1
|
Qian X, Cai J, Zhang Y, Shen S, Wang M, Liu S, Meng X, Zhang J, Ye Z, Qiu S, Zhong X, Gao P. EPDR1 promotes PD-L1 expression and tumor immune evasion by inhibiting TRIM21-dependent ubiquitylation of IkappaB kinase-β. EMBO J 2024; 43:4248-4273. [PMID: 39152265 PMCID: PMC11445549 DOI: 10.1038/s44318-024-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Qian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Cai
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingjie Wang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengzhi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang Meng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Junjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zijian Ye
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
3
|
Brezski A, Murtagh J, Schulz MH, Zarnack K. A systematic analysis of circRNAs in subnuclear compartments. RNA Biol 2024; 21:1-16. [PMID: 39257052 PMCID: PMC11404584 DOI: 10.1080/15476286.2024.2395718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
CircRNAs are an important class of RNAs with diverse cellular functions in human physiology and disease. A thorough knowledge of circRNAs including their biogenesis and subcellular distribution is important to understand their roles in a wide variety of processes. However, the analysis of circRNAs from total RNA sequencing data remains challenging. Therefore, we developed Calcifer, a versatile workflow for circRNA annotation. Using Calcifer, we analysed APEX-Seq data to compare circRNA occurrence between whole cells, nucleus and subnuclear compartments. We generally find that circRNAs show higher abundance in whole cells compared to nuclear samples, consistent with their accumulation in the cytoplasm. The notable exception is the single-exon circRNA circCANX(9), which is unexpectedly enriched in the nucleus. In addition, we observe that circFIRRE prevails over the linear lncRNA FIRRE in both the cytoplasm and the nucleus. Zooming in on the subnuclear compartments, we show that circRNAs are strongly depleted from nuclear speckles, indicating that excess splicing factors in this compartment counteract back-splicing. Our results thereby provide valuable insights into the subnuclear distribution of circRNAs. Regarding circRNA function, we surprisingly find that the majority of all detected circRNAs possess complete open reading frames with potential for cap-independent translation. Overall, we show that Calcifer is an easy-to-use, versatile and sustainable workflow for the annotation of circRNAs which expands the repertoire of circRNA tools and allows to gain new insights into circRNA distribution and function.
Collapse
Affiliation(s)
- Andre Brezski
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| | - Justin Murtagh
- Department of Medicine, Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| | - Marcel H. Schulz
- Department of Medicine, Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- Cardio-Pulmonary Institute, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Hesse, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
4
|
The human batokine EPDR1 regulates β-cell metabolism and function. Mol Metab 2022; 66:101629. [PMID: 36343918 PMCID: PMC9663883 DOI: 10.1016/j.molmet.2022.101629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Ependymin-Related Protein 1 (EPDR1) was recently identified as a secreted human batokine regulating mitochondrial respiration linked to thermogenesis in brown fat. Despite that EPDR1 is expressed in human pancreatic β-cells and that glucose-stimulated mitochondrial metabolism is critical for stimulus-secretion coupling in β-cells, the role of EPDR1 in β-cell metabolism and function has not been investigated. METHODS EPDR1 mRNA levels in human pancreatic islets from non-diabetic (ND) and type 2 diabetes (T2D) subjects were assessed. Human islets, EndoC-βH1 and INS1 832/13 cells were transfected with scramble (control) and EPDR1 siRNAs (EPDR1-KD) or treated with human EPDR1 protein, and glucose-stimulated insulin secretion (GSIS) assessed by ELISA. Mitochondrial metabolism was investigated by extracellular flux analyzer, confocal microscopy and mass spectrometry-based metabolomics analysis. RESULTS EPDR1 mRNA expression was upregulated in human islets from T2D and obese donors and positively correlated to BMI of donors. In T2D donors, EPDR1 mRNA levels negatively correlated with HbA1c and positively correlated with GSIS. EPDR1 silencing in human islets and β-cell lines reduced GSIS whereas treatment with human EPDR1 protein increased GSIS. Epdr1 silencing in INS1 832/13 cells reduced glucose- and pyruvate- but not K+-stimulated insulin secretion. Metabolomics analysis in Epdr1-KD INS1 832/13 cells suggests diversion of glucose-derived pyruvate to lactate production and decreased malate-aspartate shuttle and the tricarboxylic acid (TCA) cycle activity. The glucose-stimulated rise in mitochondrial respiration and ATP/ADP-ratio was impaired in Epdr1-deficient cells. CONCLUSION These results suggests that to maintain glucose homeostasis in obese people, upregulation of EPDR1 may improve β-cell function via channelling glycolysis-derived pyruvate to the mitochondrial TCA cycle.
Collapse
|
5
|
El-Masry OS, Alamri AM, Alzahrani F, Alsamman K. ADAMTS14, ARHGAP22, and EPDR1 as potential novel targets in acute myeloid leukaemia. Heliyon 2022; 8:e09065. [PMID: 35299609 PMCID: PMC8920923 DOI: 10.1016/j.heliyon.2022.e09065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a blood cancer with a heterogeneous genomic landscape. This study aimed to mine bioinformatics data generated by RNA sequencing to unveil an AML case transcriptome profile and identify novel therapeutic targets and markers. In this study, we have determined the transcriptomic profile and analysed gene variants of an AML patient at the time of diagnosis and validated some genes by quantitative reverse transcriptase polymerase chain reaction. ADAMTS14, ARHGAP22, and ependymin-related protein 1 (EPDR1) were markedly upregulated compared to the corresponding control. In addition, novel exonic single-nucleotide and insertion/deletion variants were identified in these genes. Hence, ADAMTS14, ARHGAP22, and EPDR1 can be proposed as potential novel targets in AML, and their exact roles should be further explored.
Collapse
Affiliation(s)
- Omar S El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ali M Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahaman Bin Faisal University, Alkhobar, 34445, Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
6
|
Zhao Z, Wang Z, Wang P, Liu S, Li Y, Yang X. EPDR1, Which Is Negatively Regulated by miR-429, Suppresses Epithelial Ovarian Cancer Progression via PI3K/AKT Signaling Pathway. Front Oncol 2021; 11:751567. [PMID: 35004274 PMCID: PMC8733570 DOI: 10.3389/fonc.2021.751567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.
Collapse
Affiliation(s)
- Zhendan Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Pengling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shujie Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Zibo Spring Hospital Co., Ltd., Zibo, China
| | - Yingwei Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xingsheng Yang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061433. [PMID: 33801071 PMCID: PMC8004037 DOI: 10.3390/cancers13061433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in metastasis, but neither the mechanisms involved in this process nor the role of the different isoforms of the gene are known. Here we show that the ratio of these isoforms is related to the relapsing of the disease, and that the protein ZNF518B interacts with enzymes able to introduce epigenetic changes, which may affect the activity of many genes. We also report a list of genes affected in common by ZNF518B and by two of those related enzymes, namely, G9A and EZH2. An in-depth analysis of five of those genes revealed that ZNF518B is involved in the recruitment of the enzymes and in the deposition of the corresponding epigenetic marks. The results highlight the relevance of epigenetic changes in cancer development, and open the possibility of developing therapeutic approaches, as the introduction of epigenetic modifications is reversible. Abstract The ZNF518B gene, which is up-regulated in colorectal cancer, plays a role in cell dissemination and metastasis. It encodes a zinc-finger protein, which interacts with histone methyltransferases G9A and EZH2. The expression of the two major mRNA isoforms 1 (coding for the full protein) and 2 was quantified by RT-qPCR in a cohort of 66 patients. The effects of silencing ZNF518B on the transcriptome of DLD1 and HCT116 cells were analysed by Clariom-S assays and validated by RT-qPCR. The recruitment of methyltransferases and the presence of H3K27me3 were studied by chromatin immunoprecipitation (ChIP). The ratio (isoform 2)/(isoform 1) negatively correlated with the relapsing of disease. The study of the transcriptome of DLD1 and HCT116 cells revealed that many genes affected by silencing ZNF518B are related to cancer. After crossing these results with the list of genes affected by silencing the histone methyltransferases (retrieved in silico), five genes were selected. ChIP analysis revealed that the recruitment of EZH2 is ZNF518B-dependent in KAT2B, RGS4 and EFNA5; the level of H3K27me3 changes in accordance. G9A also binds RGS4 and PADI3 in a ZNF518B-dependent manner. The results highlight the importance of epigenetics in cancer and open a novel therapeutic possibility, as inhibition of histone methyltransferases may reverse the disease-linked histone marks.
Collapse
|
8
|
Chen R, Zhang Y. EPDR1 correlates with immune cell infiltration in hepatocellular carcinoma and can be used as a prognostic biomarker. J Cell Mol Med 2020; 24:12107-12118. [PMID: 32935479 PMCID: PMC7579695 DOI: 10.1111/jcmm.15852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has high mortality rate and is a serious disease burden globally. EPDR1 (ependymin related 1) is a member of piscine brain glycoproteins and is involved in cell adhesion. The gene expression, prognostic, and clinicopathological related data for EPDR1 were obtained from multiple transcriptome databases. Protein level of EPDR1 in HCC was verified using human protein atlas and CPTAC databases. EPDR1 co‐expressed genes were identified using LinkedOmics. Functional analysis of the co‐expressed genes was performed using gene set enrichment analysis, Gene Ontology, and KEGG. Statistical analysis was conducted in R. The relationship between EPDR1 expression and immune cell infiltration was analyzed using TIMER and CIBERSORT. The expression of EPDR1 was found to be significantly higher in HCC than in normal tissues. Further, EPDR1 level was correlated with advanced stage of HCC. EPDR1 was associated with multiple signaling, as well as cancer and apoptotic pathways. Further, EPDR1 expression was significantly correlated with purity and infiltration levels of various immune cells as well as immune signatures. This is the first study to report the role of EPDR1 in HCC. EPDR1 can be used as a novel prognostic biomarker as well as an effective target for diagnosis and treatment in HCC.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Lian H, Wang A, Shen Y, Wang Q, Zhou Z, Zhang R, Li K, Liu C, Jia H. Identification of novel alternative splicing isoform biomarkers and their association with overall survival in colorectal cancer. BMC Gastroenterol 2020; 20:171. [PMID: 32503434 PMCID: PMC7275609 DOI: 10.1186/s12876-020-01288-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an important mechanism of regulating eukaryotic gene expression. Understanding the most common AS events in colorectal cancer (CRC) will help developing diagnostic, prognostic or therapeutic tools in CRC. METHODS Publicly available RNA-seq data of 28 pairs of CRC and normal tissues and 18 pairs of metastatic and normal tissues were used to identify AS events using PSI and DEXSeq methods. RESULT The highly significant splicing events were used to search a database of The Cancer Genome Atlas (TCGA). We identified AS events in 9 genes in CRC (more inclusion of CLK1-E4, COL6A3-E6, CD44v8-10, alternative first exon regulation of ARHGEF9, CHEK1, HKDC1 and HNF4A) or metastasis (decrease of SERPINA1-E1a, CALD-E5b, E6). Except for CHEK1, all other 8 splicing events were confirmed by TCGA data with 382 CRC tumors and 51 normal controls. The combination of three splicing events was used to build a logistic regression model that can predict sample type (CRC or normal) with near perfect performance (AUC = 1). Two splicing events (COL6A3 and HKDC1) were found to be significantly associated with patient overall survival. The AS features of the 9 genes are highly consistent with previous reports and/or relevant to cancer biology. CONCLUSIONS The significant association of higher expression of the COL6A3 E5-E6 junction and HKDC1 E1-E2 with better overall survival was firstly reported. This study might be of significant value in the future biomarker, prognosis marker and therapeutics development of CRC.
Collapse
Affiliation(s)
- Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Aili Wang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Yuanyuan Shen
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Qian Wang
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Zhenru Zhou
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Ranran Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Kun Li
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China.
| | - Hongtao Jia
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China.
| |
Collapse
|
10
|
EPDR1 up-regulation in human colorectal cancer is related to staging and favours cell proliferation and invasiveness. Sci Rep 2020; 10:3723. [PMID: 32111877 PMCID: PMC7048834 DOI: 10.1038/s41598-020-60476-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
The finding of novel molecular markers for prediction or prognosis of invasiveness in colorectal cancer (CRC) constitutes an appealing challenge. Here we show the up-regulation of EPDR1 in a prospective cohort of 101 CRC patients, in a cDNA array of 43 patients and in in silico analyses. EPDR1 encodes a protein related to ependymins, a family of glycoproteins involved in intercellular contacts. A thorough statistical model allowed us to conclude that the gene is significantly up-regulated in tumour tissues when compared with normal mucosa. These results agree with those obtained by the analysis of three publicly available databases. EPDR1 up-regulation correlates with the TNM staging parameters, especially T and M. Studies with CRC cell lines revealed that the methylation of a CpG island controls EPDR1 expression. siRNA knocking-down and overexpression of the gene following transient plasmid transfection, showed that EPDR1 favours cell proliferation, migration, invasiveness and adhesion to type I collagen fibres, suggesting a role in epithelial to mesenchymal transition. Both statistical and functional analysis correlated EPDR1 overexpression with invasiveness and dissemination of tumour cells, supporting the inclusion of EPDR1 in panels of genes used to improve molecular subtyping of CRC. Eventually, EPDR1 may be an actionable target.
Collapse
|
11
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
12
|
Gimeno-Valiente F, Riffo-Campos ÁL, Vallet-Sánchez A, Siscar-Lewin S, Gambardella V, Tarazona N, Cervantes A, Franco L, Castillo J, López-Rodas G. ZNF518B gene up-regulation promotes dissemination of tumour cells and is governed by epigenetic mechanisms in colorectal cancer. Sci Rep 2019; 9:9339. [PMID: 31249328 PMCID: PMC6597559 DOI: 10.1038/s41598-019-45411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Most of colorectal cancer CRC-related death is due to metastasis and the finding of markers for prognosis of invasiveness, constitutes an appealing challenge. Here, after analysing cDNA array containing 43 tumour and 5 normal mucosa samples, we report that the expression of the ZNF518B gene as a whole and that of its two major splicing isoforms are significantly increased in tumours. The canonical isoform was also up-regulated in a patients’ cohort containing 70 tumour and 69 adjacent tissue samples. The effects of silencing ZNF518B on the phenotype of CRC cell lines were then studied. The gene does not affect cell proliferation, but plays a significant role in cell migration and invasiveness and induces changes in the epithelial-to-mesenchymal transition markers, suggesting that ZNF518B favours tumour cell dissemination. To study the regulation of the gene, transcription-related changes in nucleosomal organisation and epigenetic marks around the transcriptional start site were analysed. The positioning of a nucleosome over the transcription start site and the differential presence of the epigenetic marks H3K9ac, H3K27ac, H3K4me3 and H3K9me3 correlate with gene expression. Inhibition of histone deacetylases increases the transcription of ZNF518B, which may be a candidate for invasiveness prognosis in CRC and a target for epigenetic drugs.
Collapse
Affiliation(s)
| | - Ángela L Riffo-Campos
- Institute of Health Research, INCLIVA, Valencia, Spain.,Centro De Excelencia de Modelación y Computación Científica, Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Azahara Vallet-Sánchez
- Institute of Health Research, INCLIVA, Valencia, Spain.,Department of Cell Biology, Universitat de València, Burjassot, Valencia, Spain
| | - Sofía Siscar-Lewin
- Institute of Health Research, INCLIVA, Valencia, Spain.,Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Valentina Gambardella
- Institute of Health Research, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.,Department of Medical Oncology, University Hospital, Universitat de València, Valencia, Spain
| | - Noelia Tarazona
- Institute of Health Research, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.,Department of Medical Oncology, University Hospital, Universitat de València, Valencia, Spain
| | - Andrés Cervantes
- Institute of Health Research, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.,Department of Medical Oncology, University Hospital, Universitat de València, Valencia, Spain
| | - Luis Franco
- Institute of Health Research, INCLIVA, Valencia, Spain. .,Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain.
| | - Josefa Castillo
- Institute of Health Research, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Gerardo López-Rodas
- Institute of Health Research, INCLIVA, Valencia, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| |
Collapse
|
13
|
Role of epigenetic factors in the selection of the alternative splicing isoforms of human KRAS in colorectal cancer cell lines. Oncotarget 2018; 9:20578-20589. [PMID: 29755673 PMCID: PMC5945503 DOI: 10.18632/oncotarget.25016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/17/2018] [Indexed: 01/10/2023] Open
Abstract
Mutation-driven activation of KRAS is crucial to cancer development. The human gene yields four mRNA splicing isoforms, 4A and 4B being translated to protein. Their different properties and oncogenic potential have been studied, but the mechanisms deciding the ratio 4A/4B are not known. To address this issue, the expression of the four KRAS isoforms was determined in 9 human colorectal cancer cell lines. HCT116 and SW48 were further selected because they present the highest difference in the ratio 4A/4B (twice as much in HCT116 than in SW48). Chromatin structure was analysed at the exon 4A, characteristic of isoform 4A, at its intronic borders and at the two flanking exons. The low nucleosome occupancy at exon 4A in both cell lines may result in a fast transcriptional rate, which would explain the general lower abundance of isoform 4A, also found in cells and tissues by other authors, but due to its similarity between both cell lines, chromatin structure does not influence alternative splicing. DNA methylation downstream exon 4A significantly differs in HCT116 and SW48 cells, but the CCCTC-binding factor, which affects the processivity of RNA polymerase and the alternative splicing, does not bind the differentially methylated sequences. Quantitative epigenetic analysis at mononucleosomal level revealed significant differences between both cell lines in H3K4me3, H3K27me3, H3K36me3, H3K9ac, H3K27ac and H4K20me1, and the inhibition of some histone-modifying enzymes alters the ratio 4A/4B. It can be concluded that the epigenetic modification of histones has an influence on the selection of isoforms 4A and 4B.
Collapse
|