer risks in a 20–84 year old population conferred by affected parents or siblings were about two-fold compared to the risk for individuals with unaffected relatives. For small intestinal, testicular, thyroid and bone cancers and Hodgkin disease, risks were higher, five-to-eight-fold. Novel familial associations included adult bone, lip, pharyngeal, and connective tissue cancers. Familial cancers were found in 13.2% of families with cancer; for prostate cancer, the proportion was 26.4%. High-risk families accounted for 6.6% of all cancer families. Discussion/Conclusion: High-risk family history should be exceedingly considered for management, including targeted genetic testing. For the major proportion of familial clustering, where genetic testing may not be feasible, medical and behavioral intervention should be indicated for the patient and their family members, including screening recommendations and avoidance of carcinogenic exposure.
Collapse
|
26
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
27
|
Cusenza VY, Bisagni A, Rinaldini M, Cattani C, Frazzi R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. Int J Mol Sci 2021; 22:ijms22094732. [PMID: 33946969 PMCID: PMC8124143 DOI: 10.3390/ijms22094732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The cytogenetic and molecular assessment of deletions, amplifications and rearrangements are key aspects in the diagnosis and therapy of cancer. Not only the initial evaluation and classification of the disease, but also the follow-up of the tumor rely on these laboratory approaches. The therapeutic choice can be guided by the results of the laboratory testing. Genetic deletions and/or amplifications directly affect the susceptibility or the resistance to specific therapies. In an era of personalized medicine, the correct and reliable molecular characterization of the disease, also during the therapeutic path, acquires a pivotal role. Molecular assays like multiplex ligation-dependent probe amplification and droplet digital PCR represent exceptional tools for a sensitive and reliable detection of genetic alterations and deserve a role in molecular oncology. In this manuscript we provide a technical comparison of these two approaches with the golden standard represented by fluorescence in situ hybridization. We also describe some relevant targets currently evaluated with these techniques in solid and hematologic tumors.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Monia Rinaldini
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Chiara Cattani
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Correspondence:
| |
Collapse
|
28
|
Helgadottir HT, Thutkawkorapin J, Rohlin A, Nordling M, Lagerstedt-Robinson K, Lindblom A. Identification of known and novel familial cancer genes in Swedish colorectal cancer families. Int J Cancer 2021; 149:627-634. [PMID: 33729574 DOI: 10.1002/ijc.33567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/10/2022]
Abstract
Identifying new candidate colorectal cancer (CRC) genes and mutations are important for clinical cancer prevention as well as in cancer care. Genetic counseling is already implemented for known high-risk variants; however, the majority of CRC are of unknown causes. In our study, 110 CRC patients in 55 Swedish families with a strong history of CRC but unknown genetic causes were analyzed with the aim of identifying novel candidate CRC predisposing genes. Exome sequencing was used to identify rare and high-impact variants enriched in the families. No clear pathogenic variants were found in known CRC predisposing genes; however, potential pathogenic variants in novel CRC predisposing genes were identified. Over 3000 variants with minor allele frequency (MAF) <0.01 and Combined Annotation Dependent Depletion (CADD) > 20 were seen aggregating in the CRC families. Of those, 27 variants with MAF < 0.001 and CADD>25 were considered high-risk mutations. Interestingly, more than half of the high-risk variants were detected in three families, suggesting cumulating contribution of several variants to CRC. In summary, our study shows that despite a strong history of CRC within families, identifying pathogenic variants is challenging. In a small number of families, few rare mutations were shared by affected family members. This could indicate that in the absence of known CRC predisposing genes, a cumulating contribution of mutations leads to CRC observed in these families.
Collapse
Affiliation(s)
- Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anna Rohlin
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margareta Nordling
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Yu H, Hemminki K. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis 2021; 35:207-219. [PMID: 31424514 DOI: 10.1093/mutage/gez022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
We review here data on familial risk in colorectal cancer (CRC) generated from the Swedish Family-Cancer Database, the largest resource of its kind in the world. Although the concordant familial risk for CRC (i.e. CRC risk in families of CRC patients) has been reasonably well established, the studies on discordant familial risks (i.e. CRC risk in families with any other cancers) are rare. Because different cancers could be caused by shared genetic susceptibility or shared environment, data of associations of discordant cancers may provide useful information for identifying common risk factors. In analyses between any of 33 discordant cancers relative risks (RRs) for discordant cancers were estimated in families with increasing numbers of probands with CRC; in the reverse analyses, RRs for CRC were estimated in families with increasing numbers of probands with discordant cancers. In separate analyses, hereditary non-polyposis colorectal cancer (HNPCC) families were excluded from the study, based on HNPCC related double primary cancers, to assess the residual familial RRs. We further reviewed familial risks of colon and rectal cancers separately in search for distinct discordant associations. The reviewed data suggested that colon cancer was associated with a higher familial risk for CRC compared to rectal cancer. The previous data had reported associations of CRC with melanoma, thyroid and eye cancers. Nervous system cancer was only associated with colon cancer, and lung cancer only associated with rectal cancer. The reviewed data on discordant association may provide guidance to gene identification and may help genetic counseling.
Collapse
Affiliation(s)
- Hongyao Yu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
30
|
Zhang L, Bhaskaran SP, Huang T, Dong H, Chandratre K, Wu X, Qin Z, Wang X, Cao W, Chen T, Lynch H, Wang SM. Variants of DNA mismatch repair genes derived from 33,998 Chinese individuals with and without cancer reveal their highly ethnic-specific nature. Eur J Cancer 2020; 125:12-21. [DOI: 10.1016/j.ejca.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
|
31
|
Correlation of MLH1 polymorphisms, survival statistics, in silico assessment and gene downregulation with clinical outcomes among breast cancer cases. Mol Biol Rep 2019; 47:683-692. [DOI: 10.1007/s11033-019-05175-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
|
32
|
Yanus GA, Akhapkina TA, Iyevleva AG, Kornilov AV, Suspitsin EN, Kuligina ES, Ivantsov AO, Aleksakhina SN, Sokolova TN, Sokolenko AP, Togo AV, Imyanitov EN. The spectrum of Lynch syndrome-associated germ-line mutations in Russia. Eur J Med Genet 2019; 63:103753. [PMID: 31491536 DOI: 10.1016/j.ejmg.2019.103753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/31/2019] [Indexed: 01/21/2023]
Abstract
Hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch syndrome (LS), is a common cancer-predisposing syndrome. This study aimed to investigate the spectrum of germ-line mutations in Russian LS patients. LS-related mismatch repair (MMR) genes were analyzed in 16 patients, who were forwarded to genetic testing due to strong clinical features of LS and had high-level microsatellite instability (MSI-H) in the tumor (n = 14) or unknown MSI status (n = 2). In addition, 672 consecutive colorectal cancer (CRC) cases were screened for family history; 15 patients were younger than 50 years and reported 2 or more instances of LS-related cancers in 1st- or 2nd-degree relatives. Seven of these cases demonstrated MSI-H and therefore were subjected to DNA germ-line testing. Overall, 17/23 (74%) subjects carried LS-associated gene variants (MLH1: 10; MSH2: 4; MSH6: 2; PMS2: 1), with 2 alleles (MLH1 c.677G > T and MSH2 с.1906G > C) detected twice. Testing for recurrent mutations of 30 consecutive MSI-H CRCs led to the identification of 2 additional subjects with LS. The analysis of all relevant publications identified 28 unrelated LS patients presented in Russian medical literature and 3 unrelated Russian LS subjects described in international journals. Overall, 15/49 (31%) genetic defects revealed in Russian LS patients were represented by six recurrent alleles (MLH1: c.350C > T, c.677G > T, c.1852_1854del; MSH2: c.942+3A > T, c.1861C > T, с.1906G > C). We conclude that the founder effect for LS in Russia is seemingly less pronounced than the one for hereditary breast-ovarian cancer syndrome, however testing for recurrent LS mutations may be considered feasible in some circumstances.
Collapse
Affiliation(s)
- Grigoriy A Yanus
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia.
| | | | - Aglaya G Iyevleva
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia
| | | | - Evgeny N Suspitsin
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia
| | | | - Alexandr O Ivantsov
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia
| | | | | | - Anna P Sokolenko
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia
| | - Alexandr V Togo
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia
| | - Evgeny N Imyanitov
- St.-Petersburg Pediatric Medical University, 194100, Russia; N.N. Petrov Institute of Oncology, 197758, Russia; I.I. Mechnikov North-Western Medical University, 191015, Russia; St.-Petersburg State University, 199034, St.-Petersburg, Russia
| |
Collapse
|
33
|
Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, Kawashita N, Tatsumi-Miyajima J. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24:999-1011. [PMID: 31273487 DOI: 10.1007/s10147-019-01494-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Collapse
Affiliation(s)
- Kazuo Tamura
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan.
| | - Motohide Kaneda
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mashu Futagawa
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Miho Takeshita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Sanghyuk Kim
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Norihito Kawashita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Junko Tatsumi-Miyajima
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| |
Collapse
|
34
|
Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol 2019; 247:574-588. [PMID: 30584801 PMCID: PMC6747691 DOI: 10.1002/path.5229] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
This article reviews genes and syndromes associated with predisposition to colorectal cancer (CRC), with an overview of gene variant classification. We include updates on the application of preventive and therapeutic measures, focusing on the use of non-steroidal anti-inflammatory drugs (NSAIDs) and immunotherapy. Germline pathogenic variants in genes conferring high or moderate risk to cancer are detected in 6-10% of all CRCs and 20% of those diagnosed before age 50. CRC syndromes can be subdivided into nonpolyposis and polyposis entities, the most common of which are Lynch syndrome and familial adenomatous polyposis, respectively. In addition to known and novel genes associated with highly penetrant CRC risk, identification of pathogenic germline variants in genes associated with moderate-penetrance cancer risk and/or hereditary cancer syndromes not traditionally linked to CRC may have an impact on genetic testing, counseling, and surveillance. The use of multigene panels in genetic testing has exposed challenges in the classification of variants of uncertain significance. We provide an overview of the main classification systems and strategies for improving these. Finally, we highlight approaches for integrating chemoprevention in the care of individuals with genetic predisposition to CRC and use of targeted agents and immunotherapy for treatment of mismatch repair-deficient and hypermutant tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Eduardo Vilar
- Departments of Clinical Cancer Prevention, GI Medical Oncology and Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, Castellvi-Bel S, Hemminki K. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69:10-26. [PMID: 30862463 DOI: 10.1016/j.mam.2019.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Trinidad Caldés
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Garré
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Margareta Nordling
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Gastrointestinal Cancer Group, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Abstract
Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.
Collapse
|
37
|
Bozarth X, Dines JN, Cong Q, Mirzaa GM, Foss K, Merritt JL, Thies J, Mefford HC, Novotny E. Expanding clinical phenotype in CACNA1C related disorders: From neonatal onset severe epileptic encephalopathy to late-onset epilepsy. Am J Med Genet A 2018; 176:2733-2739. [PMID: 30513141 PMCID: PMC6312477 DOI: 10.1002/ajmg.a.40657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
Abstract
CACNA1C (NM_000719.6) encodes an L-type calcium voltage-gated calcium channel (Cav 1.2), and pathogenic variants have been associated with two distinct clinical entities: Timothy syndrome and Brugada syndrome. Thus far, CACNA1C has not been reported as a gene associated with epileptic encephalopathy and is less commonly associated with epilepsy. We report three individuals from two families with variants in CACNA1C. Patient 1 presented with neonatal onset epileptic encephalopathy (NOEE) and was found to have a de novo missense variant in CACNA1C (c.4087G>A (p.V1363M)) on exome sequencing. In Family 2, Patient 2 presented with congenital cardiac anomalies and cardiomyopathy and was found to have a paternally inherited splice site variant, c.3717+1_3717+2insA, on a cardiomyopathy panel. Her father, Patient 3, presented with learning difficulties, late-onset epilepsy, and congenital cardiac anomalies. Family 2 highlights variable expressivity seen within a family. This case series expands the clinical and molecular phenotype of CACNA1C-related disorders and highlights the need to include CACNA1C on epilepsy gene panels.
Collapse
Affiliation(s)
- Xiuhua Bozarth
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Jennifer N. Dines
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
- Division of Medical Genetics, Department of Internal Medicine, University of Washington, Seattle, WA
| | - Qian Cong
- Department of Biochemistry and Institution for Protein Design, University of Washington, Seattle, WA
| | - Ghayda M. Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Kimberly Foss
- Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA
| | - J. Lawrence Merritt
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Heather C. Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | - Edward Novotny
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| |
Collapse
|
38
|
Keränen A, Ghazi S, Carlson J, Papadogiannakis N, Lagerstedt-Robinson K, Lindblom A. Testing strategies to reduce morbidity and mortality from Lynch syndrome. Scand J Gastroenterol 2018; 53:1535-1540. [PMID: 30572730 DOI: 10.1080/00365521.2018.1542453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Lynch syndrome (LS) has an autosomal dominant inheritance pattern and is associated with increased risk for colorectal cancer (CRC) and other cancers. Various strategies are used to identify patients at risk and offer surveillance and preventive programs, the cost effectiveness of which is much dependent on the prevalence of LS in a population. Universal testing (UT) is proposed as an effective measure, targeting all newly diagnosed CRC patients under a certain age. MATERIALS AND METHODS LS cases were identified in a cohort of 572 consecutive CRC patients. Immunohistochemistry was performed in 539 cases, using antibodies against mismatch repair proteins MLH1, PMS2, MSH2, and MSH6. Microsatellite instability and gene mutation screening were performed in 57 cases. RESULTS In total 11 pathogenic variants were detected, identifying LS in 1.9% of new CRC cases. Comparing the results with current clinical methods, 2 pathogenic variants were found with Amsterdam criteria and 9 when using either Bethesda guidelines or our institution's prior clinical criteria. Pathogenic variants in MSH6 were the most common in our series. We also found different outcomes using different age cut offs. CONCLUSION Our study demonstrates that UT of tumors before age on onset at 75 years would most likely be cost-efficient and essentially equivalent to applying the Bethesda guidelines or our institution's prior clinical criteria on all new CRC.
Collapse
Affiliation(s)
- Anne Keränen
- a Department of Laboratory Medicine, Division of Pathology , Karolinska Institutet , Karolinska University Hospital, Stockholm , Sweden
| | - Sam Ghazi
- a Department of Laboratory Medicine, Division of Pathology , Karolinska Institutet , Karolinska University Hospital, Stockholm , Sweden
| | - Joseph Carlson
- a Department of Laboratory Medicine, Division of Pathology , Karolinska Institutet , Karolinska University Hospital, Stockholm , Sweden
| | - Nikos Papadogiannakis
- a Department of Laboratory Medicine, Division of Pathology , Karolinska Institutet , Karolinska University Hospital, Stockholm , Sweden
| | - Kristina Lagerstedt-Robinson
- b Department of Molecular Medicine and Surgery , and Department of Clinical Genetics, Karolinska Institutet, Karolinska University Hospital, Solna , Stockholm , Sweden
| | - Annika Lindblom
- b Department of Molecular Medicine and Surgery , and Department of Clinical Genetics, Karolinska Institutet, Karolinska University Hospital, Solna , Stockholm , Sweden
| |
Collapse
|
39
|
Karimi M, von Salomé J, Aravidis C, Silander G, Askmalm MS, Henriksson I, Gebre-Medhin S, Frödin JE, Björck E, Lagerstedt-Robinson K, Lindblom A, Tham E. A retrospective study of extracolonic, non-endometrial cancer in Swedish Lynch syndrome families. Hered Cancer Clin Pract 2018; 16:16. [PMID: 30386444 PMCID: PMC6199799 DOI: 10.1186/s13053-018-0098-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Background Lynch Syndrome is an autosomal dominant cancer syndrome caused by pathogenic germ-line variants in one of the DNA-mismatch-repair (MMR) genes MLH1, MSH2, MSH6 or PMS2. Carriers are predisposed to colorectal and endometrial cancer, but also other cancer types. The purpose of this retrospective study was to characterize the tumour spectrum of the Swedish Lynch syndrome families. Methods Data were obtained from genetically verified 235 Lynch families from five of the six health care regions in Sweden. The material was stratified for gender, primary cancer, age and mutated gene and the relative proportions of specific cancer types were compared to those in the general population. Results A total of 1053 family members had 1493 cancer diagnoses of which 1011 were colorectal or endometrial cancer. Individuals with pathogenic variants in MLH1 and MSH2 comprised 78% of the cohort. Among the 482 non-colorectal/non-endometrial cancer diagnoses, MSH2 carriers demonstrated a significantly increased proportion of urinary tract, gastric, small bowel, ovarian and non-melanoma skin cancer compared to the normal population. MLH1 carriers had an elevated proportion of gastrointestinal cancers (gastric, small bowel, pancreas), while MSH6 carriers had more ovarian cancer than expected. Gastric cancer was predominantly noted in older generations. Conclusion Lynch syndrome confers an increased risk for multiple cancers other than colorectal and endometrial cancer. The proportions of other cancers vary between different MMR genes, with highest frequency in MSH2-carriers. Gender and age also affect the tumour spectrum, demonstrating the importance of additional environmental and constitutional parameters in determining the predisposition for different cancer types.
Collapse
Affiliation(s)
- Masoud Karimi
- 1Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny von Salomé
- 2Department of Clinical Genetics, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.,3Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Christos Aravidis
- 4Department of Clinical Genetics, Akademiska University Hospital, Uppsala, Sweden
| | - Gustav Silander
- 5Department of Clinical Genetics, Norrlands University Hospital, Umeå, Sweden
| | - Marie Stenmark Askmalm
- 6Department of Clinical Genetics, Linköpings University Hospital, Linköping, Sweden.,8Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Isabelle Henriksson
- 7Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,8Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Samuel Gebre-Medhin
- 7Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,8Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Jan-Erik Frödin
- 1Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Björck
- 2Department of Clinical Genetics, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.,3Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- 2Department of Clinical Genetics, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.,3Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- 2Department of Clinical Genetics, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.,3Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Emma Tham
- 2Department of Clinical Genetics, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden.,3Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Zheng G, Chattopadhyay S, Försti A, Sundquist K, Hemminki K. Familial risks of second primary cancers and mortality in ovarian cancer patients. Clin Epidemiol 2018; 10:1457-1466. [PMID: 30349393 PMCID: PMC6188204 DOI: 10.2147/clep.s174173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background With improving survival in ovarian cancer, second primary cancers (SPCs) and their etiological foundations are becoming an issue. The ways in which family history may influence the occurrence of SPCs and the related mortality are not well known. Methods Based on the Swedish Family-Cancer Database, we identified 11,300 ovarian cancer patients and followed them for diagnoses of SPCs until the end of 2015. Relative risks (RRs) of SPC in patients who had parents or siblings diagnosed with the same cancer (positive family history) were compared to those in patients without a family history (negative family history). Causes of death were compared between patients with and without SPC. Results A total of 1,111 (9.8%) ovarian cancer patients developed SPC with a median follow-up of 8 years. The impact of a family history of cancer on the risk of the same cancer as SPC was significant for colon (RRpositive family history [95% CI] vs RRnegative family history [95% CI]: 4.95 [3.03–8.09] vs 2.00 [1.63–2.47]), lung (3.32 [1.88–5.84] vs 1.45 [1.16–1.83]), and breast (2.08 [1.58–2.73] vs 1.01 [0.88–1.15]) cancers. With a family history of any cancer, the RR for non-ovarian SPCs was 1.66 (1.54–1.74), in contrast to 1.38 (1.24–1.54) for SPCs without any family history (P-trend <0.001). Accounting for 42.1% of all deaths, SPC was found to be the main cause of death for patients with SPC. Conclusion A family history of a particular cancer contributed to an increased risk of SPC at the same site. Therefore, considering family history at the time of diagnosis of ovarian cancer may alert physicians to a syndromic background, management of which may help the patient and her family members.
Collapse
Affiliation(s)
- Guoqiao Zheng
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany, .,Faculty of Medicine, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany,
| | - Subhayan Chattopadhyay
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany, .,Faculty of Medicine, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany,
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany, .,Center for Primary Health Care Research, Lund University, 205 02 Malmö, Skåne County, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, 205 02 Malmö, Skåne County, Sweden.,Department of Family Medicine and Community Health.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany, .,Center for Primary Health Care Research, Lund University, 205 02 Malmö, Skåne County, Sweden
| |
Collapse
|
41
|
Henriksson I, Henriksson K, Ehrencrona H, Gebre-Medhin S. Hereditary colorectal cancer diagnostics in southern Sweden: retrospective evaluation and future considerations with emphasis on Lynch syndrome. J Community Genet 2018; 10:259-266. [PMID: 30251116 PMCID: PMC6435770 DOI: 10.1007/s12687-018-0385-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/31/2018] [Indexed: 01/16/2023] Open
Abstract
Overlapping phenotypes between different hereditary colorectal cancer (CRC) syndromes together with a growing demand for cancer genetic testing and improved sequencing technology call for adjusted patient selection and adapted diagnostic routines. Here we present a retrospective evaluation of family history of cancer, laboratory diagnostic procedure, and outcome for 372 patients tested for Lynch syndrome (LS), i.e., the single most common hereditary cause of CRC. Based on number of affected family members and age at cancer diagnosis in families with genetically confirmed LS, we developed local patient selection criteria for a simplified one-step gene panel mutation screening strategy targeting also less common Mendelian CRC syndromes. Pros and cons of this strategy are discussed.
Collapse
Affiliation(s)
- Isabelle Henriksson
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Karin Henriksson
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Samuel Gebre-Medhin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden. .,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden. .,Department of Clinical Genetics and Pathology, University Hospital, SE-221 85, Lund, Sweden.
| |
Collapse
|
42
|
von Salomé J, Boonstra PS, Karimi M, Silander G, Stenmark-Askmalm M, Gebre-Medhin S, Aravidis C, Nilbert M, Lindblom A, Lagerstedt-Robinson K. Genetic anticipation in Swedish Lynch syndrome families. PLoS Genet 2017; 13:e1007012. [PMID: 29088233 PMCID: PMC5681299 DOI: 10.1371/journal.pgen.1007012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/10/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022] Open
Abstract
Among hereditary colorectal cancer predisposing syndromes, Lynch syndrome (LS) caused by mutations in DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2 is the most common. Patients with LS have an increased risk of early onset colon and endometrial cancer, but also other tumors that generally have an earlier onset compared to the general population. However, age at first primary cancer varies within families and genetic anticipation, i.e. decreasing age at onset in successive generations, has been suggested in LS. Anticipation is a well-known phenomenon in e.g neurodegenerative diseases and several reports have studied anticipation in heritable cancer. The purpose of this study is to determine whether anticipation can be shown in a nationwide cohort of Swedish LS families referred to the regional departments of clinical genetics in Lund, Stockholm, Linköping, Uppsala and Umeå between the years 1990–2013. We analyzed a homogenous group of mutation carriers, utilizing information from both affected and non-affected family members. In total, 239 families with a mismatch repair gene mutation (96 MLH1 families, 90 MSH2 families including one family with an EPCAM–MSH2 deletion, 39 MSH6 families, 12 PMS2 families, and 2 MLH1+PMS2 families) comprising 1028 at-risk carriers were identified among the Swedish LS families, of which 1003 mutation carriers had available follow-up information and could be included in the study. Using a normal random effects model (NREM) we estimate a 2.1 year decrease in age of diagnosis per generation. An alternative analysis using a mixed-effects Cox proportional hazards model (COX-R) estimates a hazard ratio of exp(0.171), or about 1.19, for age of diagnosis between consecutive generations. LS-associated gene-specific anticipation effects are evident for MSH2 (2.6 years/generation for NREM and hazard ratio of 1.33 for COX-R) and PMS2 (7.3 years/generation and hazard ratio of 1.86). The estimated anticipation effects for MLH1 and MSH6 are smaller. Genetic anticipation is a phenomenon where symptoms of a hereditary disease appear at an earlier age and/or are more severe in successive generations. In genetic disorders such as Fragile X syndrome, Myotonic dystrophy type 1 and Huntington disease, anticipation is caused by the expansion of unstable trinucleotide repeats during meiosis. Anticipation is also reported to occur in some hereditary cancers though the underlying mechanism behind this observation is unknown. Several studies have investigated anticipation in Lynch syndrome, the most common hereditary colorectal cancer syndrome, yet there is a debate concerning whether anticipation occurs and what underlying mechanism there is. The objective of this project is to study if anticipation is part of the clinical picture in Swedish families with LS, with the long term goal to enable better prediction of age at onset in family members. Our results suggest that anticipation occurs in families with mutation in MSH2 and PMS2, while the evidence is equivocal for MLH1 and MSH6.
Collapse
Affiliation(s)
- Jenny von Salomé
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| | - Philip S. Boonstra
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Masoud Karimi
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Gustav Silander
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Marie Stenmark-Askmalm
- Department of Oncology, Linköping University, Linköping, Sweden
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Samuel Gebre-Medhin
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christos Aravidis
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mef Nilbert
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
- Clinical Research Centre, Hvidovre Hospital, Copenhagen University, Hvidovre, Denmark
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
43
|
Rossi BM, Palmero EI, López-Kostner F, Sarroca C, Vaccaro CA, Spirandelli F, Ashton-Prolla P, Rodriguez Y, de Campos Reis Galvão H, Reis RM, Escremim de Paula A, Capochin Romagnolo LG, Alvarez K, Della Valle A, Neffa F, Kalfayan PG, Spirandelli E, Chialina S, Gutiérrez Angulo M, Castro-Mujica MDC, Sanchez de Monte J, Quispe R, da Silva SD, Rossi NT, Barletta-Carrillo C, Revollo S, Taborga X, Morillas LL, Tubeuf H, Monteiro-Santos EM, Piñero TA, Dominguez-Barrera C, Wernhoff P, Martins A, Hovig E, Møller P, Dominguez-Valentin M. A survey of the clinicopathological and molecular characteristics of patients with suspected Lynch syndrome in Latin America. BMC Cancer 2017; 17:623. [PMID: 28874130 PMCID: PMC5586063 DOI: 10.1186/s12885-017-3599-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/23/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genetic counselling and testing for Lynch syndrome (LS) have recently been introduced in several Latin America countries. We aimed to characterize the clinical, molecular and mismatch repair (MMR) variants spectrum of patients with suspected LS in Latin America. METHODS Eleven LS hereditary cancer registries and 34 published LS databases were used to identify unrelated families that fulfilled the Amsterdam II (AMSII) criteria and/or the Bethesda guidelines or suggestive of a dominant colorectal (CRC) inheritance syndrome. RESULTS We performed a thorough investigation of 15 countries and identified 6 countries where germline genetic testing for LS is available and 3 countries where tumor testing is used in the LS diagnosis. The spectrum of pathogenic MMR variants included MLH1 up to 54%, MSH2 up to 43%, MSH6 up to 10%, PMS2 up to 3% and EPCAM up to 0.8%. The Latin America MMR spectrum is broad with a total of 220 different variants which 80% were private and 20% were recurrent. Frequent regions included exons 11 of MLH1 (15%), exon 3 and 7 of MSH2 (17 and 15%, respectively), exon 4 of MSH6 (65%), exons 11 and 13 of PMS2 (31% and 23%, respectively). Sixteen international founder variants in MLH1, MSH2 and MSH6 were identified and 41 (19%) variants have not previously been reported, thus representing novel genetic variants in the MMR genes. The AMSII criteria was the most used clinical criteria to identify pathogenic MMR carriers although microsatellite instability, immunohistochemistry and family history are still the primary methods in several countries where no genetic testing for LS is available yet. CONCLUSION The Latin America LS pathogenic MMR variants spectrum included new variants, frequently altered genetic regions and potential founder effects, emphasizing the relevance implementing Lynch syndrome genetic testing and counseling in all of Latin America countries.
Collapse
Affiliation(s)
| | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP Brazil
| | | | - Carlos Sarroca
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | | | - Florencia Spirandelli
- Servicio de Coloproctologia y Asesoria Genetica en Cancer, Hospital Español de Rosario, Rosario, Argentina
| | - Patricia Ashton-Prolla
- Departamento de Genética da Universidade Federal do Rio Grande do Sul (UFRGS) e Serviço de Genética Médica do Hospital de Clinicas de Porto Alegre (HCPA) & Rede Brasileira de Câncer Hereditário, Porto Alegre, Rio Grande Do Sul Brazil
| | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital & Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | | | | | - Karin Alvarez
- Laboratorio de Oncología y Genética Molecular, Clínica Los Condes, Santiago, Chile
| | - Adriana Della Valle
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | - Florencia Neffa
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | | | - Enrique Spirandelli
- Servicio de Coloproctologia y Asesoria Genetica en Cancer, Hospital Español de Rosario, Rosario, Argentina
| | - Sergio Chialina
- Servicio de Coloproctologia y Asesoria Genetica en Cancer, Hospital Español de Rosario, Rosario, Argentina
| | | | | | | | - Richard Quispe
- Laboratorio de Genética Molecular del Instituto de Servicios de Laboratorio de Diagnóstico e Investigación en Salud (SELADIS), La Paz, Bolivia
| | - Sabrina Daniela da Silva
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | | | - Claudia Barletta-Carrillo
- Equipo Funcional de Genética y Biologia Molecular, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Susana Revollo
- Laboratorio de Genética Molecular del Instituto de Servicios de Laboratorio de Diagnóstico e Investigación en Salud (SELADIS), La Paz, Bolivia
| | - Ximena Taborga
- Laboratorio de Genética Molecular del Instituto de Servicios de Laboratorio de Diagnóstico e Investigación en Salud (SELADIS), La Paz, Bolivia
| | | | - Hélène Tubeuf
- Inserm-U1079-IRIB, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Interactive Biosoftware, Rouen, France
| | | | - Tamara Alejandra Piñero
- Instituto de Ciencias Basicas y Medicina Experimental (ICBME), Hospital Italiano, Buenos Aires, Argentina
| | - Constantino Dominguez-Barrera
- Department of Preventive Medicine, Faculty of Medicine, Universidad Nacional Mayor de San Marcos (UNMSM), Lima, Peru
| | - Patrik Wernhoff
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Alexandra Martins
- Inserm-U1079-IRIB, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Pål Møller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Human Medicine, Universität Witten/Herdecke, Witten, Germany
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Yu H, Hemminki A, Sundquist K, Hemminki K. Familial Associations of Colorectal Cancer with Other Cancers. Sci Rep 2017; 7:5243. [PMID: 28701784 PMCID: PMC5507930 DOI: 10.1038/s41598-017-05732-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) has a strong familial component which extends to discordant cancers (ie non-CRC tumors). This is best seen in cancer syndromes such as hereditary non-polyposis colorectal cancer (HNPCC) which predisposes to several tumor types. Population-based family studies have also found discordant associations for CRC but they have included cancers which manifest in HNPCC, and there is no convincing evidence of discordant associations beyond the known syndromes. We address familial associations of non-CRC tumors with CRC using the resources of the Swedish Family-Cancer Database and applying a powerful approach of assessing familial relative risks in families of increasing numbers of patients with discordant cancers. Among 1.8 million cancer patients and over 200,000 CRC cases consistent familial associations of CRC was observed for several HNPCC related cancers. However, for small intestinal, pancreatic and nervous system cancers RRs remained essentially unchanged when potential HNPCC families were excluded, suggesting involvement of genes not related to HNPCC. Two independent associations of CRC were found for melanoma, thyroid and eye cancers and these appeared not to be related to known syndromes. A number of other cancers associated with CRC in single analyses and independent studies are required to assess the relevance of such findings.
Collapse
Affiliation(s)
- Hongyao Yu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, 205 02, Malmö, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, 205 02, Malmö, Sweden
| |
Collapse
|