1
|
Cartland SP, Patil MS, Kelland E, Le N, Boccanfuso L, Stanley CP, Cholan PM, Dona MI, Patrick R, McGrath J, Su QP, Alwis I, Ganss R, Powell JE, Harvey RP, Pinto AR, Griffith TS, Loa J, Aitken SJ, Robinson DA, Patel S, Kavurma MM. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL. SCIENCE ADVANCES 2024; 10:eadn8760. [PMID: 39365855 PMCID: PMC11451529 DOI: 10.1126/sciadv.adn8760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
Reversal of ischemia is mediated by neo-angiogenesis requiring endothelial cell (EC) and pericyte interactions to form stable microvascular networks. We describe an unrecognized role for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in potentiating neo-angiogenesis and vessel stabilization. We show that the endothelium is a major source of TRAIL in the healthy circulation compromised in peripheral artery disease (PAD). EC deletion of TRAIL in vivo or in vitro inhibited neo-angiogenesis, pericyte recruitment, and vessel stabilization, resulting in reduced lower-limb blood perfusion with ischemia. Activation of the TRAIL receptor (TRAIL-R) restored blood perfusion and stable blood vessel networks in mice. Proof-of-concept studies showed that Conatumumab, an agonistic TRAIL-R2 antibody, promoted vascular sprouts from explanted patient arteries. Single-cell RNA sequencing revealed heparin-binding EGF-like growth factor in mediating EC-pericyte communications dependent on TRAIL. These studies highlight unique TRAIL-dependent mechanisms mediating neo-angiogenesis and vessel stabilization and the potential of repurposing TRAIL-R2 agonists to stimulate stable and functional microvessel networks to treat ischemia in PAD.
Collapse
Affiliation(s)
- Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Manisha S. Patil
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Elaina Kelland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Natalie Le
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Lauren Boccanfuso
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Christopher P. Stanley
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | | | | | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Qian Peter Su
- School of Biomedical Engineering, University of Technology, Sydney, Australia
- Heart Research Institute, Sydney, Australia
| | - Imala Alwis
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | | | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sarah J. Aitken
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, Australia
| | - David A. Robinson
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| |
Collapse
|
2
|
Santen RJ, Karaguzel G, Livaoglu M, Yue W, Cline JM, Ratan A, Sasano H. Role of ERα and Aromatase in Juvenile Gigantomastia. J Clin Endocrinol Metab 2024; 109:1765-1772. [PMID: 38227777 DOI: 10.1210/clinem/dgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
CONTEXT Approximately 150 patients with juvenile gigantomastia have been reported in the literature but the underlying biologic mechanisms remain unknown. OBJECTIVE To conduct extensive clinical, biochemical, immunochemical, and genetic studies in 3 patients with juvenile gigantomastia to determine causative biologic factors. METHODS We examined clinical effects of estrogen by blockading estrogen synthesis or its action. Breast tissue aromatase expression and activity were quantitated in 1 patient and 5 controls. Other biochemical markers, including estrogen receptor α (ERα), cyclin D1 and E, p-RB, p-MAPK, p-AKT, BCL-2, EGF-R, IGF-IR β, and p-EGFR were assayed by Western blot. Immunohistochemical analyses for aromatase, ERα and β, PgR, Ki67, sulfotransferase, estrone sulfatase, and 17βHD were performed in all 3 patients. The entire genomes of the mother, father, and patient in the 3 families were sequenced. RESULTS Blockade of estrogen synthesis or action in patients resulted in demonstrable clinical effects. Biochemical studies on fresh frozen tissue revealed no differences between patients and controls, presumably due to tissue dilution from the large proportion of stroma. However, immunohistochemical analysis of ductal breast cells in the 3 patients revealed a high percent of ERα (64.1% ± 7.8% vs reference women 9.6%, range 2.3-15%); aromatase score of 4 (76%-100% of cells positive vs 30.4% ± 5.6%); PgR (69.5% ± 15.2% vs 6.0%, range 2.7%-11.9%) and Ki67 (23.7% ± 0.54% vs 4.2%). Genetic studies were inconclusive although some intriguing variants were identified. CONCLUSION The data implicate an important biologic role for ERα to increase tissue sensitivity to estrogen and aromatase to enhance local tissue production as biologic factors involved in juvenile gigantomastia.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Gulay Karaguzel
- Department of Pediatric Endocrinology, Karadeniz Technical University, School of Medicine, 61080 Trabzon, Turkey
| | - Murat Livaoglu
- Department of Plastic Surgery, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - J Mark Cline
- Department of Pathology, Section of Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
3
|
Santin A, Spedicati B, Morgan A, Lenarduzzi S, Tesolin P, Nardone GG, Mazzà D, Di Lorenzo G, Romano F, Buonomo F, Mangogna A, Concas MP, Zito G, Ricci G, Girotto G. Puzzling Out the Genetic Architecture of Endometriosis: Whole-Exome Sequencing and Novel Candidate Gene Identification in a Deeply Clinically Characterised Cohort. Biomedicines 2023; 11:2122. [PMID: 37626618 PMCID: PMC10452899 DOI: 10.3390/biomedicines11082122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis (EM) is a common multifactorial gynaecological disorder. Although Genome-Wide Association Studies have largely been employed, the current knowledge of the genetic mechanisms underlying EM is far from complete, and other approaches are needed. To this purpose, whole-exome sequencing (WES) was performed on a deeply characterised cohort of 80 EM patients aimed at the identification of rare and damaging variants within 46 EM-associated genes and novel candidates. WES analysis detected 63 rare, predicted, and damaging heterozygous variants within 24 genes in 63% of the EM patients. In particular, (1) a total of 43% of patients carried variants within 13 recurrent genes (FCRL3, LAMA5, SYNE1, SYNE2, GREB1, MAP3K4, C3, MMP3, MMP9, TYK2, VEGFA, VEZT, RHOJ); (2) a total of 8.8% carried private variants within eight genes (KAZN, IL18, WT1, CYP19A1, IL1A, IL2RB, LILRB2, ZNF366); (3) a total of 24% carried variants within three novel candidates (ABCA13, NEB, CSMD1). Finally, to deepen the polygenic architecture of EM, a comprehensive evaluation of the analysed genes was performed, revealing a higher burden (p < 0.05) of genes harbouring rare and damaging variants in the EM patients than in the controls. These results highlight new insights into EM genetics, allowing for the definition of novel genotype-phenotype correlations, thereby contributing, in a long-term perspective, to the development of personalised care for EM patients.
Collapse
Affiliation(s)
- Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Anna Morgan
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Giuseppe Giovanni Nardone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Daniela Mazzà
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Federico Romano
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Francesca Buonomo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Maria Pina Concas
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giuseppe Ricci
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| |
Collapse
|
4
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
5
|
Analysis of multiple basal cell carcinomas (BCCs) arising in one individual highlights genetic tumor heterogeneity and identifies novel driver mutations. J Cell Commun Signal 2022; 16:633-635. [PMID: 35414145 PMCID: PMC9733736 DOI: 10.1007/s12079-022-00679-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common human cancer, especially in individuals with light skin phototypes (i.e., Fitzpatrick I-II skin type). Many affected develop multiple BCCs during their lifetime. It is not uncommon to observe elderly patients with >5 BCCs. In this study, we explored whether for patients diagnosed with multiple BCCs, analyzing the genomic mutations in one tumor could be sufficient to derive meaningful molecular/genetic conclusions regarding the other BCC tumors. Following the Genome Analysis Toolkit (GATK) best practices we have completed the study of 6 BCCs that occurred in an 83-year-old Caucasian male due to sun exposure. We have analyzed exome sequencing data of each BCC tumor and matched normal skin samples. We identified that BCCs from the same patient shared some of the key driver mutations, but they also displayed significant intertumoral heterogeneity. This finding may in part explain the different clinical progression/evolution of BCCs observed in the same patient. This work also highlights the value of characterizing multiple BCCs in one individual to identify patient-specific genetic events with a potential link to other malignancies and implications for personalized medicine.
Collapse
|
6
|
Wang X, Chen X, Liu Y, Huang S, Ding J, Wang B, Dong P, Sun Z, Chen L. CSMD1 suppresses cancer progression by inhibiting proliferation, epithelial-mesenchymal transition, chemotherapy-resistance and inducing immunosuppression in esophageal squamous cell carcinoma. Exp Cell Res 2022; 417:113220. [PMID: 35623420 DOI: 10.1016/j.yexcr.2022.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Human CUB and Sushi multiple domains (CSMD1) is considered a crucial role in cancer progression, but the specific function in esophageal squamous cell carcinoma (ESCC) is not clear. Understanding the role of CSMD1 in ESCC progression may lead to a novel strategy for ESCC treatment. Here, we found that both CSMD1 mRNA and protein levels were downregulated in ESCC tissues. Reduced CSMD1 expression was correlated with a poor prognosis in ESCC patients. CSMD1 expression inhibited proliferation, migration and invasion in ESCC cell lines in vitro. CSMD1 deficiency in established xenografted tumors increases tumor size and weight. We further found that CSMD1-overexpression cells are more sensitive to chemotherapy. Moreover, we addressed the role of CSMD1 in the CD8+ T cell immune response. An in vitro killing assay showed that the cytotoxicity of CD8+ T cells was inhibited in CSMD1-overexpression tumor cells. In vivo, in CSMD1 deficiency tumor-bearing mice activation and expansion of CD8+ T cells were increased. Further investigation showed that CSMD1 expression on tumor cells was positively correlated with CD8+ T cells infiltration and cytokines secretion. These findings highlight that CSMD1 is a tumor suppressor gene in ESCC patients and a positive regulator of CD8+ T cells expansion and activation, and could increase cytokines secretion, indicating that tumor cell-associated CSMD1 might be a target for ESCC.
Collapse
Affiliation(s)
- Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Huang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jian Ding
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenfeng Sun
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
7
|
Liu H, Chen Y, Zhou L, Jiang X, Zhou X. MicroRNA-642b-3p functions as an oncomiR in gastric cancer by down-regulating the CUB and sushi multiple domains protein 1/smad axis. Bioengineered 2022; 13:9613-9627. [PMID: 35412956 PMCID: PMC9208452 DOI: 10.1080/21655979.2022.2056813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs or miRs) has been involved in the progression of gastric cancer (GC). Our analysis of GC-related gene expression profiles identified the significantly up-regulated miR-642b-3p expression, which has been reported as a mediator in various cancers but rarely mentioned in researches on GC. Herein, this study intends to investigate the role of miR-642b-3p in GC development. Bioinformatics analysis was conducted to predict the downstream target gene of miR-642b-3p. Expression patterns of miR-642b-3p and CUB and sushi multiple domains protein 1 (CSMD1) in GC tissues and cell lines was then determined. Immunofluorescence, wound healing and Transwell invasion assays were performed to observe the malignant behaviors of GC cells with altered expression of miR-642b-3p and CSMD1. Nude mice with xenograft tumors were developed for in vivo validation. miR-642b-3p expression was increased in GC tissues and cell lines. miR-642b-3p targeted CSMD1 and reduced the expression of CSMD1, thereby inhibiting the activation of Smad signaling pathway. By this mechanism, the epithelial–mesenchymal transition (EMT), invasive and migratory potentials of GC cells were repressed. Meanwhile, in vivo data verified that miR-642b-3p enhanced the tumor growth of GC cells, which was associated with blockade of CSMD1-dependent activation of the Smad signaling pathway. Overall, miR-642b-3p acts as an oncomiR promoting tumor development in GC through suppressing CSMD1 expression and inactivating the Smad signaling pathway, which may enable the development of new therapeutic strategies for treatment of GC.
Collapse
Affiliation(s)
- Haofeng Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China.,Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Yuan Chen
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Linsen Zhou
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng P.R. China
| | - Xiaohui Jiang
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China
| |
Collapse
|
8
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|
9
|
Gialeli C, Tuysuz EC, Staaf J, Guleed S, Paciorek V, Mörgelin M, Papadakos KS, Blom AM. Complement inhibitor CSMD1 modulates epidermal growth factor receptor oncogenic signaling and sensitizes breast cancer cells to chemotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:258. [PMID: 34404439 PMCID: PMC8371905 DOI: 10.1186/s13046-021-02042-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human CUB and Sushi multiple domains 1 (CSMD1) is a large membrane-bound tumor suppressor in breast cancer. The current study aimed to elucidate the molecular mechanism underlying the effect of CSMD1 in highly invasive triple negative breast cancer (TNBC). METHODS We examined the antitumor action of CSMD1 in three TNBC cell lines overexpressing CSMD1, MDA-MB-231, BT-20 and MDA-MB-486, in vitro using scanning electron microscopy, proteome array, qRT-PCR, immunoblotting, proximity ligation assay, ELISA, co-immunoprecipitation, immunofluorescence, tumorsphere formation assays and flow cytometric analysis. The mRNA expression pattern and clinical relevance of CSMD1 were evaluated in 3520 breast cancers from a modern population-based cohort. RESULTS CSMD1-expressing cells had distinct morphology, with reduced deposition of extracellular matrix components. We found altered expression of several cancer-related molecules, as well as diminished expression of signaling receptors including Epidermal Growth Factor Receptor (EGFR), in CSMD1-expressing cells compared to control cells. A direct interaction of CSMD1 and EGFR was identified, with the EGF-EGFR induced signaling cascade impeded in the presence of CSMD1. Accordingly, we detected increased ubiquitination levels of EGFR upon activation in CSMD1-expressing cells, as well as increased degradation kinetics and chemosensitivity. Accordingly, CSMD1 expression rendered tumorspheres pretreated with gefitinib more sensitive to chemotherapy. In addition, higher mRNA levels of CSMD1 tend to be associated with better outcome of triple negative breast cancer patients treated with chemotherapy. CONCLUSIONS Our results indicate that CSMD1 cross-talks with the EGFR endosomal trafficking cascade in a way that renders highly invasive breast cancer cells sensitive to chemotherapy. Our study unravels one possible underlying molecular mechanism of CSMD1 tumor suppressor function and may provide novel avenues for design of better treatment.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Experimental Cardiovascular Research Group, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Emre Can Tuysuz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Safia Guleed
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Veronika Paciorek
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
10
|
Gu S, Huang X, Xu X, Liu Y, Khoong Y, Zhang Z, Li H, Gao Y, Zan T. Inhibition of CUB and sushi multiple domains 1 (CSMD1) expression by miRNA-190a-3p enhances hypertrophic scar-derived fibroblast migration in vitro. BMC Genomics 2021; 22:613. [PMID: 34384362 PMCID: PMC8359300 DOI: 10.1186/s12864-021-07920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hypertrophic scar (HTS) is a fibroproliferative skin disorder characterized by excessive cell proliferation, migration, and extracellular matrix (ECM) deposition. The CUB and Sushi multiple domains 1 (CSMD1) has previously been identified as the key regulatory gene of hypertrophic scar by a large sample GWAS study. However, further research has not yet been conducted to verify this finding in other HTS patients and to determine the underlying mechanism. Results In this study, we verified that CSMD1 was downregulated in both HTS tissue and HTS-derived fibroblasts. The knockdown of CSMD1 resulted in enhanced migration and fibronectin1 (FN1) secretion in fibroblasts in vitro. In addition, the upstream and downstream regulatory mechanisms of CSMD1 were also investigated through microRNA (miRNA) databases screening and RNA-sequencing (RNA-seq) respectively. The screening of four common microRNA (miRNA) databases suggested that miR-190a-3p binds to the CSMD1 and may regulate its expression. We confirmed that miR-190a-3p directly targeted the CSMD1–3′-UTR using luciferase reporter assays. Furthermore, the overexpression of miR-190a-3p showed promotion of migratory activity and FN1 secretion in fibroblasts, resembling the effect of CSMD1 knockdown; whereas the knockdown of miR-190a-3p exerted the opposite effect. Finally, transcriptomic analysis showed activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in the CSMD1 knockdown fibroblasts. Conclusions This study has validated the conclusions of the previous GWAS study conducted in Chinese population. In vitro experiments have provided further evidence on the function of CSMD1 in the development of HTS, and have also revealed the underlying upstream and downstream regulating mechanisms. Additionally, the JAK/STAT signaling pathway identified using RNA-seq might provide a potential treatment approach, especially for HTS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07920-8.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China.
| |
Collapse
|
11
|
van Riet J, van de Werken HJG, Cuppen E, Eskens FALM, Tesselaar M, van Veenendaal LM, Klümpen HJ, Dercksen MW, Valk GD, Lolkema MP, Sleijfer S, Mostert B. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat Commun 2021; 12:4612. [PMID: 34326338 PMCID: PMC8322054 DOI: 10.1038/s41467-021-24812-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Metastatic and locally-advanced neuroendocrine neoplasms (aNEN) form clinically and genetically heterogeneous malignancies, characterized by distinct prognoses based upon primary tumor localization, functionality, grade, proliferation index and diverse outcomes to treatment. Here, we report the mutational landscape of 85 whole-genome sequenced aNEN. This landscape reveals distinct genomic subpopulations of aNEN based on primary localization and differentiation grade; we observe relatively high tumor mutational burdens (TMB) in neuroendocrine carcinoma (average 5.45 somatic mutations per megabase) with TP53, KRAS, RB1, CSMD3, APC, CSMD1, LRATD2, TRRAP and MYC as major drivers versus an overall low TMB in neuroendocrine tumors (1.09). Furthermore, we observe distinct drivers which are enriched in somatic aberrations in pancreatic (MEN1, ATRX, DAXX, DMD and CREBBP) and midgut-derived neuroendocrine tumors (CDKN1B). Finally, 49% of aNEN patients reveal potential therapeutic targets based upon actionable (and responsive) somatic aberrations within their genome; potentially directing improvements in aNEN treatment strategies.
Collapse
Affiliation(s)
- Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Cancer Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Linde M van Veenendaal
- Department of Medical Oncology, Cancer Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marcus W Dercksen
- Department of Internal Medicine, Maxima Medisch Centrum, Veldhoven, The Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
The Role of Csmd1 during Mammary Gland Development. Genes (Basel) 2021; 12:genes12020162. [PMID: 33530646 PMCID: PMC7912059 DOI: 10.3390/genes12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Cub Sushi Multiple Domains-1 (CSMD1) protein is a tumour suppressor which has been shown to play a role in regulating human mammary duct development in vitro. CSMD1 knockdown in vitro demonstrated increased cell proliferation, invasion and motility. However, the role of Csmd1 in vivo is poorly characterised when it comes to ductal development and is therefore an area which warrants further exploration. In this study a Csmd1 knockout (KO) mouse model was used to identify the role of Csmd1 in regulating mammary gland development during puberty. Changes in duct development and protein expression patterns were analysed by immunohistochemistry. This study identified increased ductal development during the early stages of puberty in the KO mice, characterised by increased ductal area and terminal end bud number at 6 weeks. Furthermore, increased expression of various proteins (Stat1, Fak, Akt, Slug/Snail and Progesterone receptor) was shown at 4 weeks in the KO mice, followed by lower expression levels from 6 weeks in the KO mice compared to the wild type mice. This study identifies a novel role for Csmd1 in mammary gland development, with Csmd1 KO causing significantly more rapid mammary gland development, suggesting an earlier adult mammary gland formation.
Collapse
|
13
|
Hu Z, Bi G, Sui Q, Bian Y, Du Y, Liang J, Li M, Zhan C, Lin Z, Wang Q. Analyses of multi-omics differences between patients with high and low PD1/PDL1 expression in lung squamous cell carcinoma. Int Immunopharmacol 2020; 88:106910. [PMID: 32829091 DOI: 10.1016/j.intimp.2020.106910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immunotherapy has achieved excellent results in patients with lung squamous cell carcinoma. However, in which population it can exert the greatest effect is still unknown. Some studies have suggested that its effect is related to the expression level of PD1. Analyzing the relationship between PD1 expression level and genetic differences in lung squamous cell carcinoma patients will be helpful in understanding the underlying causes of this immunotherapy effect and provide a reference for clinical practice. METHODS In this study, we used RNA-seq, miRNA-seq, methylation array, mutation profiles, and copy number variation data from the TCGA database and RNA-seq data from the GEO database to analyze the distinctive genomic patterns associated with PD1 and PDL1 expression. RNA-seq data from 44 LUSC patients who underwent surgery at Zhongshan Hospital were also included in the study. RESULTS After grouping LUSC patients according to the expression levels of PD1 and PDL1, we found no significant difference in survival between the two groups. However, 178 genes, including IL-21, KLRC3, and KLRC4, were significantly upregulated in both the TCGA and GEO databases in the high expression group, and there was a precise correlation between gene expression and epigenetic changes in the two groups. At the same time, the overall level of somatic mutations was not significantly different between the two groups. It is worth noting that the gene enrichment results showed that the differential pathways were mainly enriched in immune regulation, especially T cell-related immune activities. CONCLUSION We found that the differences in gene expression between the two groups were related to immunity, which may affect the effectiveness of immunotherapy. We hope our results can provide a reference for further research and help in finding other targets to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yajing Du
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
14
|
Nelson AC, Turbyville TJ, Dharmaiah S, Rigby M, Yang R, Wang TY, Columbus J, Stephens R, Taylor T, Sciacca D, Onsongo G, Sarver A, Subramanian S, Nissley DV, Simanshu DK, Lou E. RAS internal tandem duplication disrupts GTPase-activating protein (GAP) binding to activate oncogenic signaling. J Biol Chem 2020; 295:9335-9348. [PMID: 32393580 PMCID: PMC7363148 DOI: 10.1074/jbc.ra119.011080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Megan Rigby
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - John Columbus
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy Taylor
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Drew Sciacca
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Getiria Onsongo
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Sarver
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Dwight V Nissley
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Chen XL, Hong LL, Wang KL, Liu X, Wang JL, Lei L, Xu ZY, Cheng XD, Ling ZQ. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int J Biol Sci 2019; 15:2075-2086. [PMID: 31592231 PMCID: PMC6775299 DOI: 10.7150/ijbs.23802] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: This study aimed to investigate the oncogenic activity of microRNA-10b by targeting CUB and sushi multiple domains protein 1 (CSMD1) in human gastric cancer (GC) and the underlying mechanisms. Methods: The expression of CSMD1 in human GC tissues was evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemical analysis. The expressive abundance of microRNA-10b was detected by stem-loop RT-PCR. Molecular and cellular techniques, including lentiviral vector-mediated knockdown or overexpression, were used to elucidate the effect of microRNA-10b on the expression of CSMD1. Results: CSMD1 was targeted and downregulated by microRNA-10b in human GC tissues and cells, and the down-regulated expression of CSMD1 contributed to poor survival. The knockdown of microRNA-10b expression inhibited cell proliferation in GC cells in vitro and tumor growth in vivo. The inhibition of microRNA-10b expression repressed invasion and migration of HGC27 cells and retarded GC cells metastasis to the liver in Balb/c nude mice. The up-regulated expression of microRNA-10b promoted the proliferation and metastasis of MKN74 cell in vitro. Intratumoral injection of microRNA-10b mimic also promoted the growth and metastasis of tumor xenografts in Balb/c nude mice. Mechanistically, microRNA-10b promoted the invasion and metastasis of human GC cells through inhibiting the expression of CSMD1, leading to the activation of the nuclear factor-κB (NF-κB) pathway that links inflammation to carcinogenesis, subsequently resulting in the upregulation of c-Myc, cyclin D1 (CCND1), and epithelial-mesenchymal transition (EMT) markers. Conclusions: The findings established that microRNA-10b is an oncomiR that drives metastasis. Moreover, a set of critical tumor suppressor mechanisms was defined that microRNA-10b overcame to drive human GC progression.
Collapse
Affiliation(s)
- Xiang-Liu Chen
- Department of Digestive Oncology, the First Affiliated Hospital of Wenzhou Medical University; the First Provincial Wenzhou Hospital of Zhejiang, Wenzhou 325000
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Kai-Lai Wang
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiang Liu
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiu-Li Wang
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lan Lei
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhi-Yuan Xu
- Department of Digestive Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xiang-Dong Cheng
- Department of Digestive Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Zhi-Qiang Ling
- Department of Digestive Oncology, the First Affiliated Hospital of Wenzhou Medical University; the First Provincial Wenzhou Hospital of Zhejiang, Wenzhou 325000
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
16
|
Beetch M, Lubecka K, Shen K, Flower K, Harandi‐Zadeh S, Suderman M, Flanagan JM, Stefanska B. Stilbenoid‐Mediated Epigenetic Activation of Semaphorin 3A in Breast Cancer Cells Involves Changes in Dynamic Interactions of DNA with DNMT3A and NF1C Transcription Factor. Mol Nutr Food Res 2019; 63:e1801386. [DOI: 10.1002/mnfr.201801386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/13/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Megan Beetch
- University of British Columbia 2329 West Mall Vancouver BC V6T 1Z4 Canada
| | - Katarzyna Lubecka
- Department of Biomedical ChemistryMedical University of Lodz al. Tadeusza Kościuszki 4 90‐419 Łódź Poland
| | - Kate Shen
- University of British Columbia 2329 West Mall Vancouver BC V6T 1Z4 Canada
| | - Kirsty Flower
- Epigenetic Unit, Department of Surgery and CancerImperial College LondonSouth Kensington Campus London SW7 2AZ UK
| | | | - Matthew Suderman
- School of Social and Community MedicineMRC Integrative Epidemiology UnitUniversity of Bristol Beacon House Queens Road Bristol ESB 1QU UK
| | - James M Flanagan
- Epigenetic Unit, Department of Surgery and CancerImperial College LondonSouth Kensington Campus London SW7 2AZ UK
| | - Barbara Stefanska
- University of British Columbia 2329 West Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
17
|
Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol 2018; 102:73-83. [PMID: 30217334 DOI: 10.1016/j.molimm.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies.
Collapse
|
18
|
Gong S, Johnson MD, Dopierala J, Gaccioli F, Sovio U, Constância M, Smith GC, Charnock-Jones DS. Genome-wide oxidative bisulfite sequencing identifies sex-specific methylation differences in the human placenta. Epigenetics 2018; 13:228-239. [PMID: 29376485 PMCID: PMC5989156 DOI: 10.1080/15592294.2018.1429857] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an important regulator of gene function. Fetal sex is associated with the risk of several specific pregnancy complications related to placental function. However, the association between fetal sex and placental DNA methylation remains poorly understood. We carried out whole-genome oxidative bisulfite sequencing in the placentas of two healthy female and two healthy male pregnancies generating an average genome depth of coverage of 25x. Most highly ranked differentially methylated regions (DMRs) were located on the X chromosome but we identified a 225 kb sex-specific DMR in the body of the CUB and Sushi Multiple Domains 1 (CSMD1) gene on chromosome 8. The sex-specific differential methylation pattern observed in this region was validated in additional placentas using in-solution target capture. In a new RNA-seq data set from 64 female and 67 male placentas, CSMD1 mRNA was 1.8-fold higher in male than in female placentas (P value = 8.5 × 10−7, Mann-Whitney test). Exon-level quantification of CSMD1 mRNA from these 131 placentas suggested a likely placenta-specific CSMD1 isoform not detected in the 21 somatic tissues analyzed. We show that the gene body of an autosomal gene, CSMD1, is differentially methylated in a sex- and placental-specific manner, displaying sex-specific differences in placental transcript abundance.
Collapse
Affiliation(s)
- Sungsam Gong
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom
| | - Michelle D Johnson
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - Justyna Dopierala
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - Francesca Gaccioli
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - Ulla Sovio
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - Miguel Constância
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - Gordon Cs Smith
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| | - D Stephen Charnock-Jones
- a Department of Obstetrics and Gynaecology , University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre , Cambridge , CB2 0SW , United Kingdom.,b Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience , University of Cambridge , Cambridge , CB2 3EG , United Kingdom
| |
Collapse
|