1
|
Xie B, Tian L, Liu C, Li J, Tian X, Zhang R, Zhang F, Liu Z, Cheng Y. Disruption of the eEF1A1/ARID3A/PKC-δ Complex by Neferine Inhibits Macrophage Glycolytic Reprogramming in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416158. [PMID: 39973763 PMCID: PMC12005739 DOI: 10.1002/advs.202416158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Glycolytic reprogramming of macrophages is a decisive factor in atherosclerosis (AS) plaque formation. Eukaryotic elongation factor 1A1 (eEF1A1) plays an important role in protein synthesis, ubiquitination degradation, and nuclear translocation. However, the potential function of eEF1A1 in AS has not yet been fully understood. Here, the natural small molecule neferine (Nef), which targets eEF1A1 to suppress macrophage glycolytic reprogramming is discovered. In this work, chemical genetics and non-modified target confirmation assays are used to confirm that eEF1A1 is a direct target of Nef. Mechanically, Nef disrupted the formation of the eEF1A1/ARID3A/PKC-δ complex, inhibits phosphorylation of ARID3A at Thr491, and consequently prevents its nuclear translocation. Meanwhile, it is verified that ARID3A is a transcriptional regulator of enolase 2 (ENO2), an important enzyme in the glycolytic process. Nef suppresses ENO2 transcription activation by affecting ARID3A binding to the promoter region of ENO2, which results in macrophage glycolytic reprogramming inhibition and transformation of macrophages from M1 to M2. Collectively, these findings provide an attractive future direction for AS therapy by inhibiting ARID3A/ENO2-mediated macrophage glycolytic reprogramming by targeting eEF1A1.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxi341000China
| | - Li‐Wen Tian
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Chenxu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Xiaoyu Tian
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacau999078China
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine SyndromeKey Laboratory for Translational Cancer Research of Chinese MedicineJoint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of ChinaInternational Institute for Translational Chinese MedicineSchool of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| |
Collapse
|
2
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
3
|
Kashyap VK, Sharma BP, Pandey D, Singh AK, Peasah-Darkwah G, Singh B, Roy KK, Yallapu MM, Chauhan SC. Small Molecule with Big Impact: Metarrestin Targets the Perinucleolar Compartment in Cancer Metastasis. Cells 2024; 13:2053. [PMID: 39768145 PMCID: PMC11674295 DOI: 10.3390/cells13242053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Metarrestin (ML246) is a first-in-class pyrrole-pyrimidine-derived small molecule that selectively targets the perinucleolar compartment (PNC). PNC is a distinct subnuclear structure predominantly found in solid tumor cells. The occurrence of PNC demonstrates a positive correlation with malignancy, serving as an indicator of tumor aggressiveness, progression, and metastasis. Various promising preclinical results have led to the clinical translation of metarrestin into a first-in-human trial. This review aims to summarize (i) the current understanding of the structure and function of PNC and its role in cancer progression and metastasis, (ii) key findings from studies examining the effect of metarrestin on various cancers across the translational spectrum, including in vitro, in vivo, and human clinical trial studies, and (iii) the pharmaceutical relevance of metarrestin as a promising anticancer candidate. Furthermore, our molecular docking and MD simulation studies show that metarrestin binds to eEF1A1 and eEF1A2 with a strong and stable affinity and inhibits eEF1A2 more efficiently compared to eEF1A1. The promising results from preclinical studies suggest that metarrestin has the potential to revolutionize the treatment of cancer, heralding a paradigm shift in its therapeutic management.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhuvnesh P. Sharma
- Department of Biotechnology, Bhagwant University, Ajmer 305004, Rajasthan, India
| | - Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Ajay K. Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Godwin Peasah-Darkwah
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhupesh Singh
- School of Applied Sciences, OM Sterling Global University, Hisar 125001, Haryana, India
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Murali M. Yallapu
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| |
Collapse
|
4
|
Zhao J, Huo Q, Zhang J, Sun K, Guo J, Cheng F, Hu X, Xu Q. UCHL3 promotes hepatocellular carcinoma progression by stabilizing EEF1A1 through deubiquitination. Biol Direct 2024; 19:53. [PMID: 38965582 PMCID: PMC11225194 DOI: 10.1186/s13062-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the second leading cause of global cancer-related deaths and is characterized by a poor prognosis. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) have been proved to play important roles in various human cancers, whereas the deubiquitination of EEF1A1 was poorly understood. METHODS The binding and regulatory relationship between Ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) and EEF1A1 was validated using clinical tissue samples, reverse transcription quantitative real-time fluorescence quantitative PCR (RT-qPCR), Western blotting, co-immunoprecipitation, and immunofluorescence, as well as ubiquitin detection and cyclohexamide tracking experiments. Finally, the impact of the UCHL3/EEF1A1 axis on HCC malignant behavior was analyzed through functional experiments and nude mouse models. RESULTS UCHL3 was found to have a high expression level in HCC tissues. Tissue samples from 60 HCC patients were used to evaluate the correlation between UCHL3 and EEF1A1. UCHL3 binds to EEF1A1 through the lysine site, which reduces the ubiquitination level of EEF1A1. Functional experiments and nude mouse models have demonstrated that the UCHL3/EEF1A1 axis promotes the migration, stemness, and drug resistance of HCC cells. Reducing the expression of EEF1A1 can reverse the effect of UCHL3 on the malignant behavior of HCC cells. CONCLUSION Our findings revealed that UCHL3 binds and stabilizes EEF1A1 through deubiquitination. UCHL3 and EEF1A1 formed a functional axis in facilitating the malignant progression of HCC, proving new insights for the anti-tumor targeted therapy for HCC.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Huo
- Department of General Surgery, Zhoushan Dinghai Central Hospital (Dinghai District of Zhejiang Provincial People's Hospital), Zhoushan, China
| | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kexiang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
5
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
7
|
Wu W, Xu J, Gao D, Xie Z, Chen W, Li W, Yuan Q, Duan L, Zhang Y, Yang X, Chen Y, Dong Z, Liu K, Jiang Y. TOPK promotes the growth of esophageal cancer in vitro and in vivo by enhancing YB1/eEF1A1 signal pathway. Cell Death Dis 2023; 14:364. [PMID: 37328464 PMCID: PMC10276051 DOI: 10.1038/s41419-023-05883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/30/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.
Collapse
Affiliation(s)
- Wenjie Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jialuo Xu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan Gao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenliang Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Li
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Qiang Yuan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Lina Duan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yuhan Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xiaoxiao Yang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yingying Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziming Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, 450000, China.
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
8
|
Jiang H, Zhang Y, Liu B, Yang X, Wang Z, Han M, Li H, Luo J, Yao H. Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis. Biol Chem 2022; 404:585-599. [PMID: 36420535 DOI: 10.1515/hsz-2022-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P.R. China
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Huiying Li
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| |
Collapse
|
9
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Li H, Huang F, Liao H, Li Z, Feng K, Huang T, Cai YD. Identification of COVID-19-Specific Immune Markers Using a Machine Learning Method. Front Mol Biosci 2022; 9:952626. [PMID: 35928229 PMCID: PMC9344575 DOI: 10.3389/fmolb.2022.952626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
Notably, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a tight relationship with the immune system. Human resistance to COVID-19 infection comprises two stages. The first stage is immune defense, while the second stage is extensive inflammation. This process is further divided into innate and adaptive immunity during the immune defense phase. These two stages involve various immune cells, including CD4+ T cells, CD8+ T cells, monocytes, dendritic cells, B cells, and natural killer cells. Various immune cells are involved and make up the complex and unique immune system response to COVID-19, providing characteristics that set it apart from other respiratory infectious diseases. In the present study, we identified cell markers for differentiating COVID-19 from common inflammatory responses, non-COVID-19 severe respiratory diseases, and healthy populations based on single-cell profiling of the gene expression of six immune cell types by using Boruta and mRMR feature selection methods. Some features such as IFI44L in B cells, S100A8 in monocytes, and NCR2 in natural killer cells are involved in the innate immune response of COVID-19. Other features such as ZFP36L2 in CD4+ T cells can regulate the inflammatory process of COVID-19. Subsequently, the IFS method was used to determine the best feature subsets and classifiers in the six immune cell types for two classification algorithms. Furthermore, we established the quantitative rules used to distinguish the disease status. The results of this study can provide theoretical support for a more in-depth investigation of COVID-19 pathogenesis and intervention strategies.
Collapse
Affiliation(s)
- Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Huiping Liao
- Ophthalmology and Optometry Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
11
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
12
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
13
|
Yu X, Huang C, Liu J, Shi X, Li X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sci 2022; 17:586-598. [PMID: 35800076 PMCID: PMC9210989 DOI: 10.1515/biol-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
P21-activated protein kinases (PAKs) are thought to be at the center of tumor signaling pathways. As a representative member of the group II PAK family, P21-activated protein kinase 4 (PAK4) plays an important role in the development of tumors, with several biological functions such as participating in oncogenic transformation, promoting cell division, resisting aging and apoptosis, regulating cytoskeleton and adhesion, as well as suppressing antitumor immune responses. PAK4 is also crucial in biological processes, including the occurrence, proliferation, survival, migration, invasion, drug resistance, and immune escape of tumor cells. It is closely related to poor prognosis and tumor-related pathological indicators, which have significant clinical and pathological significance. Therefore, this article offers a review of the structure, activation, and biological functions of PAK4 and its clinical and pathological importance. This overview should be of assistance for future research on PAK4 and tumors and provide new ideas for tumor treatment and prognostic evaluation of patients.
Collapse
Affiliation(s)
- Xinbo Yu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Changwei Huang
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiyuan Liu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xinyu Shi
- The Second Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
14
|
Fan A, Zhao X, Liu H, Li D, Guo T, Zhang J, Duan L, Cheng H, Nie Y, Fan D, Zhao X, Lu Y. eEF1A1 promotes colorectal cancer progression and predicts poor prognosis of patients. Cancer Med 2022; 12:513-524. [PMID: 35607944 PMCID: PMC9844609 DOI: 10.1002/cam4.4848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer (CRC) is a major leading cause of cancer mortality worldwide in which dysregulated protein synthesis plays an etiologic role. The eukaryotic elongation factor 1 A1 (eEF1A1) exerts significant effects on protein synthesis by contributing to peptide chain extension. Whereas its role in CRC remains to be investigated. In this study, we found that the mRNA and protein levels of eEF1A1 were significantly upregulated in CRC cell lines and tissues. Elevated expression of eEF1A1 was correlated with shorter overall survival in 94 CRC patients. The inhibition of proliferation and cell cycle block were observed in CRC cells after eEF1A1 downregulation. Mechanistically, weighted gene correlation network analysis and further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that mitogen-activated protein kinases (MAPKs) signaling pathways were significantly enriched in high-eEF1A1 expression group, and the levels of phosphorylated p38/JNK/ERK MAPK were dramatically decreased after eEF1A1 downregulation. Overexpression of eEF1A1 in CRC correlated with a poor prognosis. Collectively, this study determined the oncogenic role of eEF1A1 in CRC proliferation and tumorigenesis. eEF1A1 might be a promising therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- A‐hui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaojuan Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Hao Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Danxiu Li
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Tongtong Guo
- Department of Cell Biology, College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiehao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Hao Cheng
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
15
|
Cui H, Li H, Wu H, Du F, Xie X, Zeng S, Zhang Z, Dong K, Shang L, Jing C, Li L. A novel 3'tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 2022; 13:471. [PMID: 35585048 PMCID: PMC9117658 DOI: 10.1038/s41419-022-04930-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
At present, it is commonly believed that tRFs and tiRNAs are formed by the specific and selective shear of tRNAs under certain pressure stimulation, rather than by random degradation of tRNA. tRFs and tiRNAs have been reported to contribute to the biological process of a variety of human cancers. However, the evidence for the mechanisms of tRFs and tiRNAs in the occurrence and development of gastric cancer (GC) is still insufficient. Here, we aimed to explore the carcinogenic roles of tRFs and tiRNAs in GC with RNA-sequencing technique, and found a novel 3'tRNA-derived fragment tRF-Val was significantly upregulated in GC tissues and cell lines. tRF-Val expression was positively correlated with tumor size and the depth of tumor invasion in GC tissues. Functionally, tRF-Val promoted proliferation and invasion, and inhibited apoptosis in GC cells. Mechanistically, tRF-Val directly bound to the chaperone molecule EEF1A1, mediated its transport into the nucleus and promoted its interaction with MDM2 (a specific p53 E3 ubiquitin ligase), thus inhibiting the downstream molecular pathway of p53 and promoting GC progression. These findings provided a new potential therapeutic target for GC and a new explanation for the occurrence of GC.
Collapse
Affiliation(s)
- Huaiping Cui
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Han Li
- grid.452422.70000 0004 0604 7301Department of Gastrointestinal Surgery, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, 250013 Jinan, Shandong China
| | - Hao Wu
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Fengying Du
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Xiaozhou Xie
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Shujie Zeng
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Zihao Zhang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Kangdi Dong
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Liang Shang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Changqing Jing
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Leping Li
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| |
Collapse
|
16
|
Ning X, Shi G, Ren S, Liu S, Ding J, Zhang R, Li L, Xie Q, Xu W, Meng F, Ma R. OUP accepted manuscript. Oncologist 2022; 27:e64-e75. [PMID: 35305106 PMCID: PMC8842331 DOI: 10.1093/oncolo/oyab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background The glioblastoma-amplified sequence (GBAS) is a newly identified gene that is amplified in approximately 40% of glioblastomas. This article probes into the expression, prognostic significance, and possible pathways of GBAS in ovarian cancer (OC). Method Immunohistochemical methods were used to evaluate the expression level of GBAS in OC and its relationship with clinicopathological characteristics and prognosis. Glioblastoma-amplified sequence shRNA was designed to transfect into OC cell lines to silence GBAS expression, then detect the proliferation, apoptosis, and migration ability of the cell. Furthermore, an in vitro tumor formation experiment in mice was constructed to prove the effect of GBAS expression on the growth of OC in vivo. To further study the regulation mechanism of GBAS, we performed co-immunoprecipitation (Co-IP) and shotgun LC-MS mass spectrometry identification. Results Immunohistochemistry indicated that GBAS was markedly overexpressed in OC compared with normal ovarian tissue and was associated with lymph node metastasis. Inhibition of GBAS expression can significantly reduce OC cell proliferation, colony formation, promote cell apoptosis, and reduce the ability of cell migration and invasion. In vivo tumor formation experiments showed that the size and weight of tumors in mice after GBAS expression knockdown was significantly smaller. Glioblastoma-amplified sequence may be combined with elongation factor 1 alpha 1 (eEF1A1) to achieve its regulation in OC. Bioinformatics analysis data indicate that GBAS may be a key regulator of mitochondria-associated pathways, therefore controlling cancer progression. MicroRNA-27b, MicroRNA-23a, and MicroRNA-590 may directly targeting GBAS affects the biological behavior of OC cells. Conclusion The glioblastoma-amplified sequence may regulate the proliferation and metastasis of OC cells by combining with eEF1A1.
Collapse
Affiliation(s)
- Xin Ning
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Guangyue Shi
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Sujing Ren
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shuang Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jing Ding
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Ruichun Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Lianwei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Qin Xie
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wei Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Fanling Meng
- Corresponding author: Fanling Meng, Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, China. Tel: +86 451 85718069;
| | - Rong Ma
- Corresponding author: Rong Ma, Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, China. Tel: +86 451 85718058;
| |
Collapse
|
17
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
18
|
Zhang J, Rui Y, Gao M, Wang L, Yan BC. Expression of Long Non-coding RNA RGD1566344 in the Brain Cortex of Male Mice After Focal Cerebral Ischemia-Reperfusion and the Neuroprotective Effect of a Non-coding RNA RGD1566344 Inhibitor. Cell Mol Neurobiol 2021; 41:705-716. [PMID: 32424772 PMCID: PMC11448627 DOI: 10.1007/s10571-020-00877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke (IS) remains a major cause of disability and death. The changes in long non-coding RNA (lncRNA) RGD1566344 expression in the mouse cerebral cortex, including the infarct and penumbra regions after IS, are not clear. Less is known about the impact and underlying mechanisms of RGD1566344 in IS. In this study, we found that RGD1566344 levels were elevated in the ischemic infarct and penumbra regions 12 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in male mice and in PC12 cells with oxygen glucose deprivation/reperfusion (OGD/R). The inhibition of RGD1566344 by small interference RNA (siRNA) significantly alleviated apoptosis in OGD/R PC12 cells. In cell transfection, quantitative real-time PCR, and Western blot experiments, we demonstrated the possible interaction of non-POU domain-containing octamer-binding protein (NONO) with RGD1566344. The NONO level in OGD/R PC12 cells was obviously increased after inhibiting the RGD1566344 treatment; subsequently the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was activated. This demonstrated the effect of the RGD1566344-NONO-AKT axis on neural protection after IS. These results revealed a new molecular mechanism of lncRNA RGD1566344 inhibitors through targeting NONO/AKT/mTOR signaling to protect against ischemic neuronal injury, providing strong evidence for the development of promising therapeutic strategies against IS.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yanggang Rui
- Department of Neurology, Xuyi People's Hospital, Huai'an, 211700, People's Republic of China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
19
|
Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P, Miller CA, Dehner C, Dahiya S, Hirbe AC. Unmasking Intra-tumoral Heterogeneity and Clonal Evolution in NF1-MPNST. Genes (Basel) 2020; 11:genes11050499. [PMID: 32369930 PMCID: PMC7291009 DOI: 10.3390/genes11050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future.
Collapse
Affiliation(s)
- Chang-In Moon
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - William Tompkins
- Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yuxi Wang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Abigail Godec
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Xiaochun Zhang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Patrik Pipkorn
- Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
| | - Christopher A. Miller
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sonika Dahiya
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Angela C. Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Correspondence: ; Tel.: +1-314-747-3096
| |
Collapse
|
20
|
Bi S, Wang Y, Feng H, Li Q. Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle 2020; 19:801-816. [PMID: 32116086 DOI: 10.1080/15384101.2020.1731645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A long noncoding RNAs (lncRNA) called LINC00657 is dysregulated and contributes to tumor progression in a number of human cancer types. However, there is limited information on the expression profile and functions of LINC00657 in pancreatic ductal adenocarcinoma (PDAC). The expression profile of LINC00657 in PDAC was estimated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). The effects of LINC00657 upregulation on PDAC cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo were explored using CCK-8, flow cytometry, Transwell migration and invasion assays, and a xenograft tumor formation experiment, respectively. The results revealed that LINC00657 was evidently upregulated in the PDAC tumors and cell lines. High LINC00657 expression significantly correlated with the pathological T stage, lymph node metastasis, and shorter overall survival. Functional analysis demonstrated that LINC00657 knockdown inhibited the proliferation, migration, and invasion while promoted the apoptosis of PDAC cells. In addition, LINC00657 knockdown markedly suppressed tumor growth of these cells in vivo. In terms of the mechanism, LINC00657 could directly interact with microRNA-433 (miR-433) and effectively worked as an miR-433 sponge, thus decreasing the competitive binding of miR-433 to PAK4 mRNA and ultimately increasing PAK4 expression. The actions of LINC00657 knockdown on malignant phenotype of PDAC cells were strongly attenuated by miR-433 inhibition and PAK4 restoration. These results indicate that LINC00657 promotes PDAC progression by increasing the output of the miR-433-PAK4 regulatory loop, thus highlighting the importance of the LINC00657-miR-433-PAK4 network in PDAC pathogenesis.
Collapse
Affiliation(s)
- Shasha Bi
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China
| | - Yan Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| | - Hu Feng
- Department of General Oncotherapy, WeiHai Municipal Hospital, Shandong, P.R.China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R.China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, P.R.China
| |
Collapse
|
21
|
Joung EK, Kim J, Yoon N, Maeng LS, Kim JH, Park S, Kang K, Kim JS, Ahn YH, Ko YH, Byun JH, Hong JH. Expression of EEF1A1 Is Associated with Prognosis of Patients with Colon Adenocarcinoma. J Clin Med 2019; 8:jcm8111903. [PMID: 31703307 PMCID: PMC6912729 DOI: 10.3390/jcm8111903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Background: The prognostic role of the translational factor, elongation factor-1 alpha 1 (EEF1A1), in colon cancer is unclear. Objectives: The present study aimed to investigate the expression of EEF1A in tissues obtained from patients with stage II and III colon cancer and analyze its association with patient prognosis. Methods: A total of 281 patients with colon cancer who underwent curative resection were analyzed according to EEF1A1 expression. Results: The five-year overall survival in the high-EEF1A1 group was 87.7%, whereas it was 65.6% in the low-EEF1A1 expression group (hazard ratio (HR) 2.47, 95% confidence interval (CI) 1.38–4.44, p = 0.002). The five-year disease-free survival of patients with high EEF1A1 expression was 82.5%, which was longer than the rate of 55.4% observed for patients with low EEF1A1 expression (HR 2.94, 95% CI 1.72–5.04, p < 0.001). Univariate Cox regression analysis indicated that age, preoperative carcinoembryonic antigen level, adjuvant treatment, total number of metastatic lymph nodes, and EEF1A1 expression level were significant prognostic factors for death. In multivariate analysis, expression of EEF1A1 was an independent prognostic factor associated with death (HR 3.01, 95% CI 1.636–5.543, p < 0.001). EEF1A1 expression was also an independent prognostic factor for disease-free survival in multivariate analysis (HR 2.54, 95% CI 1.459–4.434, p < 0.001). Conclusions: Our study demonstrated that high expression of EEF1A1 has a favorable prognostic effect on patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Eun kyo Joung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jiyoung Kim
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Nara Yoon
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Lee-so Maeng
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Ji Hoon Kim
- Department of General Surgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | | | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Korea;
| | - Jeong Seon Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 03760, Korea; (J.S.K.); (Y.-H.A.)
| | - Young-Ho Ahn
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 03760, Korea; (J.S.K.); (Y.-H.A.)
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jae Ho Byun
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (J.H.B.); (J.H.H.)
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Correspondence: (J.H.B.); (J.H.H.)
| |
Collapse
|
22
|
Translation elongation factor eEF1Bα is identified as a novel prognostic marker of gastric cancer. Int J Biol Macromol 2018; 126:345-351. [PMID: 30572058 DOI: 10.1016/j.ijbiomac.2018.12.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/15/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is a common cancer in humans. Although overexpression of eukaryotic translation elongation factor eEF1Bα is associated with cancer onset and progression, little is known about its expression in GC and its prognostic significance. Here we used immunohistochemistry to analyze eEF1Bα expression in the following tissue types: GC, normal gastric, chronic gastritis, intestinal metaplasia, and intraepithelial neoplasia. These data were correlated with patients' clinical information. eEF1Bα was expressed at levels approximately three times higher in GC tissues compared with normal gastric tissues. High expression of eEF1Bα was significantly associated with histological type, TNM stage, tumor size, and distant metastases. GC patients with high eEF1Bα expression experienced significantly shorter overall survival. Bioinformatics analysis indicated that eEF1Bα may be associated with protein synthesis, energy metabolism, cell cycle, and the p53 signaling pathway. We identified the products of RPL10A and RPS13 as critical components of a network comprising eEF1Bα. We concluded that high eEF1Bα expression is associated with poor overall survival and may serve as an independent prognostic factor of GC. Further, we proposed that eEF1Bα likely mediates the development of GC through the cell cycle and p53 signaling pathway. Together, our findings suggest that eEF1Bα could be an effective prognostic biomarker for GC.
Collapse
|
23
|
Zhang W, Xiang M, Zheng C, Chen L, Ge J, Yan C, Liu X. [Eukaryotic translation elongation factor 1A1 positively regulates NOB1 expression to promote invasion and metastasis of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1195-1202. [PMID: 30377124 DOI: 10.3969/j.issn.1673-4254.2018.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the role of eukaryotic translation elongation factor 1A1 (eEF1A1) in regulating the invasion and metastasis of hepatocellular carcinoma (HCC) cells and the possible mechanism. METHODS qRT-PCR and Western blotting were used to detect the mRNA and protein expression of eEF1A1 and NOB1 in different HCC cell lines and normal liver cells. The invasion and migration abilities of HCC cells with eEF1A1 knockdown or overexpression were examined using Transwell chamber assay and RTCA assay, and the changes in NOB1 mRNA and protein expressions in the cells were detected. The effects of increasing NOB1 expression in HCCLM3-sheEF1A1 cells and decreasing NOB1 expression in eEF1A1-overexpressing MHCC97h cells on eEF1A1 expression and cell invasion and migration abilities were analyzed using Western blotting, Transwell chamber assay and RTCA assay. RESULTS The expressions of eEF1A1 and NOB1 were significantly increased in positive correlation in HCC cells as compared with normal hepatocytes. Knockdown of eEF1A1 significantly decreased the invasion and migration of HCC cells and reduced the mRNA and protein expression of NOB1 (P < 0.01). Overexpression of eEF1A1 significantly enhanced invasion and migration of HCC cells and increased NOB1 mRNA and protein expressions (P < 0.01). Increasing NOB1 expression in HCCLM3-sheEF1A1 cells led to the restoration of NOB1 expression and cell invasion and migration abilities (P < 0.01), whereas decreasing NOB1 in MHCC97h-eEF1A1 cells resulted in inhibition of NOB1 expression and cell invasion and migration (P < 0.01). CONCLUSIONS eEF1A1 positively regulates the expression of NOB1 to promote the invasion and migration of HCC cells in vitro.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Mingfeng Xiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chuqian Zheng
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chen Yan
- Department of Rheumatology, 4Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
24
|
Ramos-Alvarez I, Jensen RT. P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol 2018; 315:G302-G317. [PMID: 29672153 PMCID: PMC6139648 DOI: 10.1152/ajpgi.00005.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
p21-activated kinases (PAKs) are highly conserved serine/threonine protein kinases, which are divided into two groups: group-I (PAKs1-3) and group-II (PAKs4-6). In various tissues, Group-II PAKs play important roles in cytoskeletal dynamics and cell growth as well as neoplastic development/progression. However, little is known about Group-II PAK's role in a number of physiological events, including their ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth factors (GFs). We used rat pancreatic acini to explore the ability of GI hormones/neurotransmitters/GFs to activate Group-II-PAKs and the signaling cascades involved. Only PAK4 was detected in pancreatic acini. PAK4 was activated by endothelin, secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol), by pancreatic GFs (insulin, insulin-like growth factor 1, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor), and by postreceptor stimulants (12-O-tetradecanoylphobol-13-acetate and A23187 ). CCK-8 activation of PAK4 required both high- and low-affinity CCK1-receptor state activation. It was reduced by PKC-, Src-, p44/42-, or p38-inhibition but not with phosphatidylinositol 3-kinase-inhibitors and only minimally by thapsigargin. A protein kinase D (PKD)-inhibitor completely inhibited CCK-8-stimulated PKD-activation; however, stimulated PAK4 phosphorylation was only inhibited by 60%, demonstrating that it is both PKD-dependent and PKD-independent. PF-3758309 and LCH-7749944, inhibitors of PAK4, decreased CCK-8-stimulated PAK4 activation but not PAK2 activation. Each inhibited ERK1/2 activation and amylase release induced by CCK-8 or bombesin. These results show that PAK4 has an important role in modulating signal cascades activated by a number of GI hormones/neurotransmitters/GFs that have been shown to mediate both physiological/pathological responses in acinar cells. Therefore, in addition to the extensive studies on PAK4 in pancreatic cancer, PAK4 should also be considered an important signaling molecule for pancreatic acinar physiological responses and, in the future, should be investigated for a possible role in pancreatic acinar pathophysiological responses, such as in pancreatitis. NEW & NOTEWORTHY This study demonstrates that the only Group-II p21-activated kinase (PAK) in rat pancreatic acinar cells is PAK4, and thus differs from islets/pancreatic cancer. Both gastrointestinal hormones/neurotransmitters stimulating PLC and pancreatic growth factors activate PAK4. With cholecystokinin (CCK), activation is PKC-dependent/-independent, requires both CCK1-R affinity states, Src, p42/44, and p38 activation. PAK4 activation is required for CCK-mediated p42/44 activation/amylase release. These results show PAK4 plays an important role in mediating CCK physiological signal cascades and suggest it may be a target in pancreatic acinar diseases besides cancer.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
25
|
eEF1A1 Overexpression Enhances Tumor Progression and Indicates Poor Prognosis in Hepatocellular Carcinoma. Transl Oncol 2017; 11:125-131. [PMID: 29248802 PMCID: PMC6002347 DOI: 10.1016/j.tranon.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Liver is a major contributor of protein production physiologically. The aberrant state of protein synthesis leads to tumor progression. Eukaryotic elongation factor 1 alpha 1 (eEF1A1) is a major member of the eukaryotic elongation factor family that regulates protein synthesis. Although eEF1A1 plays an essential role in controlling the cell fate, its clinical significance in tumor development and progression has not been reported. Here, we aimed to uncover the expression and prognostic significance of eEF1A1 in hepatocellular carcinoma (HCC). Our data indicated that eEF1A1 expression was elevated in HCC cell lines and clinical samples at both the mRNA and protein levels. Immunohistochemistry revealed that eEF1A1 expression was upregulated in HCC samples compared with corresponding non-tumorous tissues. In 50 HCC cases with portal vein embolus, higher eEF1A1 immunoreactivity was detected in tumor metastases compared with the primary lesions. Kaplan–Meier analysis indicated that increased eEF1A1 expression was closely associated with unfavorable post-surgical overall and disease-free survival in 453 HCC patients. Moreover, multivariate analysis indicated eEF1A1 as an independent predictor for overall and disease-free survival. Collectively, our study suggests eEF1A1 as a novel prognostic biomarker and potential therapeutic target for HCC patients.
Collapse
|
26
|
Overexpression of eEF1A1 regulates G1-phase progression to promote HCC proliferation through the STAT1-cyclin D1 pathway. Biochem Biophys Res Commun 2017; 494:542-549. [DOI: 10.1016/j.bbrc.2017.10.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 01/05/2023]
|
27
|
Zhao M, Spiess M, Johansson HJ, Olofsson H, Hu J, Lehtiö J, Strömblad S. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization. Oncotarget 2017; 8:77061-77074. [PMID: 29100370 PMCID: PMC5652764 DOI: 10.18632/oncotarget.20352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Henrik J Johansson
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|