1
|
Mao M, Chen W, Ye D. Research progress on the structure, function, and use of angiogenin in malignant tumours. Heliyon 2024; 10:e30654. [PMID: 38756602 PMCID: PMC11096933 DOI: 10.1016/j.heliyon.2024.e30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Angiogenin (ANG) is a specialised secreted ribonuclease, also known as RNase5, that is widely expressed in vertebrates. ANG dysregulation is closely associated with the development of breast, nasopharyngeal, and lung cancers. In recent years, studies have found that ANG not only induces neovascularisation by activating endothelial cells, but also plays a regulatory role in the plasticity of cancer cells. Cellular plasticity plays pivotal roles in cancer initiation, progression, migration, therapeutic resistance, and relapse. Therefore, it is a promising biomarker for cancer diagnosis, prognostic evaluation, and therapy. This review summarises the current knowledge regarding the roles and clinical applications of ANG in cancer development and progression.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, 315040, Ningbo, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, 315040, Ningbo, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, 315040, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Wang J, Shan A, Shi F, Zheng Q. Molecular and clinical characterization of ANG expression in gliomas and its association with tumor-related immune response. Front Med (Lausanne) 2023; 10:1044402. [PMID: 37928479 PMCID: PMC10621067 DOI: 10.3389/fmed.2023.1044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Background Angiogenin (ANG) has been widely reported as a crucial molecular regulator in multiple malignancies. However, its role in gliomagenesis remains unclear. This study aimed to investigate the molecular and clinical characterization of ANG expression at transcriptome level and the association with glioma-related immune response. Methods A total of 301 glioma samples with mRNA microarray data (CGGA301) was obtained from the official website of CGGA project for yielding preliminary results, followed by validation in two independent RNAseq datasets, including TCGA with 697 samples and CGGA325 with 325 patients. Moreover, CGGA single-cell RNAseq (scRNAseq) data were analyzed to identify differential and dynamic ANG expression in different cells. Immunohistochemistry was performed to evaluate ANG protein expression across different WHO grades in a tissue microarray (TMA). Figure generation and statistical analysis were conducted using R software. Results ANG expression was associated with clinical features, malignant phenotypes, and genomic alterations. Based on significantly correlated genes of ANG, subsequent gene ontology (GO) and gene set enrichment analysis (GSEA) concordantly pointed to the significant association of ANG in immune-related biological processes. Moreover, ANG showed robust correlations with canonical immune checkpoint molecules, including PD1 signaling, CTLA4, TIM3, and B7H3. Gene sets variation analysis (GSVA) found that ANG was particularly associated with activities of macrophages and antigen presentation cells (APCs) in both LGG and GBM across different datasets. Furthermore, the higher-ANG milieu seemed to recruit monocyte-macrophage lineage and dendritic cells into the glioma microenvironment. According to scRNAseq analysis, ANG was mainly expressed by neoplastic cells and tumor-associated macrophages (TAMs) and was correlated with the initiation and progression of tumor cells and the polarization of TAMs. Finally, Kaplan-Meier plots demonstrated that higher expression of ANG was significantly correlated with shorter survival in gliomas. Cox regression analysis further confirmed ANG as an independent predictor of prognosis for gliomas of all three datasets. Conclusion ANG is significantly correlated with a range of malignant and aggressive characteristics in gliomas and reveals considerable prognostic value for glioma patients. ANG seems to be primarily associated with immune activities of macrophages and APCs in gliomas. Furthermore, ANG is mainly expressed in neoplastic cells and TAMs and is involved in the initiation and progression of neoplastic cells as well as macrophage polarization.
Collapse
Affiliation(s)
- Jin Wang
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Fei Shi
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
3
|
Ahmad F, Lakshmi PTV, Arunachalam A. An in silico comparative study of curcumin and 2-deoxyuridine nucleoside derivatives: Reveals the role of angiogenin in ER stress-induced apoptosis signaling. Chem Biol Drug Des 2022; 101:1048-1081. [PMID: 36412086 DOI: 10.1111/cbdd.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Angiogenin (ANG) protein plays a crucial role in angiogenesis, neovascularization, and cancer metastasis in NSCLC (non-small cell lung cancer) via non-coding tiRNA. It protects the cell under ER (endoplasmic reticulum) stress-induced apoptosis through the translational reprogramming process. Although B82 (Curcumin derivatives) induces ER stress-induced apoptosis, its mechanism of action was not studied. Therefore, it was hypothesized that the ribonucleolytic activity of ANG may be regulated by B82, resulting in modulated ER stress signaling for apoptosis. Hence, we designed and proposed a synthesis scheme for RNA-based anti-angiogenic derivatives of 2-deoxyuridine nucleoside forming peptide bond with amino acids like serine (Ser-3) and para-hydroxy-phenyl glycine (Normtyr-1) and compared B82 with them to know the binding affinity with ANG, anti-angiogenic potential, and its probable mechanism of anti-RNase activity through MD simulation study. Therefore, using Gromos96 43a1 and 43a2 force fields, MD simulation was performed to investigate binding affinity, ligand-induced molecular surface area change, conformational change, and dynamics of catalytic site residues to predict ligand binding to ANG in this study. The obtained binding free energy (∆Gbind ) result showed the total average ∆Gbind as -113.480 ± 1.682 (Normtyr-1) > -53.038 ± 33.069 (B82) > -27.909 ± 16.438 (Ser-3) kJ/mole specify role of B82 in regulating ER stress signaling induced apoptosis through ANG ribonucleolytic activity inhibition, suitability of 43a2 force fields and methodology in ligand screening. It shows the crucial role of Leu115 and His13 residue involvement in total ∆Gbind contribution. Hence, based on the MD result, novel conformation of catalytic residues, and ∆Gbind , a promising combination candidate could be proposed for metastatic NSCLC therapy.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Annamalai Arunachalam
- PG and Research Department of Botany Arignar Anna Government Arts College Villupuram Tamil Nadu India
| |
Collapse
|
4
|
Weng D, Han T, Dong J, Zhang M, Mi Y, He Y, Li X, Zhu X. Angiogenin and MMP-2 as potential biomarkers in the differential diagnosis of gestational trophoblastic diseases. Medicine (Baltimore) 2022; 101:e28768. [PMID: 35119039 PMCID: PMC8812619 DOI: 10.1097/md.0000000000028768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Gestational trophoblastic diseases (GTDs) are characterized by vascular abnormalities of the trophoblast, but their pathogenesis is unknown. Angiogenin (ANG) and matrix metalloproteinase (MMP)-2, which are molecules implicated in the angiogenic process, may play some role in this process. MATERIAL AND METHODS We determined ANG and MMP-2 in the placental tissues of 26 patients who had a benign mole (BM), 12 patients with gestational trophoblast neoplasia (GTN) (1 invasive hydatidiform mole, 10 choriocarcinomas, and 1 placental-site trophoblastic tumor), and 28 normal chorionic villi (NCV) subjects using immunohistochemistry staining. We obtained the serum samples from 20 patients with GTDs and 20 early pregnant women and evaluated them by the enzyme linked immunosorbent assay. RESULTS ANG expression in GTN (66.7%) and BM (100%) samples were both significantly higher (strong/intermediate staining) than in NCV (60.7%) samples (P < .001). Similarly, the immunoreactivities of MMP-2 in the GTN (66.7%) and BM (80.8%) samples were significantly elevated compared to that of the NCV (57.1%) samples (P < .001). The levels of ANG and MMP-2 in the maternal serum of the GTN group were both significantly higher than those of the control group (P < .001). ANG and MMP-2 expressions were associated with gestation age, clinical stage, and FIGO stage. A positive correlation between ANG and MMP-2 expression was observed (rs = 0.725; P < .01). CONCLUSION ANG and MMP-2 levels were significantly elevated in the placental tissues and maternal serum from patients with GTDs. Further studies with more patients may clarify the vascular abnormalities in GTDs and determine potential biomarkers in the differential diagnosis of GTDs.
Collapse
Affiliation(s)
- Dan Weng
- Department of Obstetrics and Gynecology, Hainan Hospital of PLA General Hospital, Sanya, China
- Department of Obstetrics and Gynecology, Shaanxi Provincial Maternal and Child Health's Hospital, Xi’an, China
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Tao Han
- Department of Orthopedics, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Jin Dong
- Department of Obstetrics and Gynecology, Shaanxi Provincial Maternal and Child Health's Hospital, Xi’an, China
| | - Ming Zhang
- Department of Obstetrics and Gynecology, Shaanxi Provincial Maternal and Child Health's Hospital, Xi’an, China
| | - Yang Mi
- Department of Obstetrics and Gynecology, Shaanxi Provincial Maternal and Child Health's Hospital, Xi’an, China
| | - Yiping He
- Department of Obstetrics and Gynecology, Northwestern Women's and Children's Hospital, Xi’an, China
| | - Xiaojuan Li
- Department of Obstetrics and Gynecology, Northwestern Women's and Children's Hospital, Xi’an, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
5
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|