1
|
Lang Z, Fan X, Qiu L, Hou S, Zhou J, Lin H. Rap2a promotes cardiac fibrosis and exacerbates myocardial infarction through the TNIK/Merlin/YAP axis. Cell Biol Toxicol 2025; 41:80. [PMID: 40332594 DOI: 10.1007/s10565-025-10036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Myocardial fibrosis constitutes the primary pathological characteristic of myocardial infarction (MI). The activation and proliferation of myocardial fibroblasts serve as crucial factors in the process of the development of fibrosis in the myocardium. Our research delved into the role that Rap2a plays in cardiac function as well as myocardial fibrosis, while its effects on cardial fibroblasts (CFs) proliferation, migration, and phenotypic transformation were also explored. Examination of the GEO database showed a notable increase in the expression of Rap2a within myocardial tissue from mice with MI compared to normal mice. Rap2a deficiency relieves MI in mice and restrains the phenotypic transition, proliferation, and migration of CFs. The absence of Rap2a mitigates MI in mice. Besides, it curbs the growth of CFs, restricts their movement, and prevents them from undergoing phenotypic conversion. Rap2a can bind to TNIK in myocardial fibroblasts and enhance TNIK expression; Merlin/YAP signaling pathway was assessed as a downstream target of TNIK to further elucidate the regulatory mechanism through which Rap2a influences cardiomyocytes. In conclusion, this study provides evidence that Rap2a promotes myocardial fibrosis through mediating the myofibroblast transformation, proliferation, and migration of CFs via the TNIK/Merlin/YAP pathway, thereby exacerbating symptoms of myocardial infarction.
Collapse
Affiliation(s)
- Zhibin Lang
- Department of Anesthesia and Perioperative Medicine, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Heart Center of Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.
| | - Xiaozhen Fan
- Department of Laboratory Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Qiu
- Department of Anesthesia and Perioperative Medicine, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Heart Center of Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Shuhui Hou
- Department of Anesthesia and Perioperative Medicine, People's Hospital of Henan University, Fuwai Central China Cardiovascular Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junhui Zhou
- Department of Anesthesiology, Henan Provincial Chest Hospital, Chest Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongqi Lin
- Department of Anesthesia and Perioperative Medicine, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Heart Center of Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Chen Y, Xu X, Ding K, Tang T, Cai F, Zhang H, Chen Z, Qi Y, Fu Z, Zhu G, Dou Z, Xu J, Chen G, Wu Q, Ji J, Zhang J. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin Cancer Res 2024; 43:39. [PMID: 38303029 PMCID: PMC10835844 DOI: 10.1186/s13046-024-02964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Xiaohui Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Kaikai Ding
- Department of Radiation Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Feng Cai
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Haocheng Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Yangjian Qi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Ganggui Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Jinfang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
- Brain Research Institute, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Bassot A, Dragic H, Haddad SA, Moindrot L, Odouard S, Corlazzoli F, Marinari E, Bomane A, Brassens A, Marteyn A, Hibaoui Y, Petty TJ, Chalabi-Dchar M, Larrouquere L, Zdobnov EM, Legrand N, Tamburini J, Lincet H, Castets M, Yebra M, Migliorini D, Dutoit V, Walker PR, Preynat-Seauve O, Dietrich PY, Cosset É. Identification of a miRNA multi-targeting therapeutic strategy in glioblastoma. Cell Death Dis 2023; 14:630. [PMID: 37749143 PMCID: PMC10519979 DOI: 10.1038/s41419-023-06117-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness. Here, using an integrative and comprehensive analysis of the TCGA database and the transcriptome of GBM biopsies, we identified three critical and clinically relevant miRNAs for GBM, miR-17-3p, miR-222, and miR-340. In addition, we showed that the combinatorial modulation of three of these miRNAs efficiently inhibited several biological processes in patient-derived GBM cells of all these three GBM subtypes (Mesenchymal, Proneural, Classical), induced cell death, and delayed tumor growth in a mouse tumor model. Finally, in a doxycycline-inducible model, we observed a significant inhibition of GBM stem cell viability and a significant delay of orthotopic tumor growth. Collectively, our results reveal, for the first time, the potential of miR-17-3p, miR-222 and miR-340 multi-targeting as a promising therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Arthur Bassot
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Helena Dragic
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Sarah Al Haddad
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Laurine Moindrot
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Soline Odouard
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Francesca Corlazzoli
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Eliana Marinari
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Alexandra Bomane
- Department of CITI, Team Cell Death and Chilhood Cancers, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Augustin Brassens
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Antoine Marteyn
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Youssef Hibaoui
- Service de Gynécologie Obstétrique, HFR Fribourg - Hôpital Cantonal, Fribourg, Switzerland
| | - Tom J Petty
- Swiss Institute of Bioinformatics, Geneva, Switzerland
- SOPHiA GENETICS, Rolle, Switzerland
| | - Mounira Chalabi-Dchar
- Department of CITI, Team Ribosome, Translation & Cancer, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Louis Larrouquere
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Noémie Legrand
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Jérôme Tamburini
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Hubert Lincet
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Marie Castets
- Department of CITI, Team Cell Death and Chilhood Cancers, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mayra Yebra
- Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
- Laboratory of Immunobiology of Brain Tumors, Center for Translational Research in OncoHematology, Geneva University Hospitals, and University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Leman (SCCL), Agora Cancer Research Center, Geneva and Lausanne, Switzerland
| | - Érika Cosset
- Department of CITI, Team GLIMMER Of lIght, Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France.
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.
- Center for Translational Research in Onco-Hematology, Department of Oncology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.
- Team: GLIMMER Of lIght "GLIoblastoma MetabolisM, HetERogeneity, and OrganoIds"; Cancer Research Centre of Lyon - CRCL, INSERM U1052, CNRS UMR 5286, Lyon, France.
| |
Collapse
|
4
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
5
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
6
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
7
|
Li K, Niu Y, Yuan Y, Qiu J, Shi Y, Zhong C, Qiu Z, Li K, Lin Z, Huang Z, Zhang C, Zuo D, He W, Yuan Y, Li B. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene 2022; 41:3197-3209. [DOI: 10.1038/s41388-022-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
|
8
|
Duncan ED, Han KJ, Trout MA, Prekeris R. Ubiquitylation by Rab40b/Cul5 regulates Rap2 localization and activity during cell migration. J Cell Biol 2022; 221:213068. [PMID: 35293963 PMCID: PMC8931537 DOI: 10.1083/jcb.202107114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Emily D Duncan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Margaret A Trout
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
10
|
Rimkus TK, Arrigo AB, Zhu D, Carpenter RL, Sirkisoon S, Doheny D, Regua AT, Wong GL, Manore S, Wagner C, Lin HK, Jin G, Ruiz J, Chan M, Debinski W, Lo HW. NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Lett 2022; 531:124-135. [PMID: 35167936 PMCID: PMC8920049 DOI: 10.1016/j.canlet.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.
Collapse
|
11
|
Li N, Shi H, Hou P, Gao L, Shi Y, Mi W, Zhang G, Wang N, Dai W, Wei L, Jin T, Shi Y, Guo S. ARRDC3 polymorphisms may affect the risk of glioma in Chinese Han. Funct Integr Genomics 2021; 22:27-33. [PMID: 34748117 DOI: 10.1007/s10142-021-00807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
This study ascertained to explore the potential contribution of ARRDC3 polymorphisms in the risk and prognosis of glioma. One thousand sixty-one patients and healthy controls were conducted to assess whether ARDC3 polymorphism was associated with glioma risk and prognosis. Four sites in ARRDC3 were selected and genotyped in MassARRAY platform. The calculated odd ratios and 95% confidence intervals from logistic regression were applied for risk assessment. The relationship between ARRDC3 variants and glioma prognosis was evaluated using log-rank test, Kaplan-Meier analysis, and so on. Also, false-positive report probability (FPRP) and statistical power were also assessed. Our findings suggested the negative role of ARRDC3 polymorphisms in the glioma risk. We also found the effect of candidate SNPs in ARRDC3 on the susceptibility to glioma was dependent on the age, gender, and histology of glioma patients. The results suggested that the genetic polymorphisms of ARRDC3 were related to an increased risk of glioma.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.,The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Hangyu Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Pengfei Hou
- Ninth Hospital of Xi'an, Xi'an, 710054, Shaanxi, China
| | - Lu Gao
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Yongqiang Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Weiyang Mi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Gang Zhang
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China
| | - Wei Dai
- Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lin Wei
- Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongzhi Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Shiwen Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS, Chopra A. Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:677979. [PMID: 34235179 PMCID: PMC8255377 DOI: 10.3389/fmolb.2021.677979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular features. In the current study, we utilized authoritative multi-omics databases to determine the association of RAP gene family expression and detailed molecular and clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes were observed to harbor dysregulated expression in HCC compared to normal liver tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal tissues. RAP2A expression was associated with progressive tumor grade, TP53 and CTNNB1 mutation status. Additionally, RAP2A expression was associated with the alteration of its copy numbers and DNA methylation. RAP2A also emerged as an independent marker for patient prognosis. Further, pathway analysis revealed that RAP2A expression is correlated with tumor-infiltrating immune cell composition and oncogenic molecular pathways, such as cell cycle and cellular metabolism.
Collapse
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
RAP2A promotes apoptosis resistance of hepatocellular carcinoma cells via the mTOR pathway. Clin Exp Med 2021; 21:545-554. [PMID: 34018090 DOI: 10.1007/s10238-021-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive system cancer. In the current study, we investigated the biological effects of Ras-related protein Rap-2a (RAP2A), a GTPase protein, in HCC tissues and cells. We found that RAP2A was upregulated in HCC tissues and cells. RAP2A knockdown could effectively inhibit the proliferation of HCC cells and weaken its apoptosis resistance. In terms of its action mechanism, RAP2A may be involved in activating the mTOR signaling pathway. Therefore, we believe that RAP2A is abnormally highly expressed in HCC tissues and promotes tumor cell proliferation and apoptosis resistance by activating the mTOR signaling pathway, and it may serve as a potential target for HCC treatment.
Collapse
|
14
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Ren GF, Xiao LL, Ma XJ, Yan YS, Jiao PF. Metformin Decreases Insulin Resistance in Type 1 Diabetes Through Regulating p53 and RAP2A in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2381-2392. [PMID: 32606605 PMCID: PMC7306576 DOI: 10.2147/dddt.s249557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Purpose Patients with type 1 diabetes (T1D) are associated with a high risk of multiple complications, so the development of T1D treatment is urgently needed. This study was set out to explore the molecular mechanism of metformin in the treatment of T1D insulin resistance. Patients and Methods Subcutaneous adipose tissues were collected from 68 T1D patients and 51 healthy controls. Insulin resistance model rats and cells were constructed and treated with metformin respectively. Western blot was used to detect p53 and RAP2A protein levels, and qPCR was utilized to measure p53 and RAP2A mRNA levels. SiRNA and RAP2A siRNA vectors were constructed to observe their effects on insulin resistance model cells. Results In T1D, p53 was up-regulated, while RAP2A was down-regulated. Metformin could effectively improve insulin resistance and inflammatory response while down-regulating p53 and up-regulating RAP2A. P53 induced insulin resistance and inflammatory response by inhibiting RAP2A and promoted apoptosis. Conclusion Metformin improves T1D insulin resistance and inflammatory response through p53/RAP2A pathway, and the regulation of p53/RAP2A pathway is conducive to improving the efficacy of metformin in the treatment of insulin resistance.
Collapse
Affiliation(s)
- Gao-Fei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Li-Li Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Xiao-Jun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Yu-Shan Yan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Peng-Fei Jiao
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| |
Collapse
|
16
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
17
|
Sheykhzadeh S, Luo M, Peng B, White J, Abdalla Y, Tang T, Mäkilä E, Voelcker NH, Tong WY. Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Sci Rep 2020; 10:2320. [PMID: 32047170 PMCID: PMC7012928 DOI: 10.1038/s41598-020-59146-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mortality of glioblastoma multiforme (GBM) has not improved over the last two decades despite medical breakthroughs in the treatment of other types of cancers. Nanoparticles hold tremendous promise to overcome the pharmacokinetic challenges and off-target adverse effects. However, an inhibitory effect of nanoparticles by themselves on metastasis has not been explored. In this study, we developed transferrin-conjugated porous silicon nanoparticles (Tf@pSiNP) and studied their effect on inhibiting GBM migration by means of a microfluidic-based migration chip. This platform, designed to mimic the tight extracellular migration tracts in brain parenchyma, allowed high-content time-resolved imaging of cell migration. Tf@pSiNP were colloidally stable, biocompatible, and their uptake into GBM cells was enhanced by receptor-mediated internalisation. The migration of Tf@pSiNP-exposed cells across the confined microchannels was suppressed, but unconfined migration was unaffected. The pSiNP-induced destabilisation of focal adhesions at the leading front may partially explain the migration inhibition. More corroborating evidence suggests that pSiNP uptake reduced the plasticity of GBM cells in reducing cell volume, an effect that proved crucial in facilitating migration across the tight confined tracts. We believe that the inhibitory effect of Tf@pSiNP on cell migration, together with the drug-delivery capability of pSiNP, could potentially offer a disruptive strategy to treat GBM.
Collapse
Affiliation(s)
- Sana Sheykhzadeh
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, Brunswick Square, London, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
| | - Meihua Luo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bo Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Jacinta White
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| | - Youssef Abdalla
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, Brunswick Square, London, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
| | - Tweety Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Wing Yin Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
| |
Collapse
|
18
|
Zhang J, Wei Y, Min J, Wang Y, Yin L, Cao G, Shen H. Knockdown of RAP2A gene expression suppresses cisplatin resistance in gastric cancer cells. Oncol Lett 2019; 19:350-358. [PMID: 31897147 PMCID: PMC6923840 DOI: 10.3892/ol.2019.11086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Cisplatin (DDP) resistance is closely associated with the failure of chemotherapy to manage various different types of human cancer. The GTPase protein Ras-related protein Rap-2a (RAP2A) regulates cancer cell proliferation, migration and invasion; however, little is currently known regarding its role in cancer cell resistance to chemotherapy. The present study investigated the potential roles of the RAP2A gene in gastric cancer cell resistance to DDP treatment. The DDP half maximal inhibitory concentration (IC50) values for the proliferation inhibition of MGC803 and MGC803/DDP gastric cancer cells were determined by treating the cells with a DDP concentration gradient and measuring their survival rates using the Cell Counting Kit-8 (CCK-8) assay; cell viability was also assessed using the CCK-8 assay. Cell migration and invasion were assessed using Transwell Matrigel assays, and apoptosis and DNA damage were evaluated using flow cytometry and Hoechst staining. RAP2A expression was knocked down by siRNA transfection, and RAP2A protein levels were examined using western blotting. The DDP IC50 values for DDP-resistant MGC803/DDP cells were greater than those for MGC803 cells. Furthermore, MGC803/DDP cells exhibited increased levels of viability, migration and invasion, and decreased levels of apoptosis and DNA damage during DDP treatment. Knockdown of RAP2A expression significantly promoted MGC803/DDP cell apoptosis and DNA damage, and decreased the viability and invasion capabilities of these cells following treatment with DDP. The results of the present study revealed that RAP2A expression promotes DDP resistance in gastric cancer cells by increasing their viability, migration and invasion capacities, and by suppressing apoptosis and DNA damage.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Jie Min
- Intensive Care Unit, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Yan Wang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Lei Yin
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Guoliang Cao
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Hua Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
19
|
Song YH, Zhang CQ, Chen FF, Lin XY. Upregulation of Neural Precursor Cell Expressed Developmentally Downregulated 4-1 is Associated with Poor Prognosis and Chemoresistance in Lung Adenocarcinoma. Chin Med J (Engl) 2019; 131:16-24. [PMID: 29271375 PMCID: PMC5754953 DOI: 10.4103/0366-6999.221262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The E3 ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) negatively regulates phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein levels through polyubiquitination and proteolysis, but its significance in lung cancer is still unclear. This study investigated the expression and the role of NEDD4-1 in tumor development and chemosensitivity of lung adenocarcinoma (ADC). METHODS We retrospectively investigated the expression and significance of NEDD4-1, PTEN, and p-Akt proteins in 135 paired ADC and adjacent noncancerous tissue specimens using immunohistochemistry. Furthermore, we evaluated the relationship between NEDD4-1 expression and clinicopathologic characteristics and prognosis. The effects of small interfering RNA against NEDD4-1 on proliferation and chemosensitivity were examined in A549 cells in vitro using 3- (4,5-dimethylthiazol-2-yl) -5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)- 2H-tetrazolium method. The ability of migration and invasion of A549 cells was tested by transwell assay. Moreover, reverse-transcription quantitative polymerase chain reaction and Western blotting analyses were used to determine the expression of NEDD4-1, PTEN, phosphoinositide 3-kinase (PI3K)/Akt activity, and its downstream target proteins. RESULTS NEDD4-1 protein was significantly upregulated in lung ADC tissues, whereas it was weak or negative in normal lung epithelial cells. The expression of NEDD4-1 in ADC (78.5%, 106/135) was significantly much higher than that in adjacent normal lung tissue (13.3%, 29/135, P < 0.01), and it was associated with lymph node metastasis, tumor-node-metastasis (TNM) stage, and chemotherapy resistance. PTEN expression was downregulated in lung ADC (60.7% vs. 100.0% in noncancerous specimens, P = 0.007), and was negatively correlated with lymph node metastasis, histological variants, clinical stage, chemoresistance. In addition, expression of p-Akt in ADC tissues (71.1% 96/135) was much higher than that in adjacent lung epithelial cells (6.7%, 9/135, P < 0.01). Kaplan-Meier and multivariate analysis demonstrated that expressions of NEDD4-1 and PTEN were both independent risk factors for survival in patients with lung ADC. NEDD4-1 knockdown in vivo decreased proliferation, migration, and invasion and improved chemosensitivity to cisplatin and paclitaxel in A549 cells. NEDD4-1 knockdown also significantly enhanced PTEN expression and inhibited p-Akt activity and downstream target proteins. CONCLUSIONS NEDD4-1 upregulation may contribute to the progression of lung ADC. NEDD4-1 may regulate the proliferation, invasion, migration, and chemoresistance of lung ADC cells through the PI3K/Akt pathway, suggesting that it may be regarded as a therapeutic target for the treatment of lung ADC.
Collapse
Affiliation(s)
- Ying-Hua Song
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Cai-Qing Zhang
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Fang-Fang Chen
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Xiao-Yan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
20
|
Carvalho BC, Oliveira LC, Rocha CD, Fernandes HB, Oliveira IM, Leão FB, Valverde TM, Rego IMG, Ghosh S, Silva AM. Both knock-down and overexpression of Rap2a small GTPase in macrophages result in impairment of NF-κB activity and inflammatory gene expression. Mol Immunol 2019; 109:27-37. [PMID: 30851634 DOI: 10.1016/j.molimm.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/12/2019] [Accepted: 02/17/2019] [Indexed: 02/08/2023]
Abstract
Small Ras GTPases are key molecules that regulate a variety of cellular responses in different cell types. Rap1 plays important functions in the regulation of macrophage biology during inflammation triggered by toll-like receptors (TLRs). However, despite sharing a relatively high degree of similarity with Rap1, no studies concerning Rap2 in macrophages and innate immunity have been reported yet. In this work, we show that either way alterations in the levels of Rap2a hampers proper macrophages response to TLR stimulation. Rap2a is activated by LPS in macrophages, and although putative activator TLR-inducible Ras guanine exchange factor RasGEF1b was sufficient to induce, it was not fully required for Rap2a activation. Silencing of Rap2a impaired LPS-induced production of IL-6 cytokine and KC/Cxcl1 chemokine, and also NF-κB activity as measured by reporter gene studies. Surprisingly, overexpression of Rap2a did also lead to marked inhibition of NF-κB activation induced by LPS, Pam3CSK4 and downstream TLR signaling molecules. We also found that Rap2a can inhibit the LPS-induced phosphorylation of the NF-κB subunit p65 at serine 536. Collectively, our data suggest that expression levels of Rap2a in macrophages might be tightly regulated to avoid unbalanced immune response. Our results implicate Rap2a in TLR-mediated responses by contributing to balanced NF-κB activity status in macrophages.
Collapse
Affiliation(s)
- Brener C Carvalho
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo C Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carolina D Rocha
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isadora M Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Felipe B Leão
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thalita M Valverde
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Igor M G Rego
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|