1
|
Guo DF, Fan LW, Zeng HH, Huang CB, Wu XH. Establishment and validation of a cuproptosis-related lncRNA signature that predicts prognosis and potential targeted therapy in hepatocellular carcinoma. Biotechnol Genet Eng Rev 2024; 40:739-764. [PMID: 36951200 DOI: 10.1080/02648725.2023.2190640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Cuproptosis is a recently identified form of programmed cell death and could be a new direction for tumour therapy, and it has important clinical implications. Long non-coding RNAs (lncRNAs) can intervene in diverse biological processes and have a decisive role in hepatocellular carcinoma (HCC). However, how cuproptosis-related lncRNAs (CRLs) participate in regulating HCC has yet to be recognised. This study aimed to establish and validate a prognostic signature of CRLs and to analyse their clinical value in HCC patients. METHODS To analyse the function of CRLs in the prognosis of HCC, RNA sequencing data, mutation data, and clinically relevant data were collected from the Cancer Genome Atlas Database (TCGA). Then, TCGA cohort was randomly divided into training and test sets. The training set was utilized to define prognostic signature of CRLs using bioinformatics methods. Subsequently, we verified the accuracy of this prognostic signature in the test set. Finally, we performed immune-related analysis, the half-maximal inhibitory concentration (IC50) prediction, gene set enrichment analysis, and tumour mutational burden (TMB) analysis. RESULTS We established a prognostic signature for the CRLs (SNHG4, AC026412.3, AL590705.3, and CDKN2A-DT). This signature-based risk group displayed an accurate predictive ability for the survival time of patients with HCC. We observed discrepancies in immune cells, immune function, the expression level of genes related to immune checkpoints, and TMB in high- and low-risk groups. CONCLUSION This CRLs prognostic signature could predict clinical outcomes in patients with HCC as well as the efficacy of targeted and therapy immunotherapy.
Collapse
Affiliation(s)
- Ding-Fan Guo
- Gastroenterology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lin-Wei Fan
- Key Laboratory of Jiangxi Province for Transfusion Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Hui Zeng
- Pneumology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cai-Bin Huang
- Gastroenterology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xin-Huan Wu
- Gastroenterology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
3
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Miao X, Xi W, Bao Y. LncRNA RP11-58O9.2 predicts poor prognosis and promotes progression of non-small cell lung cancer. J Int Med Res 2023; 51:3000605231206295. [PMID: 37871619 PMCID: PMC10594974 DOI: 10.1177/03000605231206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) play a crucial role in non-small cell lung cancer (NSCLC). This study aimed to investigate the novel biomarker, lncRNA RP11-58O9.2, in patients with NSCLC. METHODS RP11-58O9.2 expression in NSCLC cells and tissues was detected by reverse transcription-quantitative polymerase chain reaction. Patient survival was analyzed in relation to RP11-58O9.2 expression levels. RP11-58O9.2 expression was knocked down and endogenous expression was verified in two NSCLC cell lines. Cell proliferation was then assessed by Cell Counting Kit-8 and colony-formation assays, and cell invasion and migration were assessed by Transwell and wound-healing assays, respectively. In vivo experiments were performed in mice, and the combination of RP11-58O9.2 and miR-6749-3p was predicted by miRanda. RESULTS RP11-58O9.2 was highly expressed in NSCLC cell lines and tissues, and was associated with advanced stage, lymphatic metastasis, and differentiation group. High RP11-58O9.2 levels were also associated with shorter survival. RP11-58O9.2 knockdown inhibited the proliferation, invasion, and migration of lung cancer cells, and tumor growth in mouse xenografts in vivo. RP11-58O9.2 may target and regulate miR-6749-3p. CONCLUSIONS LncRNA RP11-58O9.2 is associated with NSCLC prognosis and promotes lung cancer progression. Further studies are needed to investigate the mechanisms and the regulatory association between RP11-58O9.2 and miR-6749-3p.
Collapse
Affiliation(s)
- Xuan Miao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Xi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongxia Bao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Yu Z, Wang X, Niu K, Sun L, Li D. LncRNA TM4SF19-AS1 exacerbates cell proliferation, migration, invasion, and EMT in head and neck squamous cell carcinoma via enhancing LAMC1 expression. Cancer Biol Ther 2022; 23:1-9. [PMID: 36411963 PMCID: PMC9683051 DOI: 10.1080/15384047.2022.2116923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous and aggressive tumor with high mortality and unfavorable prognosis. Numerous long non-coding RNAs (lncRNAs) have been confirmed to exert pivotal parts in cancers. Nevertheless, the functions of most lncRNAs in HNSCC need deeper exploration. Our present research tried to clarify the biological role of TM4SF19 antisense RNA 1 (TM4SF19-AS1) and investigate its regulatory mechanism in HNSCC. RT-qPCR analysis was done to test TM4SF19-AS1 expression and identify the up-regulation of TM4SF19-AS1 in HNSCC cells. Loss-of-function assays were also involved, and the data implied that TM4SF19-AS1 knockdown hampered the proliferation, migration, invasion, along with epithelial-mesenchymal transition (EMT) of HNSCC cells. In vivo assays revealed TM4SF19-AS1 depletion restrained HNSCC tumor growth. Additionally, mechanism experiments were implemented to uncover the underlying regulatory mechanism of TM4SF19-AS1 in HNSCC cells. It turned out that TM4SF19-AS1 modulated laminin subunit gamma 1 (LAMC1) expression via sequestering microRNA-153-3p (miR-153-3p) and recruiting heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein. Rescue assays confirmed that TM4SF19-AS1 contributed to HNSCC cell malignant behaviors via up-regulating LAMC1. To summarize, TM4SF19-AS1 played an oncogenic role in HNSCC cells, signifying TM4SF19-AS1 may have the potential to be used as a novel molecular target for HNSCC diagnosis.
Collapse
Affiliation(s)
- Zhi Yu
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Wang
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, Jilin, China,CONTACT Xin Wang Department of Otorhinolaryngology, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin130000, China
| | - Kai Niu
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Sun
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongjie Li
- Department of Otorhinolaryngology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Shao A, Hu W, Li C, Yang Y, Zhu J. Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
Affiliation(s)
- Anjing Shao
- Department of Gastroenterology, Chongqing Wanzhou Shanghai Hospital, Chongqing, 404100, People's Republic of China
| | - Wei Hu
- Department of Gastroenterology, Chongqing Jiulongpo District People's Hospital, 7 Metallurgical Third Village, Shipingqiao, Jiulongpo, Chongqing, 400000, People's Republic of China.
| | - Chunxia Li
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Yang Yang
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Jianru Zhu
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| |
Collapse
|
7
|
Chen F, Zhang F, Leng YF, Shi YJ, Zhang JM, Liu YQ. The crucial roles of long noncoding RNA SNHGs in lung cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2272-2284. [PMID: 36008615 DOI: 10.1007/s12094-022-02909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future.
Collapse
Affiliation(s)
- Feng Chen
- Department of Anesthesiology, First Hospital of Lanzhou University, 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Fa Zhang
- Department of Urology, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Yu-Fang Leng
- Department of Anesthesiology, First Hospital of Lanzhou University, 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - Ya-Jing Shi
- Department of Anesthesiology, First Hospital of Lanzhou University, 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Jian-Ming Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Yong-Qiang Liu
- Department of Anesthesiology, First Hospital of Lanzhou University, 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| |
Collapse
|
8
|
LncRNA SPINT1-AS1/miR-433-3p/E2F3 positive feedback loop promotes the KRAS-mutant colorectal cancer cell proliferation, migration and invasion. Pathol Res Pract 2022; 239:154064. [DOI: 10.1016/j.prp.2022.154064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
|
9
|
Soliman HAN, Toso EA, Darwish IE, Ali SM, Kyba M. Antiapoptotic Protein FAIM2 is targeted by miR-3202, and DUX4 via TRIM21, leading to cell death and defective myogenesis. Cell Death Dis 2022; 13:405. [PMID: 35468884 PMCID: PMC9038730 DOI: 10.1038/s41419-022-04804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Inappropriate expression of DUX4, a transcription factor that induces cell death at high levels of expression and impairs myoblast differentiation at low levels of expression, leads to the development of facioscapulohumeral muscular dystrophy (FSHD), however, the pathological mechanisms downstream of DUX4 responsible for muscle loss are poorly defined. We performed a screen of 1972 miR inhibitors for their ability to interfere with DUX4-induced cell death of human immortalized myoblasts. The most potent hit identified by the screen, miR-3202, is known to target the antiapoptotic protein FAIM2. Inhibition of miR-3202 led to the upregulation of FAIM2, and remarkably, expression of DUX4 led to reduced cellular levels of FAIM2. We show that the E3 ubiquitin ligase and DUX4 target gene, TRIM21, is responsible for FAIM2 degradation downstream of DUX4. Human myoblasts overexpressing FAIM2 showed increased resistance to DUX4-induced cell death, whereas in wild-type cells FAIM2 knockdown resulted in increased apoptosis and failure to differentiate into myotubes. The necessity of FAIM2 for myogenic differentiation of WT cells led us to test the effect of FAIM2 overexpression on the impairment of myogenesis by DUX4. Strikingly, FAIM2 overexpression rescued the myogenic differentiation defect caused by low-level expression of DUX4. These data implicate FAIM2 levels, modulated by DUX4 through TRIM21, as an important factor mediating the pathogenicity of DUX4, both in terms of cell viability and myogenic differentiation, and thereby open a new avenue of investigation towards drug targets in FSHD. ![]()
Collapse
|
10
|
Lv X, Fang Z, Qi W, Xu Y, Chen W. Long Non-coding RNA HOXA11-AS Facilitates Proliferation of Lung Adenocarcinoma Cells via Targeting the Let-7c-5p/IGF2BP1 Axis. Front Genet 2022; 13:831397. [PMID: 35368660 PMCID: PMC8969016 DOI: 10.3389/fgene.2022.831397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: This study investigates the relationship between the HOXA11-AS/let-7c-5p/IGF2BP1 regulatory axis and lung adenocarcinoma. Methods: The expression levels of HOXA11-AS, let-7c-5p, and IGF2BP1 were evaluated in LUAD tissue and cell lines. Subcellular fractionation detection assay was adopted to verify the HOXA11-AS distribution in LUAD cells. The interaction relationship between let-7c-5p and HOXA11-AS or IGF2BP1 was validated by dual-luciferase reporter detection. In RNA binding protein immunoprecipitation assay, the binding relationship between HOXA11-AS and let-7c-5p was identified. The cell viability of transfected cells was tested by the Cell Counting Kit-8 assay. The mouse xenograft model was used to identify the effect of HOXA11-AS on tumor growth in vivo. Results: Upregulation of lncRNA HOXA11-AS was found in LUAD, and suppression of HOXA11-AS could suppress the proliferative ability of LUAD cells. The let-7c-5p was expressed to be downregulated, which played an inhibitory role in LUAD cell proliferation. Let-7c-5p was negatively regulated by HOXA11-AS. HOXA11-AS promoted LUAD cell proliferation, while let-7c-5p had an inverse effect. Besides, IGF2BP1, regulated by let-7c-5p, had a positive relation with HOXA11-AS, while overexpression of IGF2BP1 could suppress the inhibition of silencing HOXA11-AS on LUAD cell proliferation. Experiments on mice confirmed that HOXA11-AS facilitated LUAD cell growth in vivo through regulating the let-7c-5p/IGF2BP1 axis. Conclusion: HOXA11-AS promoted LUAD cell proliferation by targeting let-7c-5p/IGF2BP1, which could be potential molecular targets for LUAD.
Collapse
Affiliation(s)
- Xiaodong Lv
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhixian Fang
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| | - Wenyu Chen
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| |
Collapse
|
11
|
Rizk NI, Abulsoud AI, Kamal MM, Kassem DH, Hamdy NM. Exosomal-long non-coding RNAs journey in colorectal cancer: Evil and goodness faces of key players. Life Sci 2022; 292:120325. [PMID: 35031258 DOI: 10.1016/j.lfs.2022.120325] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are nano-vesicles (NVs) secreted by cells and take part in cell-cell communications. Lately, these exosomes were proved to have dual faces in cancer. Actually, they can contribute to carcinogenesis through epithelial-mesenchymal transition (EMT), angiogenesis, metastasis and tumor microenvironment (TME) of various cancers, including colorectal cancer (CRC). On the other hand, they can be potential targets for cancer treatment. CRC is one of the most frequent tumors worldwide, with incidence rates rising in the recent decades. In its early stage, CRC is asymptomatic with poor treatment outcomes. Therefore, finding a non-invasive, early diagnostic biomarker tool and/or suitable defender to combat CRC is mandatory. Exosomes provide enrichment and safe setting for their cargos non-coding RNAs (ncRNAs) and proteins, whose expression levels can be upregulated ordown-regulated in cancer. Hence, exosomes can be used as diagnostic and/or prognostic tools for cancer. Moreover, exosomes can provide a novel potential therapeutic modality for tumors via loading with specific chemotherapeutic agents, with the advantage of possible tumor targeting. In this review, we will try to collect and address recent studies concerned with exosomes and their cargos' implications for CRC diagnosis and/or hopefully, treatment.
Collapse
Affiliation(s)
- Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys Branch), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; The Centre for Drug Research and Development, Faculty of Pharmacy, BUE, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M. Oncogenic Roles of Small Nucleolar RNA Host Gene 7 (SNHG7) Long Noncoding RNA in Human Cancers and Potentials. Front Cell Dev Biol 2022; 9:809345. [PMID: 35111760 PMCID: PMC8801878 DOI: 10.3389/fcell.2021.809345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts characterized with more than 200 nucleotides of length. Unlike their names, some short open reading frames are recognized for them encoding small proteins. LncRNAs are found to play regulatory roles in essential cellular processes such as cell growth and apoptosis. Therefore, an increasing number of lncRNAs are identified with dysregulation in a wide variety of human cancers. SNHG7 is an lncRNA with upregulation in cancer cells and tissues. It is frequently reported with potency of promoting malignant cell behaviors in vitro and in vivo. Like oncogenic/tumor suppressor lncRNAs, SNHG7 is found to exert its tumorigenic functions through interaction with other biological substances. These include sponging target miRNAs (various numbers are identified), regulation of several signaling pathways, transcription factors, and effector proteins. Importantly, clinical studies demonstrate association between high SNHG7 expression and clinicopathological features in cancerous patients, worse prognosis, and enhanced chemoresistance. In this review, we summarize recent studies in three eras of cell, animal, and human experiments to bold the prognostic, diagnostic, and therapeutic potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Hallajnejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhang Y, Tian Q, Huang S, Wang Q, Wu H, Dong Q, Chen X. Prognostic effect of lncRNA SNHG7 on cancer outcome: a meta and bioinformatic analysis. BMC Cancer 2022; 22:10. [PMID: 34979987 PMCID: PMC8722206 DOI: 10.1186/s12885-021-09068-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND New evidence from clinical and fundamental researches suggests that SNHG7 is involved in the occurrence and development of carcinomas. And the increased levels of SNHG7 are associated with poor prognosis in various kinds of tumors. However, the small sample size was the limitation for the prognostic value of SNHG7 in clinical application. The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of SNHG7 in various cancers. METHODS Articles related to the SNHG7 as a prognostic biomarker for cancer patients, were comprehensive searched in several electronic databases. The enrolled articles were qualified via the preferred reporting items for systematic reviews and meta-analysis of observational studies in epidemiology checklists. Additionally, an online database based on The Cancer Genome Atlas (TCGA) was further used to validate our results. RESULTS We analyzed 2418 cancer patients that met the specified criteria. The present research indicated that an elevated SNHG7 expression level was significantly associated with unfavorable overall survival (OS) (HR = 2.45, 95% CI: 2.12-2.85, p <0.001). Subgroup analysis showed that high expression levels of SNHG7 were also significantly associated with unfavorable OS in digestive system cancer (HR = 2.31, 95% CI: 1.90-2.80, p <0.001) and non-digestive system cancer (HR = 2.67, 95% CI: 2.12-3.37, p <0.001). Additionally, increased SNHG7 expression was found to be associated with tumor stage and progression (III/IV vs. I/II: HR = 1.76, 95% CI: 1.57-1.98, p <0.001). Furthermore, elevated SNHG7 expression significantly predicted lymph node metastasis (LNM) (HR = 1.98, 95% CI: 1.74-2.26, p <0.001) and distant metastasis (DM) (HR = 2.49, 95% CI: 1.88-3.30, p <0.001) respectively. No significant heterogeneity was observed among these studies. SNHG7 was significantly upregulated in four cancers and the elevated expression of SNHG7 predicted shorter OS in four cancers, worse DFS in five malignancies and worse PFI in five carcinomas based on the validation using the GEPIA on-line analysis tool. CONCLUSIONS The present analysis suggests that elevated SNHG7 is significantly associated with unfavorable OS, tumor progression, LNM and DM in various carcinomas, and may be served as a promising biomarker to guide therapy for cancer patients.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shifeng Huang
- Department of Clinical Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Qing Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongmei Wu
- Department of Abdominal Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
- Shandong Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, 266003, Shandong, China.
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao, 266003, China.
| | - Xian Chen
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
14
|
Liu Y, Liu J, Cui J, Zhong R, Sun G. Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis. Bioengineered 2022; 13:1115-1125. [PMID: 34978464 PMCID: PMC8805840 DOI: 10.1080/21655979.2021.2017678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in developing hepatocellular carcinoma (HCC). The present study explored the role of lncRNA LINC01194, which is upregulated in HCC tissues and might be a vital regulator in HCC progression. Levels of LINC01194, microRNA (miR)-655-3p, and SMAD family member 5 (SMAD5) were assessed using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The bioactivity of Huh-7 cells was assessed using cell counting kit-8 and transwell assays and flow cytometry. Western blotting was conducted to measure the expression of invasion- and apoptosis-related proteins. The relationships between lncRNA LINC01194 and miR-655-3p, and miR-655-3p and SMAD5 were predicted using StarBase and TargetScan, and further verified using a dual-luciferase reporter assay. LINC01194 was overexpressed in HCC cells and in clinical samples. ILINC01194 silencing suppressed proliferation and migration; however, it promoted apoptosis in HCC cell lines. We also confirmed that miR-655-3p could bind to LINC01194, and miR-655-3p was downregulated in HCC. The upregulation of miR-655-3p suppressed HCC cell invasion and migration, and enhanced the number of apoptotic cells. SMAD5, which was overexpressed in HCC cell lines, was directly targeted by miR-655-3p. Therefore, LINC01194 promoted HCC development by decreasing miR-655-3p expression and may serve as a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Junkai Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ruolei Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Guoyang Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
15
|
Hu M, Wu Y, Su W, Wang Q, Xing C. Is Long Noncoding SNHG7 a Reliable Diagnostic Tool for Metastasis Diagnosis of Cancer: A Meta-Analysis. Genet Test Mol Biomarkers 2021; 25:765-771. [PMID: 34890252 DOI: 10.1089/gtmb.2021.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: The small nucleolar RNA host gene 7 (SNHG7) has been suggested as a biomarker of metastatic cancer; however, its reliability is controversial. Therefore, the goal of this study was to conduct a meta-analysis to assess the reliability of SNHG7 as a comprehensive cancer metastasis diagnostic biomarker. Methods: A comprehensive literature search was conducted using PubMed, Cochrane Library, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) to identify articles which examined the role of SNHG7 in cancers. Random-effects models and fixed-effects models were conducted to estimate the pooled odds ratios (ORs) for the associations of SNHG7 with distant metastases and lymph node metastases. Hierarchical summary receiver operating characteristic (ROC) models were used to estimate the sensitivity and specificity of SNHG7 as a biomarker for cancer metastasis diagnoses. Results: Nineteen studies comprised 1491 patients were included in this meta-analysis. We found that both distant metastasis (OR = 4.19, 95% confidence interval [CI] = 2.93-5.99, I2 = 34%) and lymph node metastasis (OR = 3.07, 95% CI = 1.65-5.68, I2 = 79.03%) were significantly associated with a higher expression of SNHG7. We also showed a pooled sensitivity and specificity of 74% (95% CI = 66-82) and 57% (95% CI = 53-61) for distant metastasis; as well as 72% (95% CI = 63-80) and 54% (95% CI = 46-63) for lymph node metastasis, respectively. Conclusion: Our findings suggest that SNHG7 is a potential diagnostic biomarker for metastasis of cancer; however, its clinical application requires stronger evidence due to the low sensitivity and specificity. Further larger-scale studies from diverse settings and cancer types will be necessary to reveal novel insights into SNHG7 as a biomarker for cancer metastasis diagnoses.
Collapse
Affiliation(s)
- Mingchao Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yong Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenzhao Su
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Wang J, Du S, Wang C, Zhu Z, Xie B, Zhang B. Clinicopathological and prognostic value of long noncoding RNA SNHG7 in cancers: a meta-analysis and bioinformatics. Aging (Albany NY) 2021; 13:23796-23809. [PMID: 34714775 PMCID: PMC8580357 DOI: 10.18632/aging.203650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
The long intergenic non-coding RNA SNHG7 has been reported to be abnormally expressed in many types of cancer, the results remain controversial. In this study, a meta-analysis was performed to evaluate the clinicopathologic and prognostic value of SNHG7 in cancers. Electronic databases of PubMed, Web of Science, Cochrane Library and Embase were used to search relevant studies. A combined hazard ratio (HR) and its corresponding 95% confidence interval (CI) were used to assess the association between SNHG7 expression and prognosis in cancer patients. Pooled odds ratio (OR) and 95% CI were calculated to elaborate the association between SNHG7 expression and clinicopathological features in cancers. Besides, the data from The Cancer Genome Atlas (TCGA) dataset was used to validate the results. In total, eighteen studies compromising 1303 participants were enrolled in this analysis. The pooled results showed increased SNHG7 expression could predict unfavorable overall survival (OS) (HR = 1.75, 95%CI = 1.52–2.02, P = 0.000). Analysis stratified by follow-up time, cancer types, analysis types, sample sizes and cut off further verified the prognostic value of SNHG7. Additionally, elevated SNHG7 expression was correlated with TNM stage (OR: 3.31, 95%CI = 2.29–4.80, P = 0.000), lymph node metastasis (OR = 3.32, 95%CI = 1.61–6.83, P = 0.004), and tumor differentiation (OR = 1.92, 95%CI = 1.22–3.03, P =0.005) in patients with cancers. Excavation of TCGA dataset valuated that SNHG7 was upregulated in some cancers and predicted worse OS, which partially confirmed our results in this meta-analysis.
Collapse
Affiliation(s)
- June Wang
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shenlin Du
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zinian Zhu
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Bashan Zhang
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
17
|
She K, Yang W, Li M, Xiong W, Zhou M. FAIM2 Promotes Non-Small Cell Lung Cancer Cell Growth and Bone Metastasis by Activating the Wnt/β-Catenin Pathway. Front Oncol 2021; 11:690142. [PMID: 34568020 PMCID: PMC8459617 DOI: 10.3389/fonc.2021.690142] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Aim Bone metastasis is the major reason for the poor prognosis and high mortality rate of non-small cell lung cancer (NSCLC) patients. This study explored the function and underlying mechanism of Fas apoptotic inhibitory molecule 2 (FAIM2) in the bone metastasis of NSCLC. Methods Samples of normal lung tissue and NSCLC tissue (with or without bone metastasis) were collected and analyzed for FAIM2 expression. HARA cells with FAIM2 overexpression and HARA-B4 cells with FAIM2 knockdown were tested for proliferation, migration, invasion, anoikis, and their ability to adhere to osteoblasts. Next, whether FAIM2 facilitates bone metastasis by regulating the epithelial mesenchymal transformation (EMT) process and Wnt/β-catenin signaling pathway were investigated. Finally, an in vivo model of NSCLC bone metastasis was established and used to further examine the influence of FAIM2 on bone metastasis. Results FAIM2 was highly expressed in NSCLC tissues and NSCLC tissues with bone metastasis. FAIM2 expression was positively associated with the tumor stage, lymph node metastasis, bone metastasis, and poor prognosis of NSCLC. FAIM2 upregulation promoted HARA cell proliferation, migration, and invasion, but inhibited cell apoptosis. FAIM2 knockdown in HARA-B4 cells produced the opposite effects. HARA-B4 cells showed a stronger adhesive ability to osteocytes than did HARA cells. FAIM2 was found to be related to the adhesive ability of HARA and HARA-B4 cells to osteocytes. FAIM2 facilitated bone metastasis by regulating the EMT process and Wnt/β-catenin signaling pathway. Finally, FAIM2 was found to participate in regulating NSCLC bone metastasis in vivo. Conclusions FAIM2 promoted NSCLC cell growth and bone metastasis by regulating the EMT process and Wnt/β-catenin signaling pathway. FAIM2 might be useful for diagnosing and treating NSCLC bone metastases.
Collapse
Affiliation(s)
- Kelin She
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, Shaoyang, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Wensheng Yang
- Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, Shaoyang, China
| | - Mengna Li
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Wei Xiong
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
18
|
Keqi H, Handong L. The Long Non-coding RNA Cytoskeleton Regulator (CYTOR) Sponges microRNA- 206 (miR-206) to Promote Proliferation and Invasion of HP75 Cells. Curr Cancer Drug Targets 2021; 21:526-535. [PMID: 33653250 DOI: 10.2174/1568009621666210302090309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The role and mechanism of long non-coding RNA cytoskeleton regulator (CYTOR) in Invasive Pituitary Adenomas (IPA) have not been elucidated previously. OBJECTIVE This study aimed to investigate the interaction between CYTOR and miR-206 and their roles in IPA using HP75 cells as the model. METHODS The expression levels of CYTOR and miR-206 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in IPA tissues and cell lines. The Chi-square test was used to analyze the correlation between CYTOR expression and clinical-pathological parameters. HP75 cell proliferation was detected by Cell Counting Kit-8 assay and colony formation assay. Scratch healing experiments and Transwell assay were used to detect migration and invasion of HP75 cells. The relationship between CYTOR and miR-206 was predicted by bioinformatics and verified by qRT-PCR and the dual-luciferase reporter gene method. RESULTS CYTOR is up-regulated in IPA tissues and cell lines. The high expression of CYTOR is associated with adenoma invasiveness and adenoma size of the patients. Down-regulation of CYTOR decreases the proliferation, migration and invasion of HP75 cells, while up-regulation of miR-206 can inhibit proliferation, migration and invasion of HP75 cells. MiR-206 is identified as a target of CYTOR and could be negatively regulated by it in IPA. DISCUSSION CYTOR, as a tumor-promoting factor, facilitates the proliferation, migration and invasion of HP75 cells through sponging miR-206. CONCLUSION The CYTOR-miR-206 axis provides new insights into the diagnosis and treatment of IPA.
Collapse
Affiliation(s)
- Hu Keqi
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street 39, Xiangyang 441021, China
| | - Liu Handong
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street 39, Xiangyang 441021, China
| |
Collapse
|
19
|
Chen T, Huang B, Pan Y. Long Non-coding RNA MAFG-AS1 Promotes Cell Proliferation, Migration, and EMT by miR-3196/STRN4 in Drug-Resistant Cells of Liver Cancer. Front Cell Dev Biol 2021; 9:688603. [PMID: 34386494 PMCID: PMC8353155 DOI: 10.3389/fcell.2021.688603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to participate in the development and progression of several different types of cancer. Past studies indicated that lncRNA MAFG-antisense 1 (AS1) promotes colorectal cancer. However, the role of MAFG-AS1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study is to examine the effect of lncRNA MAFG-AS1 on drug resistance HCC. The results indicated that MAFG-AS1 is upregulated in drug-resistant cells. Further, MAFG-AS1 promotes growth and migration of HCC by upregulating STRN4 through absorbing miR-3196. Thus, LncRNA MAFA-AS1 may become a novel target to treat HCC patients.
Collapse
Affiliation(s)
- Tianming Chen
- Department of Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Huang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yaozhen Pan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Aghabalazade A, Shoorei H, Majidpoor J, Taheri M, Mokhtari M. The Impact of lncRNAs and miRNAs on Apoptosis in Lung Cancer. Front Oncol 2021; 11:714795. [PMID: 34367998 PMCID: PMC8335161 DOI: 10.3389/fonc.2021.714795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aghabalazade
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Critical Care Quality improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Song S, He X, Wang J, Song H, Wang Y, Liu Y, Zhou Z, Yu Z, Miao D, Xue Y. A novel long noncoding RNA, TMEM92-AS1, promotes gastric cancer progression by binding to YBX1 to mediate CCL5. Mol Oncol 2021; 15:1256-1273. [PMID: 33247987 PMCID: PMC8024739 DOI: 10.1002/1878-0261.12863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/04/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have revealed that long noncoding RNAs (lncRNAs) with oncogene properties play vital roles in gastric cancer (GC). In this study, we aimed to elucidate the function of TMEM92-AS1 in GC progression and to investigate its underlying mechanisms. TMEM92-AS1 was filtered from the Gene Expression Omnibus database. GC tissues and adjacent normal tissues were used to detect the expression level of TMEM92-AS1. MTT, colony-formation assays, Edu, cell cycle, apoptosis and subcutaneous tumour formation assays were used to detect the role of TMEM92-AS1 in cell function. RNA transcriptome sequencing was used to seek downstream target genes. Reverse transcription (RT)-qPCR, western blot, RNA and chromatin immunoprecipitation assays were used to investigate the mechanisms involved. TMEM92-AS1 was significantly overexpressed in GC tissues and correlated with poor overall survival and disease-free survival. Furthermore, TMEM92-AS1 promoted GC cell proliferation and migration in vitro and tumorigenic ability in vivo. RNA transcriptome sequence analysis revealed a potential downstream target gene, C-C motif chemokine ligand 5 (CCL5), and a mechanistic study found that TMEM92-AS1 regulated CCL5 by binding to the transcription factor Y-box binding protein 1(YBX1), which has oncogene properties. In addition, TMEM92-AS1 was found to be associated with peripheral blood leukocyte counts, especially neutrophils. Further investigation found that TMEM92-AS1 may affect leukocytes via regulation of the expression of granulocyte colony-stimulating factor in GC tissues. Our data provide an in-depth insight into the mechanism behind the lncRNA TMEM92-AS1, how it promotes GC progression and the possible mechanism in affecting peripheral leukocyte counts. Therefore, TMEM92-AS1 is a potential target for GC individualized therapy and prognostic assessment.
Collapse
Affiliation(s)
- Shubin Song
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuezhi He
- Department of Anatomy, Histology and EmbryologyThe Research Centre for Bone and Stem CellsNanjing Medical UniversityChina
| | - Jing Wang
- Department of Anatomy, Histology and EmbryologyState Key Laboratory of Reproductive MedicineThe Research Centre for Bone and Stem CellsNanjing Medical UniversityChina
| | - Hongtao Song
- Department of PathologyHarbin Medical University Cancer HospitalChina
| | - Yimin Wang
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
| | - Yansong Liu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhengbo Zhou
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Zhiyong Yu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dengshun Miao
- The Research Centre for AgeingFriendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityChina
| | - Yingwei Xue
- Department of Gastrointestinal SurgeryHarbin Medical University Cancer HospitalChina
| |
Collapse
|
22
|
Xie Z, Wu Y, Liu S, Lai Y, Tang S. LncRNA-SNHG7/miR-29b/DNMT3A axis affects activation, autophagy and proliferation of hepatic stellate cells in liver fibrosis. Clin Res Hepatol Gastroenterol 2021; 45:101469. [PMID: 32893175 DOI: 10.1016/j.clinre.2020.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To determine the relative expression of long non-coding small nucleolar RNA host gene 7 (lncRNA-SNHG7) in fibrotic liver and hepatic stellate cells, and investigate the biological effects and mechanisms of SNHG7 on liver fibrosis. METHODS Liver fibrosis model of mice was established, primary hepatic stellate cells (HSCs) were cultured from normal mice and induced to activate by TGF-β. Cell viability, proliferation, and autophagy were detected with MTT, BrdU, and MDC stain, respectively. Liver tissue stained with Masson and Sirius Red. The interaction between SNHG7 and miR-29b was investigated by immunoprecipitation, RNA pull-down and Dual-luciferase reporter gene assay. The effects of SNHG7 on the expression of miR-29b, DNMT3A and liver fibrosis related factors were detected in vitro or in vivo transfection experiments. RESULTS SNHG7 was signally increased in liver tissue and HSCs of liver fibrosis model of mice, and inhibition of SNHG7 expression in liver fibrosis mice can reduce liver fibrosis. We also found that SNHG7 could bind to miR-29b in HSCs and inhibit the expression of miR-29b. In TGF-β-stimulated normal HSCs, knockdown of SNHG7 expression after shSNHG7 transfection could restrain DNMT3A and HSCs activation factors α-SMA, Collα1 and autophagy-related factors LC3I/II, Beclin1. However, this shSNHG7 effect was reversed by the inhibition of miR-29b. CONCLUSION Inhibition of lncRNA-SNHG7 can inhibit liver fibrosis. This is partly due to SNHG7 acts as a competitive endogenous RNA (ceRNA) to affect the expression of DNMT3A, a downstream target gene of miR-29b, by binding to miR-29b, thereby affecting the activation, autophagy and proliferation of HSCs.
Collapse
Affiliation(s)
- Zhengyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No.1 Mingde Road, Nanchang 330006, People's Republic of China.
| | - Yuanhao Wu
- The Second Medical College Of Nanchang University, Nanchang, Jiangxi, China
| | - Sifu Liu
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yueliang Lai
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shenglan Tang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Jian Y, Fan Q. Long non-coding RNA SNHG7 facilitates pancreatic cancer progression by regulating the miR-146b-5p/Robo1 axis. Exp Ther Med 2021; 21:398. [PMID: 33680120 PMCID: PMC7918173 DOI: 10.3892/etm.2021.9829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) plays a crucial role in the progression of pancreatic cancer (PC). SNHG7 is upregulated in PC; therefore, the purpose of the present study was to investigate the role and underlying mechanism of SNHG7 on PC progression. In the present study, the mRNA expression levels of SNHG7, microRNA(miR)-146b-5p and roundabout homolog 1 (Robo1) were measured via reverse transcription-quantitative PCR. Moreover, cell viability and apoptosis were assessed by MTT and flow cytometry assays, respectively. The ability of cells to migrate and invade was evaluated by Transwell assays. In addition, dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays were conducted to assess the interaction between miR-146b-5p and SNHG7 or Robo1. The protein expression of Robo1 was measured via western blotting. Furthermore, mouse xenograft models were established to further investigate the effect of SNHG7 on PC progression in vivo. The results indicated that SNHG7 was highly expressed in PC tissues and cells. It was also found that SNHG7 was sponged by miR-146b-5p and that Robo1 was a target of miR-146b-5p. Moreover, it was demonstrated that SNHG7 knockdown inhibited cell proliferation, migration and invasion, as well as tumorigenesis and apoptosis of PC cells in vitro and in vivo by regulating miR-146b-5p. The results also suggested that miR-146b-5p overexpression inhibited the progression of PC cells by modulating Robo1. Furthermore, silencing of SNHG7 downregulated Robo1 expression by sponging miR-146b-5p. Collectively, the present results indicate that SNHG7 promotes PC progression by sponging miR-146b-5p and upregulating Robo1.
Collapse
Affiliation(s)
- Yu Jian
- Emergency Medical Department, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Qi Fan
- Emergency Department, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
24
|
Pei LJ, Sun PJ, Ma K, Guo YY, Wang LY, Liu FD. LncRNA-SNHG7 interferes with miR-34a to de-sensitize gastric cancer cells to cisplatin. Cancer Biomark 2021; 30:127-137. [PMID: 33074217 DOI: 10.3233/cbm-201621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) remains poor prognosis and survival issues due to the resistance of chemotherapies, such as cisplatin. The long non-coding RNA small nucleolar RNA host gene 7 (lncRNA-SNHG7) is known as an oncogenic molecule in diverse cancers. Here, we demonstrate that SNHG7 was significantly upregulated in gastric cancer and positively correlated with cisplatin resistance of gastric cancer cells that SNHG7 was significantly upregulated in cisplatin resistant cells. Silencing SNHG7 dramatically sensitized cisplatin resistant cells. In contrast, a negative correlation between lncRNA-SNHG7 and miR-34a was found that miR-34a was downregulated in gastric cancer patient tissues and significantly sensitized cisplatin resistant gastric cancer cells. Intriguingly, bioinformatical analysis indicated miR-34a has putative biding site for SNHG7 and such negative association between SNHG7 and miR-34a was verified in gastric cancer tissues. The cisplatin resistant cells displayed increased glycolysis rate and SNHG7 promoted cellular glycolysis rate of gastric cancer cells. Luciferase assay illustrated LDHA, a glycolysis enzyme, was the direct target of miR-34a. Importantly, inhibiting SNHG7 successfully suppressed LDHA expressions and sensitized cisplatin resistant cells and such inhibitory effects could be recovered by further anti-miR-34a. These findings suggest an important regulator mechanism for the SNHG7-mediated cisplatin resistance via miR-34a/LDHA-glycolysis axis.
Collapse
Affiliation(s)
- Li-Juan Pei
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Peng-Jun Sun
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, China.,Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Yan Guo
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ling-Yan Wang
- Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Fei-De Liu
- Department of General Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Wang K, Zhang FL, Jia W. Glutathione S‑transferase ω 1 promotes the proliferation, migration and invasion, and inhibits the apoptosis of non‑small cell lung cancer cells, via the JAK/STAT3 signaling pathway. Mol Med Rep 2021; 23:71. [PMID: 33236161 PMCID: PMC7716429 DOI: 10.3892/mmr.2020.11709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
Glutathione S‑transferase ω 1 (GSTO1) expression levels have been discovered to be upregulated in various types of cancer. However, to the best of our knowledge, the role of GSTO1 in non‑small cell lung cancer (NSCLC) has not been investigated. The present study aimed to investigate the role of GSTO1 in NSCLC and to determine the potential molecular mechanism. GSTO1 expression levels in A549 cells were knocked down using short hairpin RNA and GSTO1 overexpression in H2122 cells was achieved using cDNA constructs. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of GSTO1. Cell proliferation was determined using a Cell Counting Kit‑8 assay, whereas cell migration and invasion were analyzed using Transwell assays. Flow cytometric analysis was performed to determine the levels of cell apoptosis. The expression levels of GSTO1, Bax, caspase 3, JAK and STAT3 were analyzed using western blotting. The results revealed that GSTO1 overexpression significantly promoted the proliferation, migration and invasion, and inhibited the apoptosis of H2122 cells, whereas the opposite trend was achieved in A549 cells with GSTO1 knockdown. GSTO1 overexpression also significantly increased the phosphorylation levels of JAK and STAT3, whereas the knockdown of GSTO1 promoted the opposite effects. In conclusion, the findings of the present study indicated that GSTO1 may serve as an oncogene in NSCLC. The results suggested that GSTO1 may have an important role in NSCLC by regulating the JAK/STAT3 signaling pathway. Therefore, inhibiting the expression levels of GSTO1 may represent a potential novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Fu-Lian Zhang
- Integrated TCM and Western Medicine Department, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300134, P.R. China
| | - Wei Jia
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| |
Collapse
|
26
|
Gu R, Shao K, Xu Q, Zhao X, Qiu H, Hu H. Circular RNA hsa_circ_0008003 facilitates tumorigenesis and development of non-small cell lung carcinoma via modulating miR-488/ZNF281 axis. J Cell Mol Med 2020; 26:1754-1765. [PMID: 33320427 PMCID: PMC8918407 DOI: 10.1111/jcmm.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
As one of the most aggressive malignancies, non‐small cell lung carcinoma (NSCLC) has high risks of death. It has been demonstrated that circRNAs accelerate NSCLC progression, but the underlying molecular mechanisms of circRNAs in NSCLC were still obscure. In the first place, the circRNA microarray of NSCLC was investigated in this study, and hsa_circ_0008003 (circ‐0008003) was chosen as the research object. Then, it was unveiled that the expression of circ‐0008003 examined via qRT‐PCR was elevated in tumour tissues relative to the non‐tumour tissues, which was associated with TNM stage and lymphatic metastasis in NSCLC. Additionally, the prognosis of NSCLC patients with high circ‐0008003 level was poor. Besides, circ‐0008003 silencing dampened the invasion and proliferation of NSCLC cells. Next, according to the mechanistic studies, circ‐0008003 functioned as a ceRNA of ZNF281 in NSCLC by acting as the endogenous sponge for miR‐488, which was proved to be a tumour suppressor in NSCLC. Additionally, ZNF281 overexpression and miR‐488 suppression recovered the influences of repressed circ‐0008003 on NSCLC cellular processes. It was validated in this research that circ‐0008003 triggered tumour formation in NSCLC, which was adjusted via miR‐488/ZNF281 axis, casting a novel light on the resultful target for treating NSCLC and predicting the prognosis.
Collapse
Affiliation(s)
- Runhuan Gu
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Koufeng Shao
- Department of Oncology, Huai'an Chuzhou Hospital of Traditional Chinese Medicine, Zhongda Hospital Group Hospital Addiliated to Southest University, Huai'an, China
| | - Qiaoxia Xu
- Nursing Department, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Xue Zhao
- Department of Thoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Haibing Qiu
- Department of Respiratory, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Haibo Hu
- Department of Thoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
27
|
Xu LB, Bo BX, Xiong J, Ren YJ, Han D, Wei SH, Ren XP. Long non-coding RNA LINC00887 promotes progression of lung carcinoma by targeting the microRNA-206/NRP1 axis. Oncol Lett 2020; 21:87. [PMID: 33376520 PMCID: PMC7751375 DOI: 10.3892/ol.2020.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR. Cell viability was determined by the CCK-8 and EdU assays. Cell invasion, migration were assessed by the transwell and wound healing assays, respectively. A dual luciferase assay was used for analysis of the interaction between LINC00887 and miR-206, as well as the relationship of miR-206 with NRP1. A tumor xenograft study was performed to investigate the LINC00887-miR-206-NRP1 axis in vivo. The expression levels of LINC00887 were upregulated in lung carcinoma tissues and cells compared with adjacent tissues or normal cells (BEAS-2B). Knockdown LINC00887 significantly inhibited the proliferation, migration and invasion of lung carcinoma A549 and NCI-H460 cells. Furthermore, LINC00887 was identified as a competing endogenous RNA and to directly interact with miR-206. Mechanistically, miR-206 was demonstrated to regulate neuropilin-1 (NRP1) expression by targeting the NRP1 3'-untranslated region. The results of the present study suggested that the LINC00887-miR-206-NRP1 axis served a critical role in regulating lung carcinoma cell proliferation, migration and invasion. In addition, xenograft tumor model experiments revealed that silencing LINC00887 suppressed lung carcinoma tumor growth of in vivo. In summary, our results suggest that LINC00887 may serve an oncogenic role in lung carcinoma by targeting the miR-206/NRP1 axis, providing a potential therapeutic target for patients with lung carcinoma.
Collapse
Affiliation(s)
- Ling-Bin Xu
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bian-Xin Bo
- Department of Critical Care Medicine, Zhouzhi Country People's Hospital, Xi'an, Shaanxi 710407, P.R. China
| | - Jie Xiong
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
28
|
Shao J, Xu Y, Li H, Chen L, Wang W, Shen D, Chen J. LMCD1 antisense RNA 1 (LMCD1-AS1) potentiates thyroid cancer cell growth and stemness via a positive feedback loop of LMCD1-AS1/miR-1287-5p/GLI2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1508. [PMID: 33313253 PMCID: PMC7729329 DOI: 10.21037/atm-20-7182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background LMCD1 antisense RNA 1 (LMCD1-AS1) is a certified oncogene in several tumour types. However, its role in thyroid cancer (THCA) remains unknown. Methods The expression level of LMCD1-AS1 in THCA cells and the normal control cell was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of LMCD1-AS1 knockdown on cell proliferation, migration and apoptosis were detected by colony formation assay, EdU assay, wound healing assay and TUNEL assay. Sphere formation assay was applied to assess sphere formation ability of THCA cells. Bioinformatics analysis and mechanism experiments, including ChIP assay, RIP assay and luciferase reporter assay were conducted to evaluate the downstream and upstream molecular mechanisms of LMCD-AS1. Results A marked up-regulation of LMCD1-AS1 in THCA cells relative to normal control cells was found. LMCD1-AS1 silencing suppressed proliferation and migration but induced apoptosis in THCA cells. Moreover, LMCD1-AS1 knockdown reduced the sphere formation capacity of THCA cells. The transcriptional factor GLI family zinc finger 2 (GLI2) binds to LMCD1-AS1, which contributed to LMCD1-AS1 up-regulation in THCA cells. Cytoplasmic LMCD1-AS1 sponged a shared microRNA between LMCD1-AS1 and GLI2. GLI2 was inhibited bymiR-1287-5p and disinhibited by LMCD1-AS1. Conclusions LMCD1-AS1exerts pro-tumorigenic function through sponging miR-1287-5p to elevate GLI2 expression in THCA development, constituting a feedback loop of LMCD1-AS1/miR-1287-5p/GLI2.
Collapse
Affiliation(s)
- Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjuan Wang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Danfeng Shen
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Liao C, Guo Y, Gong Y, Huang X, Liao X, Wang X, Ruan G, Gao F. Clinical implications and nomogram prediction of long noncoding RNA FRGCA as diagnostic and prognostic indicators in colon adenocarcinoma. Medicine (Baltimore) 2020; 99:e22806. [PMID: 33126318 PMCID: PMC7598802 DOI: 10.1097/md.0000000000022806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer, especially colon adenocarcinoma (COAD), is associated with significant morbidity and mortality worldwide. Long noncoding RNA (lncRNA) has been implicated in tumorigenesis. The aim of the present study was to elucidate the potential diagnostic and prognostic values of lncRNA FRGCA in COAD.The data of 438 COAD patients were retrieved for analysis. Diagnostic significance was evaluated using tumor and nontumor tissues. Prognostic significance was evaluated using a Cox proportional regression model. Stratified analysis was performed to identify associations between clinical factors and lncRNA FRGCA expression. A nomogram was constructed using the clinical factors and lncRNA FRGCA for survival prediction. Enrichment analysis identified gene ontologies and metabolic pathways of mRNAs with high Pearson correlation coefficients with lncRNA FRGCA.lncRNA FRGCA was highly expressed in tumor tissues of COAD and demonstrated diagnostic value (area under curve = 0.763, P < .0001). Prognostic significance analysis indicated that lncRNA FRGCA had prognostic value in COAD [adjusted P < .001, hazard ratio (HR) = 0.444, 95% confidence interval (95% CI) = 0.288-0.685] and high expression of lncRNA FRGCA indicated better survival in COAD. A nomogram was evaluated for prediction of survival at 1, 3, and 5 years. Enrichment analysis revealed many mRNAs involved in the structural constituents of the mitochondrial inner membrane and translational termination, protein binding, translation, ribosome, oxidative phosphorylation, and metabolic pathways, especially the nucleoplasm.Differentially expressed in tumor vs nontumor tissues, lncRNA FRGCA had both diagnostic and prognostic implications in COAD, which may be associated with ribosome metabolism, oxidative phosphorylation, and nucleoplasm-related metabolic pathways.
Collapse
Affiliation(s)
- Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yun Guo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xue Huang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guotian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
30
|
Xia G, Li X, Chen F, Shao Z. LncRNA LINC00520 Predicts Poor Prognosis and Promotes Progression of Lung Cancer by Inhibiting MiR-3175 Expression. Cancer Manag Res 2020; 12:5741-5748. [PMID: 32801856 PMCID: PMC7383105 DOI: 10.2147/cmar.s250631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose The aim of this study was to study the roles and potential mechanism of LINC00520 in the progression of lung cancer. Methods The expression of LINC00520 and miR-3175 in lung cancer tissues and cells was detected by qRT-PCR. The relationship between LINC00520 level and disease stage was also calculated. Kaplan–Meier survival curve was drawn to observe the survival difference between high and low expression patients. Lipofectamine 2000 was used to transfect siLINC00520, miR-3175 inhibitor and their controls in lung cancer cells. CCK8 and colony formation assay were processed for cell proliferation. Transwell assay was undertaken for migration and invasion of lung cancer cells. MiRDB predicts the combination of LINC00520 and miR-3175. Luciferase and RNA pulldown assay were applied to verify the binding site. Correlation analysis of miR-3175 and LINC00520 expression in lung cancer tissues was shown. Results LINC00520 was highly expressed in lung cancer tissues and cells. Patients at III+IV stage were always with higher LINC00520 level than patients at I+II stage. Patients with high expression of lncRNA LINC00520 have short survival time (hazard ratio=1.7). Knockdown of LINC00520 inhibited proliferation, invasion and migration of lung cancer cells. LINC00520 targeted and negatively regulated miR-3175 (r=−0.528; P<0.001). MiR-3175 inhibitor rescued the effect of si-LINC00520 on lung cancer progression. Conclusion LncRNA LINC00520 could predict poor prognosis and promote progression of lung cancer by inhibiting miR-3175 expression.
Collapse
Affiliation(s)
- Gaowei Xia
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Xiaoling Li
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau China, Harbin 150088, People's Republic of China
| | - Fuhui Chen
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhenyu Shao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
31
|
Bian Z, Ji W, Xu B, Huang W, Jiao J, Shao J, Zhang X. The role of long noncoding RNA SNHG7 in human cancers (Review). Mol Clin Oncol 2020; 13:45. [PMID: 32874575 PMCID: PMC7453396 DOI: 10.3892/mco.2020.2115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in a variety of human tumor types. The lncRNA small nucleolar RNA host gene 7 (SNHG7) is associated with a variety of cancer types, such as esophageal cancer, breast cancer and gastric neoplasia. Based on previous studies that examined SNHG7 expression in tumors, it has become clear that SNHG7 modulates tumorigenesis and cancer progression by acting as a competing endogenous RNA. SNHG7 can sponge tumor-suppressive microRNAs and regulate downstream signaling pathways. In addition, overexpression of SNHG7 is associated with the clinical characteristics of patients with cancer by regulating cellular proliferation, invasion and metastasis and by inhibiting apoptosis via a variety of mechanisms of action. The function of SNHG7 in tumorigenesis and cancer progression indicates that it can potentially act as a novel therapeutic target or a diagnostic biomarker for cancer therapy or detection, respectively.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Bing Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
32
|
Du C, Zhang JL, Wang Y, Zhang YY, Zhang JH, Zhang LF, Li JR. The Long Non-coding RNA LINC01705 Regulates the Development of Breast Cancer by Sponging miR-186-5p to Mediate TPR Expression as a Competitive Endogenous RNA. Front Genet 2020; 11:779. [PMID: 32849791 PMCID: PMC7412980 DOI: 10.3389/fgene.2020.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may be a regulatory factor of tumorigenesis. However, it is unclear what its biomechanisms are in breast cancer. In this study, different lncRNAs were detected in breast cancer through microarray analysis (GSE119233) and LINC01705 was selected for further study. qRT-PCR was then utilized for the detection of LINC01705 expression in breast cancer cells. A transwell assay, flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), a cell counting Kit-8 (CCK-8), and a wound-healing assay were performed to determine cell migration, invasion, apoptosis, and proliferation in breast cancer, respectively. For the identification of potential targets of LINC01705, dual-luciferase reporter gene and bioinformatics assays were conducted. Moreover, for the clarification of their interaction and roles in the regulation of the occurrence of breast cancer, Western blotting and RIP assays were conducted. Our findings revealed high LINC01705 expression in breast cancer tissues relative to adjacent non-cancerous tissues (n = 40, P < 0.001). Overexpression of LINC01705 notably enhanced cell migration and proliferation in breast cancer. In addition, LINC01705 positively regulated the translocated promoter region, nuclear basket protein (TPR) through competition with miR-186-5p. In conclusion, our results suggest that LINC01705 is implicated in the progression of breast cancer via competitively binding to miR-186-5p as a competing endogenous RNA (ceRNA), thereby regulating TPR expression.
Collapse
Affiliation(s)
- Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Ling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Hua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Feng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Ruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Ge BH, Li GC. Long non-coding RNA SNHG17 promotes proliferation, migration and invasion of glioma cells by regulating the miR-23b-3p/ZHX1 axis. J Gene Med 2020; 22:e3247. [PMID: 32602607 DOI: 10.1002/jgm.3247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) is a carcinogenic lncRNA in diverse cancers. The expression pattern and mechanisms of SNHG17 in glioma still await verification. METHODS Paired glioma samples were enrolled. SNHG17, miR-23b-3p, and zinc-fingers and homeoboxes 1 (ZHX1) mRNA expression were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). SNHG17 short hairpin RNA (shRNA) and miR-23b-3p mimics were transfected into LN229 and U251 cell lines to repress SNHG17 and up-regulate miR-23b-3p expression, respectively. Proliferation, migration and invasion of LN229 and U251 cells were probed by a cell counting kit-8 assay and a Transwell assay. Bioinformatics prediction, dual-luciferase reporter assay, RNA immunoprecipitation assay, qRT-PCR and western blotting were applied to determine the regulatory relationships among SNHG17, miR-23b-3p and ZHX1. RESULTS SNHG17 expression was markedly raised in glioma tissues, which was positively correlated with ZHX1 expression and negatively associated with the expression of miR-23b-3p. After transfection of SNHG17 shRNAs into glioma cells, the proliferation, migration and invasion of cancer cells was markedly restrained. miR-23b-3p mimics the function of SHNG17 knockdown. Furthermore, miR-23b-3p was shown to be negatively modulated by SNHG17, and ZHX1 was identified as a target of miR-23b-3p. CONCLUSIONS SNHG17 is a "competing endogenous RNA" with respect to modulating ZHX1 expression by adsorbing miR-23b-3p and thereby promoting glioma progression.
Collapse
Affiliation(s)
- Bei-Hai Ge
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Guo-Cheng Li
- Department of Neurosurgery, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
34
|
Chen Z, He M, Chen J, Li C, Zhang Q. Long non-coding RNA SNHG7 inhibits NLRP3-dependent pyroptosis by targeting the miR-34a/SIRT1 axis in liver cancer. Oncol Lett 2020; 20:893-901. [PMID: 32566017 PMCID: PMC7285900 DOI: 10.3892/ol.2020.11635] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) is involved in a variety of different types of cancer; however, the role of SNHG7 during liver cancer progression is not completely understood. The aim of the present study was to investigate the functional role and regulatory mechanism underlying SNHG7 during liver cancer. A total of 25 paired hepatocellular carcinoma (HCC) tumor tissues and adjacent normal tissues were collected. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of SNHG7, microRNA (miR)-34a, sirtuin 1 (SIRT1) and pyroptosis-related targets. RNA fluorescence in situ hybridization was performed to detect the expression of SNHG7 in HCC tissues. SNHG7 expression was upregulated in HCC tissues and liver cancer cells compared with normal tissues and normal liver cell lines. High expression of SNHG7 inhibited NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis in HepG2 and SK-hep-1 cells. Bioinformatics analysis and dual-luciferase reporter assays were performed to investigate the interactions between miR-34a and SNHG7 or SIRT1. SNHG7 served as a competing endogenous RNA of miR-34a, and SIRT1 was identified as a direct target of miR-34a. Cell pyroptosis was evaluated by TUNEL and lactate dehydrogenase release assays. SNHG7 knockdown reduced SIRT1 expression, but increased the expression levels of NLRP3, caspase-1 and interleukin-1β, leading to pyroptosis. SNHG7 knockdown-induced effects were enhanced by miR-34a upregulation. In summary, the present study indicated that the SNHG7/miR-34a/SIRT1 axis contributed to NLRP3-dependent pyroptosis during liver cancer.
Collapse
Affiliation(s)
- Zhaohong Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Miao He
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Junhua Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Chao Li
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Qianshi Zhang
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
35
|
Shen A, Ma J, Hu X, Cui X. High expression of lncRNA-SNHG7 is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 2020; 19:3959-3963. [PMID: 32382340 PMCID: PMC7202315 DOI: 10.3892/ol.2020.11490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Expression of long non-coding RNA SNHG7 (lncRNA-SNHG7) and its clinical significance in hepatocellular carcinoma (HCC) were explored. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of lncRNA-SNHG7 in cancer tissues. Kaplan-Meier curves and multivariate Cox proportional models were used to study the impact on clinical outcome. Expression of lncRNA-SNHG7 was much higher in cancer tissues than that in para-cancer tissues. The lncRNA-SNHG7 expression was correlated with tumor number, lymph node metastasis and clinical stage (P<0.05). In addition, HCC patients with higher lncRNA-SNHG7 expression had significantly poorer progression-free survival time and overall survival time (P<0.001). Both univariate analysis and multivariate analysis indicated that high expression of lncRNA-SNHG7 was an independent predictor of poor prognosis in HCC. LncRNA-SNHG7 might contribute to the development of HCC and serve as a clinical biomarker and a therapeutic target for HCC patients.
Collapse
Affiliation(s)
- An Shen
- Department of Hepatological Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Jinping Ma
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xiaolin Hu
- Department of General Surgery, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xinjiang Cui
- Department of Interventional Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
36
|
Wang W, Liu G, Liu M, Li X. Long non-coding RNA SNHG7 promotes malignant melanoma progression through negative modulation of miR-9. Histol Histopathol 2020; 35:973-981. [PMID: 32365219 DOI: 10.14670/hh-18-225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) was verified to act as an onco-gene in human cancers. Nevertheless, the role of SNHG7 in malignant melanoma remains elusive. The present study showed an increase of SNHG7 expression in malignant melanoma tissues and cell lines. Besides, SNHG7 knockdown inhibited proliferation and migration in malignant melanoma cells. Bioinformatics analysis demonstrated that SNHG7 functions as a molecular sponge for miR-9 in biological behavior of melanoma cells. And miR-9 could inhibit the expression of PI3KR3 by binding with the 3'-UTR. Furthermore, PI3KR3, pAKT, cyclin D1 and Girdin expression was down-regulated after SNHG7 knockdown by siRNA. In addition, SNHG7 knockdown decreased xenograft growth in vivo. Taken together, this research demonstrated that SNHG7 was an oncogene in malignant melanoma, providing a novel insight for the pathogenesis and new potential therapeutic target for malignant melanoma.
Collapse
Affiliation(s)
- Wendi Wang
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Guangjing Liu
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Man Liu
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Xiaobing Li
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China.
| |
Collapse
|
37
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Gou C, Han P, Li J, Gao L, Ji X, Dong F, Su Q, Zhang Y, Liu X. Knockdown of lncRNA BLACAT1 enhances radiosensitivity of head and neck squamous cell carcinoma cells by regulating PSEN1. Br J Radiol 2020; 93:20190154. [PMID: 31944856 PMCID: PMC7362927 DOI: 10.1259/bjr.20190154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This work focused on the function role and underlying mechanism of BLACAT1 in regulating the radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cells via PSEN1. METHODS BLACAT1 and PSEN1 expression in HNSCC tissues and cells were measured by qRT-PCR. Kaplan-Meier method and Spearman's correlation analysis determined the prognostic roles and association of BLCAT1 and PSEN1 in HNSCC. The impacts of BLACAT1 and PSEN1, alone and in combination, on radiosensitivity of HNSCC cells were separately assessed through CCK-8, colony formation, flow cytometry, western blot and γH2AX foci staining assays. RESULTS Our study disclosed that BLACAT1 and PSEN1 were both in association with poor prognosis and radioresistance of HNSCC cells. BLACAT1 knockdown improved the radiosensitivity of HNSCC cells by changing cellular activities containing repressed cell viability, accelerated cell apoptosis, induced cell cycle arrest, and stimulated DNA damage response. Further, we found that PSEN1 was positively correlated with BLACAT1. Rescue assays confirmed that BLACAT1 regulated the radiosensitivity of HNSCC cells by modulating PSEN1. CONCLUSION We revealed that BLACAT1 knockdown enhanced radioresistance of HNSCC cells via regulating PSEN1, exposing the probable target role of BLACAT1 in HNSCC. ADVANCES IN KNOWLEDGE This was the first time that the pivotal role of BLACAT1 was investigated in HNSCC, which provided a novel therapeutic direction for HNSCC patients.
Collapse
Affiliation(s)
- Caixia Gou
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Pengbing Han
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Jin Li
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Liying Gao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Xuejuan Ji
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Fang Dong
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Qun Su
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Yanping Zhang
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| | - Xiaofeng Liu
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, No.2 Small West Lake East Street, Qilihe District, Lanzhou City, Gansu Province, 730050, China
| |
Collapse
|
39
|
Zhang P, Shi L, Song L, Long Y, Yuan K, Ding W, Deng L. LncRNA CRNDE and lncRNA SNHG7 are Promising Biomarkers for Prognosis in Synchronous Colorectal Liver Metastasis Following Hepatectomy. Cancer Manag Res 2020; 12:1681-1692. [PMID: 32210611 PMCID: PMC7069563 DOI: 10.2147/cmar.s233147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose Synchronous colorectal liver metastasis (SCLM) had limited availability of tools to predict survival and tumor recurrence. LncRNA CRNDE and lncRNA SNHG7 have been proven to be closely related to cancer progression. However, the predictive value of lncRNA CRNDE and lncRNA SNHG7 in cancer prognosis is still unclear. The purpose of this study was to investigate whether lncRNA CRNDE and lncRNA SNHG7 could be used as promising biomarkers for prognosis prediction of SCLM patients who underwent hepatectomy. Methods The expression profile of lncRNA CRNDE and lncRNA SNHG7 in serum of SCLM patients was examined by qRT-PCR. The relationship between lncRNA expression and clinicopathological characteristics was analyzed. The Cox proportional-hazards regression model and Kaplan-Meier analysis were performed to analyze the association between lncRNA expression and overall survival (OS) and tumor recurrence of SCLM patients. Results Levels of lncRNA CRNDE and lncRNA SNHG7 in patients who underwent recurrence or death were significantly higher than that of patients with recurrence-free or survival (P<0.01). Both lncRNA CRNDE high level and lncRNA SNHG7 high level showed a significant correlation with differentiation of primary tumor, invasion depth of primary focus, lymph node metastases, number of liver metastases, and liver metastasis grade. High levels of lncRNA CRNDE or lncRNA SNHG7 predicted shorter recurrence time, shorter OS time, higher recurrence rate and lower OS rate. Furthermore, lncRNA CRNDE and lncRNA SNHG7 were independent risk factors for high recurrence and poor OS in SCLM underwent hepatectomy. Conclusion Taken together, lncRNA CRNDE and lncRNA SNHG7 could be promising biomarkers for prediction of OS and tumor recurrence in SCLM underwent hepatectomy.
Collapse
Affiliation(s)
- Peixian Zhang
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lan Shi
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Linjing Song
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yi Long
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Kehua Yuan
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Wanbao Ding
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Lei Deng
- Department of Oncology, Yan'an Hospital of Kunming City & Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
40
|
Ghafouri-Fard S, Shoorei H, Branicki W, Taheri M. Non-coding RNA profile in lung cancer. Exp Mol Pathol 2020; 114:104411. [PMID: 32112788 DOI: 10.1016/j.yexmp.2020.104411] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the most frequently diagnosed malignancy and the leading source of cancer-associated mortality. This kind of cancer has heterogeneous nature and is divided into two broad classes of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In addition to aberrant expression of several signaling pathways and oncogenes, lung cancer is associated with dysregulation of expression of non-coding RNAs including both long non-coding RNAs (lncRNAs) and miRNAs. These aberrantly expressed transcripts are putative therapeutic targets and diagnostic/ prognostic markers. Integrative assessment of expression of lncRNAs, miRNAs and mRNAs has led to construction of competing endogenous RNA networks in which several lncRNAs act as molecular sponges to inhibit regulatory function of miRNAs on mRNAs. Notably, some of these networks seem to have subtype-specific functions in lung cancer. In this review, we summarize recent findings about the importance of these networks in the pathogenesis of lung cancer and provide a list of onco-miRNAs, tumor suppressor miRNAs, oncogenic lncRNAs and tumor suppressor lncRNAs based on their roles in the carcinogenic process in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Xia Q, Li J, Yang Z, Zhang D, Tian J, Gu B. Long non-coding RNA small nucleolar RNA host gene 7 expression level in prostate cancer tissues predicts the prognosis of patients with prostate cancer. Medicine (Baltimore) 2020; 99:e18993. [PMID: 32049793 PMCID: PMC7035107 DOI: 10.1097/md.0000000000018993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) is located on chromosome 9q34.3 in length of 984 bp. SNHG7 has been found to play the role of oncogene in varieties of cancers, and its dysregulation has been found to be associated with carcinogenesis and progression. In the present study, we examined the expression of SNHG7 in prostate cancer tissues and in paired adjacent normal prostate tissues, and we further explored the clinical significance and prognostic value of SNHG7 in prostate cancer patients.A total of 127 prostate cancer tissues were collected from prostate cancer patients who underwent radical prostatectomy between April 2011 and March 2019 at the department of urology, Pudong New Area People's Hospital. Real-time quantitative polymerase chain reaction experiment was performed to detect the relative expressions of SNHG7 in the prostate cancer tissues and normal prostate tissues. The Kaplan-Meier method was used to create survival curves and the log-rank test was used to determine statistical significance. A Cox proportional hazard analysis was used to evaluate the prognostic factors in univariate and multivariate analyses.Compared with paired adjacent normal prostatic tissues, SNHG7 expression was increased in prostate cancer tissues (P < .001). Increased SNHG7 expression correlated with Gleason score (P = .021), bone metastasis (P = .013), pelvic lymph node metastasis (P = .008), and TNM stage (P = .007). Multivariate Cox regression analyses revealed increased SNHG7 expression was independently associated with a poor prognosis of prostate cancer patients (hazard ratio [HR] = 2.839, 95% confidence interval [CI] = 1.921-8.382, P = .038).This study showed that lncRNA-SNHG7 was overexpressed in prostate cancer tissues, and it might contributes to the development and progression of prostate cancer. Furthermore, the SNHG7 expression was associated with the prognosis of prostate cancer, suggesting a potential target for the treatment and prognosis of prostate cancer. Nevertheless, the underlying modulatory mechanism by which SNHG7 aggravates prostate cancer progression need to be further studied.
Collapse
|
42
|
Zhou Y, Tian B, Tang J, Wu J, Wang H, Wu Z, Li X, Yang D, Zhang B, Xiao Y, Wang Y, Ma J, Wang W, Su M. SNHG7: A novel vital oncogenic lncRNA in human cancers. Biomed Pharmacother 2020; 124:109921. [PMID: 31986417 DOI: 10.1016/j.biopha.2020.109921] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of RNAs that lack protein-coding ability, with lengths greater than 200 nucleotides. Increasing evidence has indicated that they mediate multiple physiological and pathological processes by regulating gene expression at the epigenetic, transcriptional, post-transcriptional, and translational levels. The deregulation of lncRNAs was demonstrated to have tumor suppressive or oncogenic effects, and thus, these molecules play vital regulatory roles in tumor initiation and progression. Small nucleolar RNA hostgene 7 (SNHG7) is a lncRNA located on chromosome 9q34.3. Different studies have explored the potential role of SNHG7 in the development and progression of multiple human malignancies such as bladder, breast, colorectal, esophageal, gastric, and prostate cancer, as well as osteosarcoma, among others, and high expression predicts poor prognosis and poor survival for such patients. Moreover, this molecule can promote proliferation and metastasis, while inhibiting apoptosis in cancer cells. The present review highlights the latest insights into the expression, functional roles, and molecular mechanisms of SNHG7 in different human malignancies.
Collapse
Affiliation(s)
- Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Baihua Zhang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
43
|
Wu F, Sui Y, Wang Y, Xu T, Fan L, Zhu H. Long Noncoding RNA SNHG7, a Molecular Sponge for microRNA-485, Promotes the Aggressive Behavior of Cervical Cancer by Regulating PAK4. Onco Targets Ther 2020; 13:685-699. [PMID: 32158221 PMCID: PMC6986251 DOI: 10.2147/ott.s232542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose A long noncoding RNA called small nucleolar RNA host gene 7 (SNHG7) is known to be a key regulator of biological processes in multiple human cancer types. In this study, our aims were to determine the expression status of SNHG7 in cervical cancer, to figure out the detailed roles of SNHG7 in cervical cancer cells, and to identify the mechanism underlying the activity of SNHG7 in cervical cancer. Methods Reverse-transcription quantitative PCR was performed to measure SNHG7 expression in cervical cancer. A Cell Counting Kit-8 assay, flow-cytometric analysis, cell migration and invasion assays, and a tumor xenograft experiment were conducted to respectively determine the effects of SNHG7 on cervical cancer cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. Results SNHG7 was found to be markedly upregulated in cervical cancer tissues and cell lines. Higher SNHG7 expression significantly correlated with FIGO stage, lymph node metastasis, the depth of cervical invasion, and shorter overall survival in patients with cervical cancer. Functional experiments indicated that a SNHG7 knockdown attenuated proliferation, migration, and invasiveness and promoted apoptosis of cervical cancer cells in vitro. The SNHG7 knockdown also slowed tumor growth in vivo. Further investigation showed that SNHG7 acts as a competing endogenous RNA for microRNA-485 (miR-485) in cervical cancer cells, and the inhibitory actions of the SNHG7 knockdown on the malignant phenotype were reversed by miR-485 inhibition. P21-activated kinase 4 (PAK4) was identified as a direct target gene of miR-485 in cervical cancer, and PAK4 expression was promoted by SNHG7. Conclusion SNHG7 functions as an oncogenic RNA in cervical cancer, competitively binds to miR-485, and thereby upregulates PAK4. This SNHG7–miR-485–PAK4 regulatory network may provide insights into the pathogenesis of cervical cancer, and can help in the identification of novel diagnostic and therapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Fei Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yujie Sui
- Medical Research Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yinhuai Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Limei Fan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
44
|
Guo L, Lu J, Gao J, Li M, Wang H, Zhan X. The function of SNHG7/miR-449a/ACSL1 axis in thyroid cancer. J Cell Biochem 2020; 121:4034-4042. [PMID: 31961004 DOI: 10.1002/jcb.29569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer (TC) has been characterized as the most common malignant malady of the endocrine system. Small nucleolar RNA host gene 7 (SNHG7) has been reported to serve as a key regulator in a large number of human cancer types, but its role in TC and the underlying regulatory mechanism have never been evaluated yet. The present study indicated that the expression of SNHG7 was markedly higher in TC cell lines. Knockdown of SNHG7 led to a suppression of TC cell progression and migration. Acyl-CoA synthetase long-chain family member 1 (ACSL1) has also been demonstrated as an oncogene in many cancers. Herein an inhibition of ACSL1 after SNHG7 knockdown was captured. Further, the suppressing effects of SNHG7 knockdown on TC cell processes were counteracted by ACSL1 overexpression. Data from online bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays validated the interaction between microRNA-449a (miR-449a) and SNHG7 or ACSL1. It was also verified that SNHG7 sequestered miR-449a and therefore elevated ACSL1 expression levels. To conclude, the current study indicated that SNHG7 promoted proliferation and migration of TC cells by sponging miR-449a and therefore upregulating ACSL1. The present study may provide more explorations about the molecular regulation mechanism of long noncoding RNAs in TC progression.
Collapse
Affiliation(s)
- Linchi Guo
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jixuan Lu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jie Gao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Mingyang Li
- Department of Endocrinology, Affiliated Hospital of Chifeng Medical College, Chifeng, Inner Mongolia, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Dai Y, Zhang X, Xing H, Zhang Y, Cao H, Sang J, Gao L, Wang L. Downregulated long non-coding RNA SNHG7 restricts proliferation and boosts apoptosis of nasopharyngeal carcinoma cells by elevating microRNA-140-5p to suppress GLI3 expression. Cell Cycle 2020; 19:448-463. [PMID: 31944163 PMCID: PMC7100885 DOI: 10.1080/15384101.2020.1712033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been proposed to correlate with various carcinomas, yet the role of lncRNA SNHG7 in nasopharyngeal carcinoma (NPC) is hardly studied. This study intends to examine the molecular mechanism of SNHG7 on NPC cells. The NPC tissues and nasopharyngeal tissues of mild inflammation of nasopharyngeal mucosa were obtained. SNHG7, miR-140-5p, and GLI3 mRNA and protein expression in tissues and in the CNE1, HONE1, C666-1, CNE2, and normal NP69 cell lines was detected. IC50 and the protein expression of related drug-resistant genes of CNE2 and CNE2/DDP cells were determined. Proliferative ability, cell colony formation rate, cell cycle, and apoptosis of CNE2 and CNE2/DDP cells were also detected. SNHG7, miR-140-5p, and GLI3 mRNA and protein expression in CNE2 and CNE2/DDP cells in each group was detected. SNHG7’s cell localization, the binding sites of SNHG7 and miR-140-5p along with miR-140-5p and GLI3 were detected. Overexpressed SNHG7 and GLI3, and underexpressed miR-140-5p were found in NPC tissues and cells. SNHG7 silencing and miR-140-5p elevation declined the drug resistance of drug-resistant NPC cells and their parent cells, restrained NPC cell colony formation ability and proliferation, and boosted cell apoptosis. SNHG7 specially bound to miR-140-5p, and SNHG7 silencing elevated miR-140-5p expression. GLI3 was a direct target gene of miR-140-5p and miR-140-5p elevation diminished GLI3 expression. MiR-140-5p inhibition reversed the impacts of SNHG7 silencing on NPC cells. In summary, our study reveals that downregulated SNHG7 restricts GLI3 expression by upregulating miR-140-5p, which further suppresses cell proliferation, and promotes apoptosis of NPC.
Collapse
Affiliation(s)
- Yaozhang Dai
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR.China
| | - Haijie Xing
- Department of Otolaryngology Head and Neck Surgery, University of Chinese Academy of Sciences, Shenzhen hospital, Shenzhen, Guangdong, PR.China
| | - Yamin Zhang
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| | - Hua Cao
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| | - Jianzhong Sang
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| | - Ling Gao
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| | - Liuzhong Wang
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR.China
| |
Collapse
|
46
|
Hu Y, Wang L, Li Z, Wan Z, Shao M, Wu S, Wang G. Potential Prognostic and Diagnostic Values of CDC6, CDC45, ORC6 and SNHG7 in Colorectal Cancer. Onco Targets Ther 2019; 12:11609-11621. [PMID: 32021241 PMCID: PMC6942537 DOI: 10.2147/ott.s231941] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
Background Colorectal cancer (CRC) is a common human malignancy. The aims of this study are to investigate the gene expression profile of CRC and to explore potential strategy for CRC diagnosis, therapy and prognosis. Methods We use affy and Limma package of Bioconductor R to do differential expression genes (DEGs) and differential expression lncRNAs (DELs) analysis from the gene datasets (GSE8671, GSE21510, GSE32323, GSE39582 and TCGA) respectively. Then, DEGs were analyzed by GO and KEGG pathway and Kaplan-Meier survival curve and Cox regression analyses were used to find aberrantly expressed genes associated with survival outcome of CRC patients. Real-time PCR assay was used to verify the aberrantly expressed genes expression in CRC samples. Results 306 up-regulation and 213 down-regulation common DEGs were found. A total of 485 DELs were identified, of which 241 up-regulated and 244 down-regulated. Then, GO and KEGG pathway analyses showed that DEGs were involved in cell cycle, mineral absorption, DNA replication, and Nitrogen metabolism. Among them, Kaplan-Meier survival curve and Cox regression analyses revealed that CDC6, CDC45, ORC6 and SNHG7 levels were significantly associated with survival outcome of CRC patients. Finally, real-time PCR assay was used to verify that the CDC6, CDC45, ORC6 and SNHG7 expression were up-regulated in 198 CRC samples compared with the expression levels in individual-matched adjacent mucosa samples. Conclusion CDC6, CDC45, ORC6 and SNHG7 are implicated in CRC initiation and progression and could be explored as potential diagnosis, therapy and prognosis targets for CRC.
Collapse
Affiliation(s)
- Yang Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Liping Wang
- Department of Clinical Oncology, The First People's Hospital of Chenzhou, Chenzhou 432000, Hunan, People's Republic of China
| | - Zhixing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Mingjie Shao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shaobin Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
47
|
Zhang Y, Yuan Y, Zhang Y, Cheng L, Zhou X, Chen K. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. Cell Cycle 2019; 19:142-152. [PMID: 31814518 DOI: 10.1080/15384101.2019.1699753] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small nucleolar RNA host gene 7 (SNHG7) is a newly recognized oncogenic Long non-coding RNA (lncRNA) in most human cancers. In gastric cancer, SNHG7 has been suggested to enhance cell proliferation and suppressed apoptosis through down-regulating P15 and P16 expression, but the effect of SNHG7 on gastric cancer cell migration and invasion was still unknown. In our study, we aimed to estimate the relationship between SNHG7 expression and clinical and pathological characteristics, and explore the effect of SNHG7 on gastric cancer cell migration and invasion. In our study, the levels of SNHG7 expression in gastric cancer tissues and cell lines were severally higher than in normal adjacent tissues and gastric mucosal epithelial cells. Moreover, high SNHG7 expression was positively correlated with TNM stage, depth of invasion, lymph-node metastasis and distant metastasis in gastric cancer patients. Furthermore, the multivariate Cox proportional hazard analysis further showed high SNHG7 expression was an independent poor prognostic factor for overall survival in gastric cancer patients. The studies in vitro revealed that SNHG7 directly binds to miR-34a and negatively regulates miR-34a expression, and SNHG7 enhances gastric cancer cell migration and invasion through suppressing miR-34a-Snail-EMT axis. In conclusion, SNHG7 functions as oncogenic lncRNA in gastric cancer and may be a potential therapeutic target for gastric cancer patients.Abbreviations: lncRNA: Long non-coding RNA; SNHG7: Small nucleolar RNA host gene 7; EMT: Epithelial mesenchymal transition; TNM: Tumor-Lymph Node-Metastasis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Kai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
Chen Z, Lei T, Chen X, Gu J, Huang J, Lu B, Wang Z. Long non-coding RNA in lung cancer. Clin Chim Acta 2019; 504:190-200. [PMID: 31790697 DOI: 10.1016/j.cca.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Owing to the difficulty in early diagnosis and the lack of effective treatment strategies, the 5-year survival rates for lung cancer remain very low. With the development of whole genome and transcriptome sequencing technology, long non-coding RNA (lncRNA) has attracted increasing attention. LncRNAs regulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are widely involved in a variety of diseases, including tumorigenesis. In lung cancer studies, multiple differentially expressed lncRNAs have been identified; several lncRNAs were identified as oncogenic lncRNAs with tumor-driving effects, while other lncRNAs play a role in tumor inhibition and are called tumor-suppressive lncRNAs. These tumor-suppressive lncRNAs are involved in multiple physiological processes such as cell proliferation, apoptosis, and metastasis and thus participate in tumor progression. In this review, we discussed the oncogenic and tumor-suppressive lncRNAs in lung cancer, as well as their biological functions and regulatory mechanisms. Furthermore, we found the potential significance of lncRNAs in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jiali Huang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Binbin Lu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| |
Collapse
|
49
|
Zhang L, Fu Y, Guo H. c-Myc-Induced Long Non-Coding RNA Small Nucleolar RNA Host Gene 7 Regulates Glycolysis in Breast Cancer. J Breast Cancer 2019; 22:533-547. [PMID: 31897328 PMCID: PMC6933030 DOI: 10.4048/jbc.2019.22.e54] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose Recent studies have shown that long non-coding RNA (lncRNA) play an important role in cancer metabolism and development. The lncRNA small nucleolar RNA host gene 7 (SNHG7) was reported to be upregulated in colorectal cancer and contribute to its progression. In the current study, we investigated the role of lncRNA-SNHG7 in breast cancer and explored the underlying mechanism. Methods We monitored the expression of lncRNA-SNHG7 in breast cancer tissues and breast cancer cell lines. We evaluated the effects of lncRNA-SNHG7 on cell proliferation and glycolysis in breast cancer cells by knocking down or overexpressing lncRNA-SNHG7. We searched for the potential microRNA (miRNA) target of lncRNA-SNHG7 and evaluated the effects of the target miRNA on glycolysis. We evaluated the potential regulation of lncRNA-SNHG7 by c-Myc. Results LncRNA-SNHG7 was up-regulated in both breast cancer tissues and breast cancer cell lines. Knocking down lncRNA-SNHG7 inhibited breast cancer cell proliferation while overexpressing lncRNA-SNHG7 enhanced cell proliferation. Knocking down lncRNA-SNHG7 resulted in decreased expression of lactate dehydrogenase A (LDHA) and decreased glycolysis. LncRNA-SNHG7 targeted miR-34a-5p to regulate LDHA expression and glycolysis. c-Myc bound to promoter of lncRNA-SNHG7 and positively regulated lncRNA-SNHG7 expression. Conclusion We demonstrated that c-Myc regulated glycolysis through the lncRNA-SNHG7/miR-34a-5p/LDHA axis in breast cancer cells.
Collapse
Affiliation(s)
- Linlei Zhang
- Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanying Fu
- Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao Guo
- Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Wei W, Zhao X, Zhu J, Zhang L, Chen Y, Zhang B, Li Y, Wang M, Zhang Z, Wang C. lncRNA‑u50535 promotes the progression of lung cancer by activating CCL20/ERK signaling. Oncol Rep 2019; 42:1946-1956. [PMID: 31545478 PMCID: PMC6775802 DOI: 10.3892/or.2019.7302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
The ligand/receptor pair C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6) is considered to be highly activated in lung cancer and significantly accelerates lung cancer progression through activation of ERK signaling. In addition, it has been shown that long non‑coding RNA‑u50535 (lncRNA‑u50535) upregulates CCL20 expression and facilitates cancer progression in colorectal cancer (CRC). However, the effects of lncRNA‑u50535 in lung cancer progression and whether lncRNA‑u50535 regulates CCL20/CCR6/ERK signaling in lung cancer remain ill‑defined. Therefore, the aim of the present study was to investigate the effects of lncRNA‑u50535 on CCL20/CCR6/ERK signaling in lung cancer progression. The results demonstrated that lncRNA‑u50535 expression was upregulated in lung cancer tissues and cell lines compared with normal tissues and cells. Knockdown of lncRNA‑u50535 decreased lung cancer cell proliferation and migration, induced G0/G1 phase arrest and promoted cell apoptosis. Western blot and luciferase reporter gene assays demonstrated that lncRNA‑u50535 overexpression increased the translation and transcription of CCL20. In addition, knockdown of lncRNA‑u50535 decreased CCL20, CCR6 and p‑ERK levels. The effects of lncRNA‑u50535 on cell proliferation and cell apoptosis were weakened when CCL20 was silenced. Overall, the present study demonstrated that lncRNA‑u50535 may function as an oncogene in lung cancer progression by regulating CCL20/ERK signaling.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Jianquan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Meng Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| |
Collapse
|