1
|
Quinn C, Harding K, Schlein LJ, Korchia J, Coffee LL, MacNeill AL, Tucker-Mohl K, Duval DL, Brandt LE. It's not always histiocytic sarcoma: Immunocytochemistry to identify two unusual tumors in a Bernese Mountain dog. Vet Clin Pathol 2024; 53:309-314. [PMID: 38923556 DOI: 10.1111/vcp.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
A 7-year-old female spayed Bernese Mountain dog was presented for evaluation of hematuria. Incidentally, a right stifle sarcoma was diagnosed via cytology, which raised concern for histiocytic sarcoma (given the patient's signalment) versus another joint-associated sarcoma. Histopathology and immunohistochemistry revealed a CD18-negative, non-histiocytic origin cell population. Findings were consistent with a joint-associated grade II soft tissue sarcoma (STS). The patient's hematuria was progressive over 5 months, and urinary bladder transitional cell carcinoma (TCC) was diagnosed via cystoscopy and histopathology. An enlarged right medial iliac lymph node was identified on routine restaging via abdominal ultrasound 3 months later. Cytology of the lymph node revealed a markedly pleomorphic cell population, again raising concern for histiocytic sarcoma (HS). Other differentials included an anaplastic metastatic population from the joint-associated STS or the TCC. Immunocytochemistry revealed a cytokeratin-positive, CD18-, CD204-, and vimentin-negative cell population, consistent with a carcinoma. DNA was extracted from cytology slides to sequence cells for BRAF mutation status. Sequencing revealed a homozygous V596E (transcript ENSCAFT00845055173.1) BRAF mutation, consistent with the known biology of TCC. In neither case was HS truly present in this patient, but immunocytochemistry provided information that helped to optimize the patient's chemotherapy recommendations.
Collapse
Affiliation(s)
- Claire Quinn
- Wheat Ridge Animal Hospital, Wheat Ridge, Colorado, USA
- Colorado State University, Fort Collins, Colorado, USA
| | - Kayla Harding
- Wheat Ridge Animal Hospital, Wheat Ridge, Colorado, USA
| | - Lisa J Schlein
- Colorado State University, Fort Collins, Colorado, USA
- Zoetis Reference Laboratories, Wheat Ridge, Colorado, USA
| | - Jérémie Korchia
- Colorado State University, Fort Collins, Colorado, USA
- Michigan State University, Lansing, Michigan, USA
| | - Laura L Coffee
- Zoetis Reference Laboratories, Wheat Ridge, Colorado, USA
| | | | | | - Dawn L Duval
- Colorado State University, Fort Collins, Colorado, USA
| | - Laura E Brandt
- Zoetis Reference Laboratories, Wheat Ridge, Colorado, USA
| |
Collapse
|
2
|
Song L, Zhang Y, Wang Y, Xia Q, Guo D, Cao J, Xin X, Cheng H, Liu C, Jia X, Li F. Detection of various fusion genes by one-step RT-PCR and the association with clinicopathological features in 242 cases of soft tissue tumor. Front Cell Dev Biol 2023; 11:1214262. [PMID: 37621777 PMCID: PMC10446835 DOI: 10.3389/fcell.2023.1214262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Over the past decades, an increasing number of chromosomal translocations have been found in different STSs, which not only has value for clinical diagnosis but also suggests the pathogenesis of STS. Fusion genes can be detected by FISH, RT-PCR, and next-generation sequencing. One-step RT-PCR is a convenient method to detect fusion genes with higher sensitivity and lower cost. Method: In this study, 242 cases of soft tissue tumors were included, which were detected by one-step RT-PCR in multicenter with seven types of tumors: rhabdomyosarcoma (RMS), peripheral primitive neuroectodermal tumor (pPNET), synovial sarcoma (SS), myxoid liposarcomas (MLPS), alveolar soft part sarcoma (ASPS), dermatofibrosarcoma protuberans (DFSP), and soft tissue angiofibroma (AFST). 18 cases detected by one-step RT-PCR were further tested by FISH. One case with novel fusion gene detected by RNA-sequencing was further validated by one-step RT-PCR. Results: The total positive rate of fusion genes was 60% (133/213) in the 242 samples detected by one-step RT-PCR, in which 29 samples could not be evaluated because of poor RNA quality. The positive rate of PAX3-FOXO1 was 88.6% (31/35) in alveolar rhabdomyosarcoma, EWSR1-FLI1 was 63% (17/27) in pPNET, SYT-SSX was 95.4% in SS (62/65), ASPSCR1-TFE3 was 100% in ASPS (10/10), FUS-DDIT3 was 80% in MLPS (4/5), and COL1A1-PDGFB was 66.7% in DFSP (8/12). For clinicopathological parameters, fusion gene status was correlated with age and location in 213 cases. The PAX3-FOXO1 fusion gene status was correlated with lymph node metastasis and distant metastasis in RMS. Furthermore, RMS patients with positive PAX3-FOXO1 fusion gene had a significantly shorter overall survival time than those patients with the negative fusion gene. Among them, the FISH result of 18 cases was concordant with one-step RT-PCR. As detected as the most common fusion types of AHRR-NCOA2 in one case of AFST were detected as negative by one-step RT-PCR. RNA-sequencing was used to determine the fusion genes, and a novel fusion gene PTCH1-PLAG1 was found. Moreover, the fusion gene was confirmed by one-step RT-PCR. Conclusion: Our study indicates that one-step RT-PCR displays a reliable tool to detect fusion genes with the advantage of high accuracy and low cost. Moreover, it is a great tool to identify novel fusion genes. Overall, it provides useful information for molecular pathological diagnosis and improves the diagnosis rate of STSs.
Collapse
Affiliation(s)
- Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yuanyuan Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiachen Cao
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haoyue Cheng
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyuan Jia
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
3
|
Chico MA, Mesas C, Doello K, Quiñonero F, Perazzoli G, Ortiz R, Prados J, Melguizo C. Cancer Stem Cells in Sarcomas: In Vitro Isolation and Role as Prognostic Markers: A Systematic Review. Cancers (Basel) 2023; 15:cancers15092449. [PMID: 37173919 PMCID: PMC10177331 DOI: 10.3390/cancers15092449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Sarcomas are a diverse group of neoplasms with an incidence rate of 15% of childhood cancers. They exhibit a high tendency to develop early metastases and are often resistant to available treatments, resulting in poor prognosis and survival. In this context, cancer stem cells (CSCs) have been implicated in recurrence, metastasis, and drug resistance, making the search for diagnostic and prognostic biomarkers of the disease crucial. The objective of this systematic review was to analyze the expression of CSC biomarkers both after isolation from in vitro cell lines and from the complete cell population of patient tumor samples. A total of 228 publications from January 2011 to June 2021 was retrieved from different databases, of which 35 articles were included for analysis. The studies demonstrated significant heterogeneity in both the markers detected and the CSC isolation techniques used. ALDH was identified as a common marker in various types of sarcomas. In conclusion, the identification of CSC markers in sarcomas may facilitate the development of personalized medicine and improve treatment outcomes.
Collapse
Affiliation(s)
- Maria Angeles Chico
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
4
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
5
|
SYT-SSX1 enhances the invasiveness and maintains stem-like cell properties in synovial sarcoma via induction of TGF-β1/Smad signaling. BMC Cancer 2022; 22:166. [PMID: 35151264 PMCID: PMC8841078 DOI: 10.1186/s12885-022-09229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Synovial sarcoma (SS) is a type of soft tissue sarcoma (STS) of undetermined tissue origin, which is characterized by the recurrent pathognomonic chromosomal translocation t (X;18)(p11.2; q11.2). Studies have shown that SS is a malignant tumor originating from cancer stem cells or pluripotent mesenchymal stem cells and may be related to fusion genes. In addition, some studies have indicated that the induction of epithelial–mesenchymal transition (EMT) via the TGF-β1/Smad signaling pathway leads to SS metastasis. Methods We analyzed the effects of SYT-SSX1 on the stemness of SS cells via TGF-β1/Smad signaling in vitro. The SYT-SSX1 fusion gene high expression cell was constructed by lentiviral stable transfer technology. SYT-SSX1 and SW982 cells were cultured and tested for sphere-forming ability. The transwell migration assay and flow cytometry were used to assess the migration ability of the sphere cells as well as the expression of CSC-related markers. We treated SYT-SSX1 cells with rhTGF-β1 (a recombinant agent of the TGF-β1 signaling pathway) and SB431542 and observed morphological changes. A CCK-8 experiment and a western blot (WB) experiment were conducted to detect the expression of TGF-β1 signaling pathway- and EMT-related proteins after treatment. The SYT-SSX1 cells were then cultured and their ability to form spheres was tested. Flow cytometry, WB, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of CSC surface markers on SYT-SSX1 sphere cells. Results It was found that SYT-SSX1 has stronger sphere-forming ability, migration ability, and higher expression of CSC-related molecules than SW982 cells. Through treating SYT-SSX1 and SW982 cells with rhTGF-β1 and SB431542, we found that TGF-β1 enhanced the proliferation of cells, induced EMT, and that TGF-β1 enhanced the characteristics of tumor stem cells. Conclusions Our results suggest that SYT-SSX1 enhances invasiveness and maintains stemness in SS cells via TGF-β1/Smad signaling. These findings reveal an effective way to potentially improve the prognosis of patients with SS by eliminating the characteristics of cancer stem cells (CSCs) during treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09229-5.
Collapse
|
6
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Panicker S, Venkatabalasubramanian S, Pathak S, Ramalingam S. The impact of fusion genes on cancer stem cells and drug resistance. Mol Cell Biochem 2021; 476:3771-3783. [PMID: 34095988 DOI: 10.1007/s11010-021-04203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
With ever increasing evidences on the role of fusion genes as the oncogenic protagonists in myriad cancers, it's time to explore if fusion genes can be the next generational drug targets in meeting the current demands of higher drug efficacy. Eliminating cancer stem cells (CSC) has become the current focus; however, we have reached a standstill in drug development owing to the lack of effective strategies to eradicate CSC. We believe that fusion genes could be the novel targets to overcome this limitation. The intriguing feature of fusion genes is that it dominantly impacts every aspect of CSC including self-renewal, differentiation, lineage commitment, tumorigenicity and stemness. Given the clinical success of fusion gene-based drugs in hematological cancers, our attempt to target fusion genes in eradicating CSC can be rewarding. As fusion genes are expressed explicitly in cancer cells, eradicating CSC by targeting fusion genes provides yet an another advantage of negligible patient side effects since normal cells remain unaffected by the drug. We hereby delineate the latest evidences on how fusion genes regulate CSC and drug resistance.
Collapse
Affiliation(s)
- Saurav Panicker
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India
| | | | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F, Qi Y. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract 2021; 222:153416. [PMID: 33848939 DOI: 10.1016/j.prp.2021.153416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Synovial sarcoma (SS) is an aggressive malignancy of an unknown tissue origin that is characterized by biphasic differentiation. A possible basis of the pathogenesis of SS is pathognomonic t(X;18) (p11.2; q11.2) translocation, leading to the formation and expression of the SYT-SSX fusion gene. More than a quarter of the patients die of SS metastasis within 5 years after the diagnosis, but the pathogenic factors are unknown. Therefore, there is an urgent need to explore the pathogenesis, invasion, metastasis, and clinical treatment options for SS, especially molecular-targeted drug therapy. Recent studies have shown that the SYT-SSX fusion gene associated with SS may be regulated by different signaling pathways, microRNAs, and other molecules, which may produce stem cell characteristics or promote epithelial-mesenchymal transition, resulting in SS invasion and metastasis. This review article aims to show the relationship between the SYT-SSX fusion gene and the related pathway molecules as well as other molecules involved from different perspectives, which may provide a deeper and clearer understanding of the SYT-SSX fusion gene function. Therefore, this review may provide a more innovative and broader perspective of the current research, treatment options, and prognosis assessment of SS.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ya-Lan Huang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology Suining Central Hospital, Suining, Sichuan, China
| | - Zhen Zhang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qing Yao
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
9
|
Jerby-Arnon L, Neftel C, Shore ME, Weisman HR, Mathewson ND, McBride MJ, Haas B, Izar B, Volorio A, Boulay G, Cironi L, Richman AR, Broye LC, Gurski JM, Luo CC, Mylvaganam R, Nguyen L, Mei S, Melms JC, Georgescu C, Cohen O, Buendia-Buendia JE, Segerstolpe A, Sud M, Cuoco MS, Labes D, Gritsch S, Zollinger DR, Ortogero N, Beechem JM, Petur Nielsen G, Chebib I, Nguyen-Ngoc T, Montemurro M, Cote GM, Choy E, Letovanec I, Cherix S, Wagle N, Sorger PK, Haynes AB, Mullen JT, Stamenkovic I, Rivera MN, Kadoch C, Wucherpfennig KW, Rozenblatt-Rosen O, Suvà ML, Riggi N, Regev A. Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nat Med 2021; 27:289-300. [PMID: 33495604 PMCID: PMC8817899 DOI: 10.1038/s41591-020-01212-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2020] [Indexed: 11/08/2022]
Abstract
Synovial sarcoma (SyS) is an aggressive neoplasm driven by the SS18-SSX fusion, and is characterized by low T cell infiltration. Here, we studied the cancer-immune interplay in SyS using an integrative approach that combines single-cell RNA sequencing (scRNA-seq), spatial profiling and genetic and pharmacological perturbations. scRNA-seq of 16,872 cells from 12 human SyS tumors uncovered a malignant subpopulation that marks immune-deprived niches in situ and is predictive of poor clinical outcomes in two independent cohorts. Functional analyses revealed that this malignant cell state is controlled by the SS18-SSX fusion, is repressed by cytokines secreted by macrophages and T cells, and can be synergistically targeted with a combination of HDAC and CDK4/CDK6 inhibitors. This drug combination enhanced malignant-cell immunogenicity in SyS models, leading to induced T cell reactivity and T cell-mediated killing. Our study provides a blueprint for investigating heterogeneity in fusion-driven malignancies and demonstrates an interplay between immune evasion and oncogenic processes that can be co-targeted in SyS and potentially in other malignancies.
Collapse
Affiliation(s)
- Livnat Jerby-Arnon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Cyril Neftel
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marni E Shore
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah R Weisman
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Brian Haas
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin Izar
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Columbia Center for Translational Immunology, New York, NY, USA
- Columbia University Medical Center, Division of Hematology and Oncology, New York, NY, USA
| | - Angela Volorio
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gaylor Boulay
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisa Cironi
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alyssa R Richman
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliane C Broye
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joseph M Gurski
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christina C Luo
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ravindra Mylvaganam
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lan Nguyen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Shaolin Mei
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Johannes C Melms
- Columbia Center for Translational Immunology, New York, NY, USA
- Columbia University Medical Center, Division of Hematology and Oncology, New York, NY, USA
| | | | - Ofir Cohen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jorge E Buendia-Buendia
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Malika Sud
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael S Cuoco
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Danny Labes
- Flow Cytometry Facility, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Simon Gritsch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - G Petur Nielsen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivan Chebib
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tu Nguyen-Ngoc
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Michael Montemurro
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Igor Letovanec
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphane Cherix
- Department of Orthopedics, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nikhil Wagle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alex B Haynes
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - John T Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Miguel N Rivera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kai W Wucherpfennig
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Nicolò Riggi
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
10
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|
11
|
|
12
|
Matsushige T, Kuwamoto S, Matsushita M, Oka Wardhani L, Horie Y, Hayashi K, Kitamura Y. Detection of Disease-specific Fusion Genes of Soft Tissue Tumors Using Formalin-fixed Paraffin-embedded Tissues; Its Diagnostic Usefulness and Factors Affecting the Detection Rates. Yonago Acta Med 2019. [DOI: 10.33160/yam.2019.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Takahiro Matsushige
- *Department of Pathobiological Science and Technology, Major in Clinical Laboratory Science, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Satoshi Kuwamoto
- †Department of Pathology, Tottori University Hospital, Yonago 683-8504, Japan
- ‡Division of Molecular Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Michiko Matsushita
- *Department of Pathobiological Science and Technology, Major in Clinical Laboratory Science, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Lusi Oka Wardhani
- ‡Division of Molecular Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yasushi Horie
- †Department of Pathology, Tottori University Hospital, Yonago 683-8504, Japan
| | - Kazuhiko Hayashi
- ‡Division of Molecular Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yukisato Kitamura
- *Department of Pathobiological Science and Technology, Major in Clinical Laboratory Science, School of Health Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
13
|
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:3817-3826. [PMID: 30013362 PMCID: PMC6038883 DOI: 10.2147/ott.s168317] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells are a small population of cells with the potential for self-renewal and multi-directional differentiation and are an important source of cancer initiation, treatment resistance, and recurrence. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their epithelial phenotype and convert to mesenchymal cells. Recent studies have shown that cancer cells undergoing EMT can become stem-like cells. Many kinds of tumors are associated with chronic inflammation, which plays a role in tumor progression. Among the various immune cells mediating chronic inflammation, macrophages account for ~30%-50% of the tumor mass. Macrophages are highly infiltrative in the tumor microenvironment and secrete a series of inflammatory factors and cytokines, such as transforming growth factor (TGF)-β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, which promote EMT and enhance the stemness of cancer cells. This review summarizes and discusses recent research findings on some specific mechanisms of tumor-associated macrophage-derived cytokines in EMT and cancer stemness transition, which are emerging targets of cancer treatment.
Collapse
Affiliation(s)
- Yongxu Chen
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| | - Wei Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China,
| | - Changjun Wang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| |
Collapse
|
14
|
Diao Y, Zhang P, Dai R, Xu J, Feng H. H3K27me3 and VEGF is associated with poor prognosis in patients with synovial sarcoma. Pathol Res Pract 2018; 214:974-977. [DOI: 10.1016/j.prp.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022]
|