1
|
Lin X, Wu Q, Lei W, Wu D, Sheng J, Liang G, Hou G, Fan D. miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1. Cell Div 2024; 19:30. [PMID: 39487468 PMCID: PMC11529598 DOI: 10.1186/s13008-024-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Glioblastomas (GBM) are most common types of primary brain tumors and miRNAs play an important role in pathogenesis of glioblastomas. Here, we reported a new miRNA, miR-3154, which regulates glioblastoma proliferation and metastasis. miR-3154 was elevated in glioblastoma tissue and cell lines, and its elevation was associated with grade of glioblastomas. Knockdown of miR-3154 in cell lines weakened ability of proliferation and colony formation, and caused cell cycle arrested and higher percentage of apoptosis. Knockdown of miR-3154 also impaired ability of migration and invasion in glioblastoma cells. In mechanism, miR-3154 bound directly to Tumor Protein P53 Inducible Nuclear Protein 1 (TP53INP1), down-regulating TP53INP1 expression at both mRNA and protein level. Silence of TP53INP1 reversed the effect of miR-3154 knockdown on proliferation and metastasis of glioblastoma cells. These findings show that miR-3154 promotes glioblastoma proliferation and metastasis via targeting TP53INP1.
Collapse
Affiliation(s)
- Xiangdan Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
- Department of Neurosurgery, The first affiliated hospital of Jinzhou medical university, Jinzhou, 121000, China
| | - Qiong Wu
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, NO.83 Wenhua Road, ShenHe District, Shenyang, 110016, China
| | - Wei Lei
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Dongyang Wu
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Jianchun Sheng
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China
| | - Guojun Hou
- Department of General Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Di Fan
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, ShenHe District, Shengyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Sengupta P, Roy A, Roy L, Bose D, Halder S, Jana K, Mukherjee G, Chatterjee S. Long non-coding intergenic RNA, LINC00273 induces cancer metastasis and stemness via miRNA sponging in triple negative breast cancer. Int J Biol Macromol 2024; 274:132730. [PMID: 38857735 DOI: 10.1016/j.ijbiomac.2024.132730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
LncRNAs and miRNAs, being the master regulators of gene expression, are crucial functional mediators in cancer. Our study unveils the critical regulatory role of the metastatic long non-coding RNA LINC00273 as the master regulator of oncogenes involved in cancer metastasis, stemness, and chemoresistance via its miRNA sponging mechanism. M2 (a salt of bis-Schiff base) mediated G quadruplex (G4) stabilization at the LINC00273 gene promoter remarkably inhibits LINC00273 transcription. Therefore, low-level LINC00273 transcripts are unable to efficiently sponge the miRNAs, which subsequently become available to bind and downregulate their target oncogenes. We have observed significantly different global transcriptomic scenarios in LINC00273 upregulated and downregulated circumstances in MDA-MB-231 triple-negative breast cancer model. Additionally, we have found the G4 sequence in the LINC00273 RNA to play a critical role in miRNA sequestration. miRNAs (miR-6789-5p, miR200b, miR-125b-5p, miR-4268, miR3978) have base pairing complementarity within the G4 region of LINC00273 RNA and the 3'-UTR (untranslated region) of MAPK12, TGF-β1, and SIX-1 transcripts. We have reported TGF-β1, SIX-1, and MAPK12 to be the direct downstream targets of LINC00273. The correlation between abnormal expression of lncRNA LINC00273 and TNBC aggressiveness strongly evidenced in our study shall accelerate the development of lncRNA-based anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Satyajit Halder
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | | | | |
Collapse
|
3
|
Danielson LS, Guijarro MV, Menendez S, Higgins B, Sun Q, Mittal K, Popiolek DA, Overholtzer M, Palmer GD, Hernando E. MiR-130b modulates the invasive, migratory, and metastatic behavior of leiomyosarcoma. PLoS One 2023; 18:e0278844. [PMID: 36701370 PMCID: PMC9879492 DOI: 10.1371/journal.pone.0278844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2022] [Indexed: 01/27/2023] Open
Abstract
Leiomyosarcoma (LMS) is an aggressive, often poorly differentiated cancer of the smooth muscle (SM) lineage for which the molecular drivers of transformation and progression are poorly understood. In microRNA (miRNA) profiling studies, miR-130b was previously found to be upregulated in LMS vs. normal SM, and down-regulated during the differentiation of mesenchymal stem cells (MSCs) into SM, suggesting a role in LMS tumor progression. In the present study, the effects of miR-130b on human LMS tumorigenesis were investigated. Stable miR-130b overexpression enhanced invasion of LMS cells in vitro, and led to the formation of undifferentiated, pleomorphic tumors in vivo, with increased growth and metastatic potential compared to control LMS cells. TSC1 was identified as a direct miR-130b target in luciferase-3'UTR assays, and shRNA-mediated knockdown of TSC1 replicated miR-130b effects. Loss-of-function and gain-of-function studies showed that miR-130b levels regulate cell morphology and motility. Following miR-130b suppression, LMS cells adopted a rounded morphology, amoeboid mode of cell movement and enhanced invasive capacity that was Rho/ROCK dependent. Conversely, miR-130b-overexpressing LMS cells exhibited Rho-independent invasion, accompanied by down-regulation of Rho-pathway effectors. In mesenchymal stem cells, both miR-130b overexpression and TSC1 silencing independently impaired SM differentiation in vitro. Together, the data reveal miR-130b as a pro-oncogenic miRNA in LMS and support a miR-130b-TSC1 regulatory network that enhances tumor progression via inhibition of SM differentiation.
Collapse
Affiliation(s)
- Laura S. Danielson
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| | - Maria V. Guijarro
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| | - Silvia Menendez
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| | - Brett Higgins
- Department of Orthopaedics and Sports Medicine, University of Florida, Gainesville, FL, United States of America
| | - Qiang Sun
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Khushbakhat Mittal
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| | - Dorota A. Popiolek
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Glyn D. Palmer
- Department of Orthopaedics and Sports Medicine, University of Florida, Gainesville, FL, United States of America
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine New York, NY, United States of America
| |
Collapse
|
4
|
MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation. Curr Issues Mol Biol 2022; 44:5294-5311. [PMID: 36354672 PMCID: PMC9688839 DOI: 10.3390/cimb44110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.
Collapse
|
5
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
6
|
Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23105756. [PMID: 35628566 PMCID: PMC9143279 DOI: 10.3390/ijms23105756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract hosts a specific microbiome, which plays a crucial role in sustaining equilibrium and good health. In the majority of reproductive women, the microbiota (all bacteria, viruses, fungi, and other single-celled organisms within the human body) of the vaginal and cervical microenvironment are dominated by Lactobacillus species, which benefit the host through symbiotic relationships, in comparison to the uterus, fallopian tubes, and ovaries, which may contain a low-biomass microbiome with a diverse mixture of microorganisms. Although disruption to the balance of the microbiota develops, the altered immune and metabolic signaling may cause an impact on diseases such as cancer. These pathophysiological modifications in the gut–uterus axis may spark gynecological cancers. New information displays that gynecological and gastrointestinal tract dysbiosis (disruption of the microbiota homeostasis) can play an active role in the advancement and metastasis of gynecological neoplasms, such as cervical, endometrial, and ovarian cancers. Understanding the relationship between microbiota and endometrial cancer is critical for prognosis, diagnosis, prevention, and the development of innovative treatments. Identifying a specific microbiome may become an effective method for characterization of the specific microbiota involved in endometrial carcinogenesis. The aim of this study was to summarize the current state of knowledge that describes the correlation of microbiota with endometrial cancer with regard to the formation of immunological pathologies.
Collapse
Affiliation(s)
- Małgorzata Sobstyl
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, 20-037 Lublin, Poland;
| | - Peet Brecht
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| |
Collapse
|
7
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
8
|
Jiao L, He Z, Wang S, Sun C, Xu S. miR-130-CYLD Axis Is Involved in the Necroptosis and Inflammation Induced by Selenium Deficiency in Pig Cerebellum. Biol Trace Elem Res 2021; 199:4604-4613. [PMID: 34331175 DOI: 10.1007/s12011-021-02612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/24/2021] [Indexed: 01/14/2023]
Abstract
Selenium (Se) is an essential trace element in creatures which deficiency can cause necroptosis and inflammation of multiple tissues. MicroRNAs (miRNAs) have been identified to participate multiple biological processes by regulating the expression of target genes. In the present study, the Se-deficient pig cerebellar model was established and conducted by light microscopy, qRT-PCR, and Western blot. Morphological observation exhibited necrosis-like lesions and inflammatory infiltration in the cerebellum of the Se-deficient group. Quantitative analysis result showed that Se deficiency significantly suppressed miR-130 expression, which in turn disinhibited the expression of CYLD. Meanwhile, in comparison to the control group, the expression levels of TNF-α pathway genes (TNF-α, TNFR1, and NF-κB p65) and necroptosis-related genes (RIPK1, RIPK3, and MLKL) in Se deficiency group were obviously increased (P < 0.05). Moreover, Se deficiency induced the occurrence of inflammation by upregulating the expression of inflammatory cytokines (IL-1β, IL-2, IL-8, IL-18, IFN-γ, COX-2, PTGEs, and NLRP3). In conclusion, we proved Se deficiency could induce the deregulation of miR-130-CYLD axis to cause RIPK3-dependent necroptosis and inflammation in pig cerebellum.
Collapse
Affiliation(s)
- Linfei Jiao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zichan He
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chunli Sun
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Ro WB, Kang MH, Song DW, Lee SH, Park HM. Expression Profile of Circulating MicroRNAs in Dogs With Cardiac Hypertrophy: A Pilot Study. Front Vet Sci 2021; 8:652224. [PMID: 33898546 PMCID: PMC8062772 DOI: 10.3389/fvets.2021.652224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to identify the expression profile of circulating microRNAs in dogs with eccentric or concentric cardiac hypertrophy. A total of 291 microRNAs in serum samples of five dogs with myxomatous mitral valve degeneration (MMVD) and five dogs with pulmonic stenosis (PS) were compared with those of five healthy dogs using microarray analysis. Results of microarray analysis revealed up-regulation of cfa-miR-130b [fold change (FC) = 2.13, p = 0.014), down-regulation of cfa-miR-375 (FC = 1.51, p = 0.014), cfa-miR-425 (FC = 2.56, p = 0.045), cfa-miR-30d (FC = 3.02, p = 0.047), cfa-miR-151 (FC = 1.89, p = 0.023), cfa-miR-19b (FC = 3.01, p = 0.008), and cfa-let-7g (FC = 2.53, p = 0.015) in MMVD group which showed eccentric cardiac hypertrophy, up-regulation of cfa-miR-346 (FC = 2.74, p = 0.032), down-regulation of cfa-miR-505 (FC = 1.56, p = 0.016) in PS group which showed concentric cardiac hypertrophy, and down-regulation of cfa-miR-30c (FC = 3.45, p = 0.013 in MMVD group; FC = 3.31, p = 0.014 in PS group) and cfa-let-7b (FC = 11.42, p = 0.049 in MMVD group; FC = 5.88, p = 0.01 in PS group) in both MMVD and PS groups. In addition, the unsupervised hierarchical clustering of differentially expressed microRNAs in each group resulted in complete separation of healthy dogs from dogs with heart diseases. Therefore, eleven microRNAs among 291 microRNAs were identified as differentially expressed circulating microRNAs related to MMVD or PS in dogs. This pilot study demonstrates that the microRNAs identified in this study could be possible candidates for novel biomarker or therapeutic target related to cardiac hypertrophy in dogs.
Collapse
Affiliation(s)
- Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sung-Hun Lee
- Department of Cancer Genome Research, Cancer Research Institute, Clinomics Inc., Seoul, South Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
11
|
Kim Y, Kim H, Bang S, Jee S, Jang K. MicroRNA-130b functions as an oncogene and is a predictive marker of poor prognosis in lung adenocarcinoma. J Transl Med 2021; 101:155-164. [PMID: 32999430 DOI: 10.1038/s41374-020-00496-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is an aggressive disease and the leading cause of cancer-related deaths worldwide. In the past several decades, the incidence of adenocarcinoma has significantly increased, and accounts for ~40% of all lung cancer cases. In the present study, we investigated the clinicopathologic significance of microRNA-130b (miR-130b) in lung adenocarcinoma and analyzed its cancer-specific functions. RNA was extracted from formalin-fixed paraffin-embedded specimens of 146 lung adenocarcinoma cases, and miR-130b expression was analyzed using quantitative real-time polymerase chain reaction. NCI-H1650 cells were transfected with miR-130b mimic and inhibitor to determine its effects on tumor cell proliferation, migration, and invasion. The expression of miR-130b in lung adenocarcinoma tissues was classified into two groups according to the median value. High expression of miR-130b was associated with higher histological grade, advanced pathologic T stage, lymph node metastasis, and lymphovascular invasion. Moreover, survival analysis showed that high miR-130b expression was significantly associated with unfavorable prognosis. In addition, miR-130b upregulation promoted cell migration and invasion, while its downregulation resulted in decreased cell proliferation, migration, and wound healing in in vitro experiments. In conclusion, these findings suggest that miR-130b promotes tumor progression and serves as a biomarker of poor prognosis for patients with lung adenocarcinoma. Hence, targeting miR-130b may serve as a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seongsik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seungyun Jee
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Ding L, Li Q, Chakrabarti J, Munoz A, Faure-Kumar E, Ocadiz-Ruiz R, Razumilava N, Zhang G, Hayes MH, Sontz RA, Mendoza ZE, Mahurkar S, Greenson JK, Perez-Perez G, Hanh NTH, Zavros Y, Samuelson LC, Iliopoulos D, Merchant JL. MiR130b from Schlafen4 + MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer. Gut 2020; 69:1750-1761. [PMID: 31980446 PMCID: PMC7377952 DOI: 10.1136/gutjnl-2019-318817] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
UNLABELLED The myeloid differentiation factor Schlafen4 (Slfn4) marks a subset of myeloid-derived suppressor cells (MDSCs) in the stomach during Helicobacter-induced spasmolytic polypeptide-expressing metaplasia (SPEM). OBJECTIVE To identify the gene products expressed by Slfn4+-MDSCs and to determine how they promote SPEM. DESIGN We performed transcriptome analyses for both coding genes (mRNA by RNA-Seq) and non-coding genes (microRNAs using NanoString nCounter) using flow-sorted SLFN4+ and SLFN4- cells from Helicobacter-infected mice exhibiting metaplasia at 6 months postinfection. Thioglycollate-elicited myeloid cells from the peritoneum were cultured and treated with IFNα to induce the T cell suppressor phenotype, expression of MIR130b and SLFN4. MIR130b expression in human gastric tissue including gastric cancer and patient sera was determined by qPCR and in situ hybridisation. Knockdown of MiR130b in vivo in Helicobacter-infected mice was performed using Invivofectamine. Organoids from primary gastric cancers were used to generate xenografts. ChIP assay and Western blots were performed to demonstrate NFκb p65 activation by MIR130b. RESULTS MicroRNA analysis identified an increase in MiR130b in gastric SLFN4+ cells. Moreover, MIR130b colocalised with SLFN12L, a human homologue of SLFN4, in gastric cancers. MiR130b was required for the T-cell suppressor phenotype exhibited by the SLFN4+ cells and promoted Helicobacter-induced metaplasia. Treating gastric organoids with the MIR130b mimic induced epithelial cell proliferation and promoted xenograft tumour growth. CONCLUSION Taken together, MiR130b plays an essential role in MDSC function and supports metaplastic transformation.
Collapse
Affiliation(s)
- Lin Ding
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA,Medicine, University of Arizona, Tucson, Arizona, USA
| | - Qian Li
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jayati Chakrabarti
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andres Munoz
- Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Ramon Ocadiz-Ruiz
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nataliya Razumilava
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Guiying Zhang
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Michael H Hayes
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ricky A Sontz
- Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Swapna Mahurkar
- Medicine-Digestive Diseases, UCLA, Los Angeles, California, USA
| | | | | | | | - Yana Zavros
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Linda C Samuelson
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Juanita L Merchant
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA .,Medicine, University of Arizona, Tucson, Arizona, USA.,Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Cui Z, Kang H, Grandis JR, Johnson DE. CYLD Alterations in the Tumorigenesis and Progression of Human Papillomavirus-Associated Head and Neck Cancers. Mol Cancer Res 2020; 19:14-24. [PMID: 32883697 DOI: 10.1158/1541-7786.mcr-20-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Genetic alterations of CYLD lysine 63 deubiquitinase (CYLD), a tumor-suppressor gene encoding a deubiquitinase (DUB) enzyme, are associated with the formation of tumors in CYLD cutaneous syndrome. Genome sequencing efforts have revealed somatic CYLD alterations in multiple human cancers. Moreover, in cancers commonly associated with human papillomavirus (HPV) infection (e.g., head and neck squamous cell carcinoma), CYLD alterations are preferentially observed in the HPV-positive versus HPV-negative form of the disease. The CYLD enzyme cleaves K63-linked polyubiquitin from substrate proteins, resulting in the disassembly of key protein complexes and the inactivation of growth-promoting signaling pathways, including pathways mediated by NF-κB, Wnt/β-catenin, and c-Jun N-terminal kinases. Loss-of-function CYLD alterations lead to aberrant activation of these signaling pathways, promoting tumorigenesis and malignant transformation. This review summarizes the association and potential role of CYLD somatic mutations in HPV-positive cancers, with particular emphasis on the role of these alterations in tumorigenesis, invasion, and metastasis. Potential therapeutic strategies for patients whose tumors harbor CYLD alterations are also discussed. IMPLICATIONS: Alterations in CYLD gene are associated with HPV-associated cancers, contribute to NF-κB activation, and are implicated in invasion and metastasis.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
14
|
Yang R, Shui Y, Hu S, Zhang K, Wang Y, Peng Y. Silenced Myeloblastosis Protein Suppresses Oral Tongue Squamous Cell Carcinoma via the microRNA-130a/Cylindromatosis Axis. Cancer Manag Res 2020; 12:6935-6946. [PMID: 32821162 PMCID: PMC7425089 DOI: 10.2147/cmar.s252340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) represents oral epithelial cell damage. Myeloblastosis (MYB) is involved in OTSCC. This study tried to probe roles of MYB in OSCC with potential axis. Methods Expression of MYB and miR-130a in OTSCC was detected. Western blot analysis was utilized to determine epithelial-mesenchymal transition-related protein levels. Dual-luciferase reporter gene assay certified the target relation between miR-130a and CYLD. Moreover, xenograft tumors in nude mice were applied to confirm the in vitro experiments. Results Both MYB and miR-130a were highly expressed in OTSCC, which promoted cell growth. Meanwhile, silenced miR-130a discouraged cell development enhanced by overexpressed MYB. CYLD was poorly expressed in OTSCC and targeted by miR-130a. Additionally, MYB knockdown activated CYLD to suppress OTSCC by downregulating miR-130a. Conclusion Our experiment supported that silenced MYB suppressed OTSCC malignancy by inhibiting miR-130a and activating CYLD. This investigation may provide novel insights for OTSCC treatment.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| | - Yusen Shui
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Shoushan Hu
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yuru Wang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yiran Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Xuan R, Chao T, Wang A, Zhang F, Sun P, Liu S, Guo M, Wang G, Ji Z, Wang J, Cheng M. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One 2020; 15:e0234427. [PMID: 32511270 PMCID: PMC7279595 DOI: 10.1371/journal.pone.0234427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating mammary gland development and lactation. We previously analyzed miRNA expression profiles in Laoshan dairy goat mammary glands at the early (20 d postpartum), peak (90 d postpartum) and late lactation (210 d postpartum) stages. To further enrich and clarify the miRNA expression profiles during the lactation physiological cycle, we sequenced miRNAs in the mammary gland tissues of Laoshan dairy goats at three newly selected stages: the late lactation (240 d postpartum), dry period (300 d postpartum) and late gestation (140 d after mating) stages. We obtained 4038 miRNAs and 385 important miRNA families, including mir-10, let-7 and mir-9. We also identified 754 differentially expressed miRNAs in the mammary gland tissue at the 3 different stages and 6 groups of miRNA clusters that had unique expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that GO terms such as mammary gland development (GO:0030879) and mammary gland morphogenesis (GO:0060443) and important signaling pathways, including the insulin signaling pathway (chx04910), hippo signaling pathway (chx04390) and estrogen signaling pathway (chx04915), were enriched. We screened miRNAs and potential target genes that may be involved in the regulation of lactation, mammary gland growth and differentiation, cell apoptosis, and substance transport and synthesis and detected the expression patterns of important genes at the three stages. These miRNAs and critical target genes may be important factors for mammary gland development and lactation regulation and potentially valuable molecular markers, which may provide a theoretical reference for further investigation of mammary gland physiology.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Fuhong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ping Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Maosen Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao, Shandong Province, P.R. China
| |
Collapse
|
16
|
DeOcesano-Pereira C, Machado RAC, Chudzinski-Tavassi AM, Sogayar MC. Emerging Roles and Potential Applications of Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2020; 21:E2611. [PMID: 32283739 PMCID: PMC7178171 DOI: 10.3390/ijms21072611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diversity of RNA species, which do not have the potential to encode proteins. Non-coding RNAs include two classes of RNAs, namely: short regulatory ncRNAs and long non-coding RNAs (lncRNAs). The short regulatory RNAs, containing up to 200 nucleotides, include small RNAs, such as microRNAs (miRNA), short interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs). The lncRNAs include long antisense RNAs and long intergenic RNAs (lincRNAs). Non-coding RNAs have been implicated as master regulators of several biological processes, their expression being strictly regulated under physiological conditions. In recent years, particularly in the last decade, substantial effort has been made to investigate the function of ncRNAs in several human diseases, including cancer. Glioblastoma is the most common and aggressive type of brain cancer in adults, with deregulated expression of small and long ncRNAs having been implicated in onset, progression, invasiveness, and recurrence of this tumor. The aim of this review is to guide the reader through important aspects of miRNA and lncRNA biology, focusing on the molecular mechanism associated with the progression of this highly malignant cancer type.
Collapse
Affiliation(s)
- Carlos DeOcesano-Pereira
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, 1500 Vital Brazil Avenue, São Paulo 05503-900 SP, Brazil; (C.D.-P.); (A.M.C.-T.)
| | - Raquel A. C. Machado
- Department of Life Science and Medicine, University of Luxembourg, Campus Belval, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Ana Marisa Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, 1500 Vital Brazil Avenue, São Paulo 05503-900 SP, Brazil; (C.D.-P.); (A.M.C.-T.)
| | - Mari Cleide Sogayar
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo 05360-130 SP, Brazil
| |
Collapse
|
17
|
Shao C, Liu G, Zhang X, Li A, Guo X. Long Noncoding RNA RMRP Suppresses the Tumorigenesis of Hepatocellular Carcinoma Through Targeting microRNA-766. Onco Targets Ther 2020; 13:3013-3024. [PMID: 32308432 PMCID: PMC7152554 DOI: 10.2147/ott.s243736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study aimed to explore the regulatory effect of long noncoding RNA (lncRNA) ribonuclease mitochondrial RNA processing gene (RMRP) on hepatocellular carcinoma (HCC). METHODS The expression of RMRP in HCC tissues and cell lines was assessed by qRT-PCR. Kaplan-Meier method was utilized to analyze the correlation between RMRP expression and the survival of HCC patients. MHCC97H and HuH7 cells were transfected with pcDNA3.1-RMRP or pcDNA3.1, respectively. MTT and flow cytometry assays were conducted to examine the proliferation and apoptosis of HCC cells, respectively. The migration and invasion of HCC cells were assessed using wound healing and transwell assays, respectively. StarBase3.0 and dual-luciferase reporter gene assay were used to identify the target relationship between miR-766 and RMRP. A xenografted tumor model was established in rats to evaluate the effect of RMRP in vivo. RESULTS RMRP was down-regulated in HCC tissues and cells. Low expression of RMRP was correlated with poor survival of HCC patients. The A495 value and colony number were significantly decreased in pcDNA3.1-RMRP-transfected MHCC97H and HuH7 cells. The apoptosis rate was significantly increased in pcDNA3.1-RMRP-transfected MHCC97H and HuH7 cells. The migration rate and the number of invasive cells were significantly decreased in pcDNA3.1-RMRP-transfected MHCC97H and HuH7 cells. MiR-766 was a target of RMRP and eliminated the anti-tumor effect of RMRP on MHCC97H cells. The up-regulation of RMRP suppressed the growth of xenograft tumors in rats. CONCLUSION Overexpression of RMRP suppressed the tumorigenesis of HCC by targeting miR-766.
Collapse
Affiliation(s)
- Cunhua Shao
- Department of Hepatobiliary Surgery, Dongying People’s Hospital, Dongying City257091, People’s Republic of China
| | - Gongpan Liu
- Department of Hepatobiliary Surgery, Dongying People’s Hospital, Dongying City257091, People’s Republic of China
| | - Xiaobin Zhang
- Department of Hepatobiliary Surgery, Dongying People’s Hospital, Dongying City257091, People’s Republic of China
| | - Anyun Li
- Department of General Surgery, Dongying Hong Gang Hospital, Dongying City257000, People’s Republic of China
| | - Xingjun Guo
- Department of Hepatobiliary Surgery, Dongying People’s Hospital, Dongying City257091, People’s Republic of China
| |
Collapse
|
18
|
Meng L, Jiang YP, Zhu J, Li B. MiR-188-3p/GPR26 modulation functions as a potential regulator in manipulating glioma cell properties. Neurol Res 2020; 42:222-227. [PMID: 32024457 DOI: 10.1080/01616412.2020.1723298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Yuan-Pei Jiang
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Bo Li
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
19
|
Hu Y, Yan J. Aberrant expression and mechanism of miR-130b-3p/phosphatase and tensin homolog in nephroblastoma in children. Exp Ther Med 2019; 18:1021-1028. [PMID: 31316599 PMCID: PMC6601369 DOI: 10.3892/etm.2019.7643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Nephroblastoma is the most common renal tumor in children. Abnormal expression of microRNAs (miRs) has been reported to be involved in the progression of various types of cancers. However, the role and underlying mechanism of miR-130b-3p in nephroblastoma remains unknown. Therefore, the present study aimed to explore the role and possible mechanism of miR-130b-3p in nephroblastoma in children. The present study identified that miR-130b-3p was highly expressed in nephroblastoma tissues obtained from children with nephroblastoma. To better understand the functions and the molecular mechanisms of miR-130b-3p in nephroblastoma, TargetScan was used to identify the potential targets of miR-130b-3p. Phosphatase and tensin homolog (PTEN), was identified as a target gene of miR-130b-3p, and it was observed to be downregulated in nephroblastoma. Further analysis indicated that miR-130b-3p inhibitor could significantly reduce cell proliferation, induce apoptosis and suppress the Akt/nuclear factor-κB/survivin signaling pathway in nephroblastoma cells. Notably, all these effects of miR-130b-3p on nephroblastoma cells were reversed by PTEN-small interfering RNA. In summary, the present study suggested that the miR-130b-3p/PTEN axis could serve a critical role in the progression and development of nephroblastoma. It also suggests that miR-130b-3p might be a valuable clinical biomarker and therapeutic target for nephroblastoma in children.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Jingtie Yan
- Department of Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| |
Collapse
|
20
|
Wang J, Liu H, Zheng K, Zhang S, Dong W. MicroRNA-6852 suppresses glioma A172 cell proliferation and invasion by targeting LEF1. Exp Ther Med 2019; 18:1877-1883. [PMID: 31410149 DOI: 10.3892/etm.2019.7762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
microRNA (miR)-6852 has been demonstrated to suppress the progression of gastric, colorectal and cervical cancer. The mechanism by which miR-6852 regulates glioma cells is yet to be elucidated. In the present study, reverse transcription-quantitative PCR analysis was used and the results demonstrated that miR-6852 expression was reduced in glioma tissues and cells. Cell counting kit-8 and transwell assay analysis indicated that proliferation, migration and invasion of A172 cells in the miR-6852 mimic group were lower than in the miR-NC group. Compared with the Inh-NC group, A172 cells of the Inh-miR-6852 group exhibited higher proliferation, migration and invasion. Additionally, the results indicated that lymphoid enhancer binding factor 1 (LEF1) was directly inhibited by miR-6852 and LEF1 expression was negatively correlated with miR-6852 expression in glioma tissues. Furthermore, the restoration of LEF1 reversed the effects of the miR-6852 mimics. The present findings suggested that miR-6852 inhibited glioma cells proliferation, migration and invasion by targeting the suppression of LEF1.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Haipeng Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shuai Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Wei Dong
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
21
|
Zhang J, Zhou Q, Wang H, Huang M, Shi J, Han F, Cai W, Li Y, He T, Hu D. MicroRNA-130a has pro-fibroproliferative potential in hypertrophic scar by targeting CYLD. Arch Biochem Biophys 2019; 671:152-161. [PMID: 31283910 DOI: 10.1016/j.abb.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertrophic scars are dermal fibrosis diseases that protrude from the surface of the skin and irregularly extend to the periphery, seriously affecting the appearance and limb function of the patient. In this study, we found that microRNA-130a (miR-130a) was increased in hypertrophic scar tissues and derived primary fibroblasts, accompanied by up-regulation of collagen1/3 and α-SMA. Inhibition of miR-130a in hypertrophic scars fibroblasts suppressed the expression of collagen1/3 and α-SMA as well as the cell proliferation. Bioinformatics analysis combined with luciferase reporter gene assay results indicated that CYLD was a target gene of miR-130a, and the miR-130a mimic could reduce the level of CYLD. In contrast to miR-130a, the expression of CYLD was downregulated in hypertrophic scars and their derived fibroblasts. Overexpressing CYLD inhibited the expression of collagen 1/3 and α-SMA, slowed cell proliferation, and inhibited Akt activity. As expected, further study showed that the overexpression of CYLD could prevent the pro-fibroproliferative effects of miR-130a. Consistent with the in vitro results, the inhibitor of miR-130a effectively ameliorated excessive collagen deposition in bleomycin-induced skin fibrosis mouse model. Taken together, our results indicate that miR-130a promotes collagen secretion, myofibroblast transformation and cell proliferation by targeting CYLD and enhancing Akt activity. Therefore, the miR-130a/CYLD/Akt pathway may serve as a novel entry point for future skin fibrosis research.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
22
|
Rui QH, Ma JB, Liao YF, Dai JH, Cai ZY. Effect of lncRNA HULC knockdown on rat secreting pituitary adenoma GH3 cells. ACTA ACUST UNITED AC 2019; 52:e7728. [PMID: 30994730 PMCID: PMC6472935 DOI: 10.1590/1414-431x20197728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Pituitary adenoma is one of the most common tumors in the neuroendocrine system. This study investigated the effects of long non-coding RNAs (lncRNAs) highly up-regulated in liver cancer (HULC) on rat secreting pituitary adenoma GH3 cell viability, migration, invasion, apoptosis, and hormone secretion, as well as the underlying potential mechanisms. Cell transfection and qRT-PCR were used to change and measure the expression levels of HULC, miR-130b, and FOXM1. Cell viability, migration, invasion, and apoptosis were assessed using trypan blue staining assay, MTT assay, two-chamber transwell assay, Guava Nexin assay, and western blotting. The concentrations of prolactin (PRL) and growth hormone (GH) in culture supernatant of GH3 cells were assessed using ELISA. The targeting relationship between miR-130b and FOXM1 was verified using dual luciferase activity. Finally, the expression levels of key factors involved in PI3K/AKT/mTOR and JAK1/STAT3 pathways were evaluated using western blotting. We found that HULC was highly expressed in GH3 cells. Overexpression of HULC promoted GH3 cell viability, migration, invasion, PRL and GH secretion, as well as activated PI3K/AKT/mTOR and JAK1/STAT3 pathways. Knockdown of HULC had opposite effects and induced cell apoptosis. HULC negatively regulated the expression of miR-130b, and miR-130b participated in the effects of HULC on GH3 cells. FOXM1 was a target gene of miR-130b, which was involved in the regulation of GH3 cell viability, migration, invasion, and apoptosis, as well as PI3K/AKT/mTOR and JAK1/STAT3 pathways. In conclusion, HULC tumor-promoting roles in secreting pituitary adenoma might be via down-regulating miR-130b, up-regulating FOXM1, and activating PI3K/AKT/mTOR and JAK1/STAT3 pathways.
Collapse
Affiliation(s)
- Qiu Hong Rui
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Jian Bo Ma
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Yu Feng Liao
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Jin Hua Dai
- Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, Zhejiang, China
| | - Zhen Yu Cai
- Department of Pain Clinic, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Luo Y, Chen L, Wang G, Xiao Y, Ju L, Wang X. Identification of a three-miRNA signature as a novel potential prognostic biomarker in patients with clear cell renal cell carcinoma. J Cell Biochem 2019; 120:13751-13764. [PMID: 30957284 DOI: 10.1002/jcb.28648] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/19/2023]
Abstract
Current studies suggest that some microRNAs (miRNAs) are associated with prognosis in clear cell renal cell carcinoma (ccRCC). In this paper, we aimed to identify a miRNAs signature to improve prognostic prediction for ccRCC patients. Using ccRCC RNA-Seq data of The Cancer Genome Atlas (TCGA) database, we identified 177 differentially expressed miRNAs between ccRCC and paracancerous tissue. Then all the ccRCC tumor samples were divided into training set and validation set randomly. Three-miRNA signature including miR130b, miR-18a, and miR-223 were constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression model in training set. According to optimal cut-off value of three-miRNA signature risk score, all the patients could be classified into high-risk group and low-risk group significantly. Survival of patients was significantly different between two groups (hazard ratio, 5.58, 95% confidence interval, 3.17-9.80; P < 0.0001), and three-miRNA signature performed favorably prognostic and predictive accuracy. The results were further validated in the validation set and total set. Multivariate Cox regression analyses and subgroup analyses showed that three-miRNA signature was an independent prognostic factor. Two nomograms that integrated three-miRNA signature and three clinicopathological risk factors were constructed to predict overall survival and disease-free survival after surgery for ccRCC patients. Functional enrichment analysis showed the possible roles of three-miRNA signature in some cancer-associated biological processes and pathways. In conclusion, we developed a novel three-miRNA signature that performed reliable prognostic for patient survival with ccRCC, it might facilitate ccRCC patients counseling and individualize management.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Zhang Q, Zhang B, Sun L, Yan Q, Zhang Y, Zhang Z, Su Y, Wang C. MicroRNA-130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/β-catenin pathway. Cell Biochem Funct 2018; 36:194-202. [PMID: 29653464 PMCID: PMC6001533 DOI: 10.1002/cbf.3331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/04/2018] [Indexed: 01/06/2023]
Abstract
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Leina Sun
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingna Yan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
25
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|