1
|
Bolshakova OI, Latypova EM, Komissarov AE, Slobodina AD, Ryabova EV, Varfolomeeva EY, Agranovich OE, Batkin SF, Sarantseva SV. Cellular and Molecular Effects of the Bruck Syndrome-Associated Mutation in the PLOD2 Gene. Int J Mol Sci 2024; 25:13379. [PMID: 39769143 PMCID: PMC11676324 DOI: 10.3390/ijms252413379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Bruck syndrome is a rare autosomal recessive disorder characterized by increased bone fragility and joint contractures similar to those in arthrogryposis and is known to be associated with mutations in the FKBP10 (FKBP prolyl isomerase 10) and PLOD2 (Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2) genes. These genes encode endoplasmic reticulum proteins that play an important role in the biosynthesis of type I collagen, which in turn affects the structure and strength of connective tissues and bones in the body. Mutations are associated with disturbances in both the primary collagen chain and its post-translational formation, but the mechanism by which mutations lead to Bruck syndrome phenotypes has not been determined, not only because of the small number of patients who come to the attention of researchers but also because of the lack of disease models. In our work, we investigated the cellular effects of two forms of the wild-type PLOD2 gene, as well as the PLOD2 gene with homozygous mutation c.1885A>G (p.Thr629Ala). The synthesized genetic constructs were transfected into HEK293 cell line and human skin fibroblasts (DF2 line). The localization of PLOD2 protein in cells and the effects caused by the expression of different isoforms-long, short, and long with mutation-were analyzed. In addition, the results of the transcriptome analysis of a patient with Bruck syndrome, in whom this mutation was detected, are presented.
Collapse
Affiliation(s)
- Olga I. Bolshakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Evgenia M. Latypova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Alexandra D. Slobodina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Elena Yu. Varfolomeeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| | - Olga E. Agranovich
- Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 Saint Petersurg, Russia; (O.E.A.); (S.F.B.)
| | - Sergey F. Batkin
- Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 Saint Petersurg, Russia; (O.E.A.); (S.F.B.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (O.I.B.); (E.M.L.); (A.E.K.); (A.D.S.); (E.V.R.); (E.Y.V.)
| |
Collapse
|
2
|
Chen Q, Zhou Q. Identification of exosome-related gene signature as a promising diagnostic and therapeutic tool for breast cancer. Heliyon 2024; 10:e29551. [PMID: 38665551 PMCID: PMC11043961 DOI: 10.1016/j.heliyon.2024.e29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Exosomes are promising tools for the development of new diagnostic and therapeutic approaches. Exosomes possess the ability to activate signaling pathways that contribute to the remodeling of the tumor microenvironment, angiogenesis, and the regulation of immune responses. We aimed to develop a prognostic score based on exosomes derived from breast cancer. Materials and methods Training was conducted on the TCGA-BRCA dataset, while validation was conducted on GSE20685, GSE5764, GSE7904, and GSE29431. A total of 121 genes related to exosomes were retrieved from the ExoBCD database. The Cox proportional hazards model is used to develop risk score model. The GSVA package was utilized to analyze single-sample gene sets and identify exosome signatures, while the WGCNA package was utilized to identify gene modules associated with clinical outcomes. The clusterProfiler and GSVA R packages facilitated gene set enrichment and variation analyses. Furthermore, CIBERSORT quantified immune infiltration, and a correlation between gene expression and drug sensitivity was assessed using the TIDE algorithm. Results An exosome-related prognostic score was established using the following selected genes: ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. Various immune cells that promote cancer immune evasion were associated with a high-risk prognostic score, which was an independent predictor of outcome. High-risk and low-risk groups exhibited significantly different infiltration abundances (p < 0.05). By conducting a sensitivity comparison, we found that patients with high-risk scores exhibited more favorable responses to immunotherapy than those with low-risk scores. Conclusion The exosome-related gene signature exhibits outstanding performance in predicting the prognosis and cancer status of patients with breast cancer and guiding immunotherapy.
Collapse
Affiliation(s)
- Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| | - Qin Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
3
|
Tian X, Liu D, He P, Li L, Wang Y, Qiu M. DOK7, a target of miR-299-5p, suppresses the progression of bladder cancer. Aging (Albany NY) 2023; 15:14306-14322. [PMID: 38095644 PMCID: PMC10756110 DOI: 10.18632/aging.205304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Bladder cancer (BLCA) is the 6th most common malignancy in males. microRNA (miRNAs) can function as tumor suppressors or oncogenic factors, which are of significance in the progression of BLCA. This study explored the mechanisms by which miR-299-5p modulates DOK7 (Docking Protein 7) expression and the functional role of DOK7 in the progression of BLCA. METHODS The expression of the DOK7 in BLCA patient samples was examined by RT-qPCR (Real-time quantitative polymerase chain reaction), Western blotting and Immunohistochemical (IHC) staining. The malignant phenotype of BLCA cells upon DOK7 overexpression or silencing was assessed by functional assays including cell count kit-9 (CCK8), colony formation and 5-ethynyl-2'-deoxyuridine (Edu) staining assays, as well as Transwell migration and invasion assays. The miRNA regulators of DOK7 were identified through bioinformatics prediction, and the biological role of miR-299-5p/DOK7 axis was validated by functional assays. The impact of miR-299-5p/DOK7 axis on Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway was further examined by Western blotting. RESULTS DOX7 was significantly downregulated in BLCA tumor tissues compared with normal tissues. Ectopic DOK7 expression suppressed the proliferation, migration and invasion of BLCA cells. DOK7 overexpression also attenuated the tumorigenesis of BLCA cells in nude mice. miR-299-5p was a negative regulator of DOK7 expression in BLCA cells. miR-299-5p/DOK7 axis impaired the malignancy of BLCA cells through regulating the JAK signaling pathway. CONCLUSION Our data indicate that miR-299-5p/DOK7 axis suppresses BLCA progression possibly by regulating the JAK signaling pathway.
Collapse
Affiliation(s)
- Xuemei Tian
- Department of Anesthesia Surgery Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Liu
- Department of Anesthesia Surgery Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Peng He
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lijun Li
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
DOK7 CpG hypermethylation in blood leukocytes as an epigenetic biomarker for acquired tamoxifen resistant in breast cancer. J Hum Genet 2023; 68:33-38. [PMID: 36372800 DOI: 10.1038/s10038-022-01092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is among the most common cause of cancer 10.4% and one of the leading causes of death among 20-50 years old women in the world. Tamoxifen drug is the first line therapy for BC however tamoxifen resistance (TR) has shown in 30-50% of cases that may face BC recurrence. Hence, TR early detection reduces BC recurrence and fatalities. The epigenetic alteration that happens by hypermethylation of tumor suppressor genes and hypomethylation of oncogenes has been suggested to be useful in early cancer or drug resistance diagnosis. METHODS This is the first study to investigate DOK7 CpG hypermethylation in blood leukocytes of 31 TR (ER+) BC compared to 29 tamoxifen sensitive BC to evaluate DOK7 as a potential TR biomarker. DNA was extracted from blood samples of all participants and MSRE-PCR and real-time PCR were used for quantification of CpG methylation alterations. RESULTS The means of DOK7 CpG hypermethylation were obtained as 85.03%, 29.1% and 57.34% in TR, TS and normal control respectively. Significant hypermethylation were found among TR vs. TS (p < 0.001), TS vs. normal (p < 0.001) and TR vs. normal controls (p < 0.03). Online databases expression and survival analysis of DOK7 showed increasing expression in TS groups vs. TR groups which have consistency with our methylation alteration results. The sensitivity and specificity of the TR epigenetic test were determined using ROC analysis showed 89.66% and 96.77% respectively and showed that 37.5% above hypermethylation is at risk for TR and breast cancer recurrence. CONCLUSION There is a significant difference in the methylation ratio of DOK7 between tamoxifen resistant and tamoxifen sensitive groups that may be useful in the early diagnosis of tamoxifen resistance in BC cases and cancer recurrence prevention.
Collapse
|
5
|
Correlation between DNA Methylation and Cell Proliferation Identifies New Candidate Predictive Markers in Meningioma. Cancers (Basel) 2022; 14:cancers14246227. [PMID: 36551712 PMCID: PMC9776514 DOI: 10.3390/cancers14246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary tumors of the central nervous system. Based on the 2021 WHO classification, they are classified into three grades reflecting recurrence risk and aggressiveness. However, the WHO's histopathological criteria defining these grades are somewhat subjective. Together with reliable immunohistochemical proliferation indices, other molecular markers such as those studied with genome-wide epigenetics promise to revamp the current prognostic classification. In this study, 48 meningiomas of various grades were randomly included and explored for DNA methylation with the Infinium MethylationEPIC microarray over 850k CpG sites. We conducted differential and correlative analyses on grade and several proliferation indices and markers, such as mitotic index and Ki-67 or MCM6 immunohistochemistry. We also set up Cox proportional hazard models for extensive associations between CpG methylation and survival. We identified loci highly correlated with cell growth and a targeted methylation signature of regulatory regions persistently associated with proliferation, grade, and survival. Candidate genes under the control of these regions include SMC4, ESRRG, PAX6, DOK7, VAV2, OTX1, and PCDHA-PCDHB-PCDHG, i.e., the protocadherin gene clusters. This study highlights the crucial role played by epigenetic mechanisms in shaping dysregulated cellular proliferation and provides potential biomarkers bearing prognostic and therapeutic value for the clinical management of meningioma.
Collapse
|
6
|
Moradi A, Aleyasin SA, Mohammadian K, Alizamir A. Epigenteic Alteration of DOK7 Gene CpG Island in Blood Leukocyte of Patients with Gastric Cancer and Intestinal Methaplasia. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3050. [PMID: 36337064 PMCID: PMC9583823 DOI: 10.30498/ijb.2022.285841.3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Intestinal metaplasia (IM) is a benign lesion with no serious concern for patients' health. On the other hand, gastric cancer (GC) is a malignant lesion that has to be differentially diagnosed from benign intestinal metaplasia. Epigenetic modifications have been suggested to play an important role in cancer initiation and development, and they have been investigated as a reliable biomarker tool even for early cancer diagnosis. Whole blood leucocytes (WBC) are potentially the most accessible tissue for cancer early diagnosis, especially for GC, which is hard to diagnose in the early stage. Objective This study aims to investigate the methylation status of DOK7 gene CpG island in blood leukocytes of patients with IM and GC compared to normal control groups. Material and Method DNA was extracted from the whole blood of 30 IM patients, 30 GC patients, and 34 normal controls samples, and MSRE-PCR was utilized to evaluate the loci methylation status. Results Significant hypermethylation of DOK7 gene CpG has been observed in GC 88.1 % (p < 0.001) and IM 66.0 % (p = 0.03) in comparison to the normal control group 56.8%. A cutoff upper than 84.5 % of hypermethylation is considered as a presence of gastric cancer malignant lesions. Conclusions This is the first reported on hypermethylation in DOK7 CPG in blood leukocytes of patients with GC and IM and establishing a laboratory blood based test that may be useful as a novel biomarker test in the early diagnosis and screaning of GC and IM.
Collapse
Affiliation(s)
- Arash Moradi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Ahmad Aleyasin
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kamal Mohammadian
- Department of Radiation Oncology, Hamadan University of Medical Sciences, Mahdieh center, Hamadan, Iran
| | - Aida Alizamir
- Department of Pathology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Guan Y, Li M, Qiu Z, Xu J, Zhang Y, Hu N, Zhang X, Guo W, Yuan J, Shi Q, Wang W. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors. J Adv Res 2022; 36:73-87. [PMID: 35127166 PMCID: PMC8799871 DOI: 10.1016/j.jare.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of DOK family genes is related to overall survival (OS), clinical stage, tumor mutation, methylation, CNV, and SNV. DOK family genes are significantly associated with poor prognosis of UVM. DOK1-DOK3 has obvious correlation with tumor immunity and tumor microenvironment. DOK family gene is significantly related to tumor stemness and drug sensitivity. The expression of DOK family genes is related to the activation of EMT and hormone ER pathways, and is related to the inhibition of DNA damage response, cell cycle, and hormone AR pathways. DOK1 and DOK3, DOK2 and DOK3 have the significant correlation.
Introduction Objectives Methods Results Conclusions
Collapse
|
8
|
Bao Y, Yu Y, Hong B, Lin Z, Qi G, Zhou J, Liu K, Zhang X. Hsa_Circ_0001947/MiR-661/DOK7 Axis Restrains Non-Small Cell Lung Cancer Development. J Microbiol Biotechnol 2021; 31:1508-1518. [PMID: 34528912 PMCID: PMC9706021 DOI: 10.4014/jmb.2106.06031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.
Collapse
Affiliation(s)
- Yuyan Bao
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Yanjie Yu
- Sanmen Market Supervisory Authority, 5 Qiushui Avenue, Haiyou Town, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Bing Hong
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Zhenjian Lin
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Guoli Qi
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Jie Zhou
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Kaiping Liu
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China
| | - Xiaomin Zhang
- Pharmaceutical Preparation Section, Sanmen People's Hospital, 15 Taihe Road, Hairun Street, Sanmen County, Zhejiang Province, 317100, P.R.China,Corresponding author Phone: +86-0576-83361559 E-mail:
| |
Collapse
|
9
|
DOK7 Inhibits Cell Proliferation, Migration, and Invasion of Breast Cancer via the PI3K/PTEN/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:4035257. [PMID: 33552156 PMCID: PMC7847321 DOI: 10.1155/2021/4035257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022]
Abstract
Recently, increasing attention has been paid to the correlation between the expression of downstream of kinase 7 (DOK7) and the occurrence and development of various tumors. In this study, we clarified the effects of DOK7 in breast cancer. First, we showed that DOK7 expression was obviously reduced in the breast cancer tissues and lower levels of DOK7 linked to more aggressive behaviors and worse prognosis of patients. Furthermore, DOK7 expression of various breast cancer cell lines was lower than that of human noncancerous MCF-10A cells. Overexpression of DOK7 inhibited proliferation, migration, and invasion, while silencing DOK7 expression promoted the malignancy of breast cancer. In addition, overexpression of DOK7 suppressed tumor proliferation and lung metastasis in animal models. Finally, to investigate the possible signaling mechanism, we first found that the level of p-AKT protein was extremely downregulated and the level of PTEN protein was remarkably upregulated after overexpressing DOK7 in breast cancer cells. Repression of PTEN expression using PTEN siRNA or SF1670 (PTEN inhibitor) rescued the tumor-inhibiting effect induced by DOK7 overexpression, suggesting that DOK7 inhibits proliferation, migration, and invasion of breast cancer cells though the PI3K/PTEN/AKT pathway. These results suggest that the downregulation of DOK7 may become a novel breast cancer therapeutic target.
Collapse
|
10
|
Xie Y, Nurkesh AA, Ibragimova N, Zhanzak Z, Meyerbekova A, Alexeyeva Z, Yesbolatova A, Satayeva M, Mustafa A, Manarbek L, Maipas A, Altaikyzy A, Keneskhanova Z, Akbay B, Chen Z. Systematic analysis of NLMP suggests nuclear localization of RTK/MET kinases resemble cancer cell clearance. J Exp Clin Cancer Res 2019; 38:43. [PMID: 30700325 PMCID: PMC6354337 DOI: 10.1186/s13046-018-1004-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Some membrane proteins can translocate into the nucleus, defined as nuclear localized membrane proteins (NLMPs), including receptor tyrosine kinases (RTKs). We previously showed that nuclear MET (nMET), a member of RTKs, mediates cancer stem-like cells self-renewal to promote cancer recurrence. However, it is unknown that nMET or mMET, which is the ancestor in the evolution of cancer cell survival and clearance. Here, we aim to study the NLMP functions in cell death, differentiation and survival. METHOD We applied the systematic reanalysis of functional NLMP and clinical investigations of nMET from databases. In addition, we used soft agar assay, immunoblotting, flow cytometry, and immunofluorescence confocal microscopy for examinations of nMET functions including stem-like cell formation, cell signaling, cell cycle regulation, and co-localization with regulators of cell signaling. ShRNA, antibody of recognizing surface membrane MET based treatment were used to downregulate endogenous nMET to uncover its function. RESULTS We predicted and demonstrated that nMET and nEGFR are most likely not ancestors. nMET overexpression induces both cell death and survival with drug resistance and stem cell-like characters. Moreover, the paradoxical function of nMET in both cell death and cell survival is explained by the fact that nMET induces stem cell-like cell growth, DNA damage repair, to evade the drug sensitization for survival of single cells while non-stem cell-like nMET expressing single cells may undergo clearance by cell death through cell cycle arrest induced by p21. CONCLUSION Taken together, our data suggest a link between nuclear RTK and cancer cell evolutionary clearance via cell death, and drug resistance for survival through stemness selection. Targeting evolved nuclear RTKs in cancer stem cells would be a novel avenue for precision cancer therapy.
Collapse
Affiliation(s)
- Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Ayan A. Nurkesh
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Nazgul Ibragimova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhuldyz Zhanzak
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aizhan Meyerbekova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhanna Alexeyeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aiya Yesbolatova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Madina Satayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aidana Mustafa
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Limara Manarbek
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aisulu Maipas
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Akerke Altaikyzy
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhibek Keneskhanova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Burkitkan Akbay
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| |
Collapse
|
11
|
Zhao H, Chen G, Ye L, Yu H, Li S, Jiang WG. DOK7V1 influences the malignant phenotype of lung cancer cells through PI3K/AKT/mTOR and FAK/paxillin signaling pathways. Int J Oncol 2018; 54:381-389. [PMID: 30431081 DOI: 10.3892/ijo.2018.4624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Downstream of tyrosine kinase 7 transcript variant 1 (DOK7V1) is a docking protein mediating signal transduction between receptors and intracellular downstream molecules. Our previous study indicated that DOK7V1 was decreased in lung cancer and its lower expression was associated with a decreased survival rate. The 5‑year overall survival rate for patients with lung cancer was 20.2 and 18.6% for high and low DOK7 expression, respectively; the 5‑year disease‑free survival rate for patients with lung cancer was 14.3 and 16.9% for high and low DOK7 expression, respectively. DOK7V1 inhibited proliferation and migration, but enhanced adhesion, of lung cancer cells. In the present study, the effect of DOK7V1 and its domains [pleckstrin homology (PH) and phosphotyrosine‑binding (PTB) domain] on the malignant phenotype and associated signaling pathway in lung cancer cells was investigated. The results indicated that truncation of DOK7V1 domains (DOK7V1Δ‑PH and DOK7V1Δ‑PTB) inhibited the proliferation and migration of lung cancer cells which exhibited the same trend as DOK7V1, whereas DOK7V1Δ‑PH and DOK7V1Δ‑PTB exhibited different functions from those of DOK7V1 in cell matrix adhesion. Consistently, DOK7V1 overexpression in lung cancer cells suppressed the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathways, but activated the focal adhesion kinase (FAK)/paxillin signaling pathway. Taken together, these results indicate that DOK7V1 may inhibit proliferation and migration via negatively regulating the PI3K/AKT/mTOR signaling pathway, and increase adhesion by upregulating the FAK/paxillin signaling pathway in lung cancer cells.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Gang Chen
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Lin Ye
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Wen G Jiang
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
12
|
Hua CD, Bian EB, Chen EF, Yang ZH, Tang F, Wang HL, Zhao B. Repression of Dok7 expression mediated by DNMT1 promotes glioma cells proliferation. Biomed Pharmacother 2018; 106:678-685. [PMID: 29990858 DOI: 10.1016/j.biopha.2018.06.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Malignant glioma is one of the most common primary human tumors in the central nervous system. The molecular mechanisms of the progression and development of glioma have been largely unexplored. In this study, we illustrated that the expression of Dok7 was downregulation in human glioma tissues. Dok7 overexpression significantly inhibits proliferation and colony formation in vitro, and the xenograft tumor formation in vivo. In addition, 5-Aza-2'-deoxycytidine (5-Aza), a DNA methylation inhibitor, preventing the loss of Dok7 expression by decreasing aberrant hypermethylation of Dok7 promoter in glioma cells. More importantly, DNMT1 knockdown induced the demethylation of Dok7 promoter, and enhanced the expression of Dok7 in gliomas. These results suggest that epigenetic silencing of Dok7 may provide a novel glioma treatment strategy.
Collapse
Affiliation(s)
- Cheng-Dao Hua
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Er-Bao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Er-Feng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhi-Hao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Hong-Liang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|