1
|
Chen X, Mao J, Zhou L, Jiang W, Li Z, Li Y, Chen S, Tan G, Xie Y, Wang C, Sun J. Reducing PKCδ inhibits tumor growth through growth hormone by inhibiting PKA/CREB/ERK signaling pathway in pituitary adenoma. Sci Rep 2025; 15:11461. [PMID: 40181069 PMCID: PMC11968925 DOI: 10.1038/s41598-025-95865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Patients with growth hormone-secreting pituitary adenoma (GHPA) often fail to exhibit the molecular signatures typically associated with tumorigenesis. This study investigates the role of protein kinase C delta (PKCδ) in modulating cell apoptosis, migration, invasion, and tumor growth in pituitary adenoma. We assessed the activation of the PKA/CREB/ERK signaling pathway and cell apoptosis through RT-qPCR and western blot analysis. Wound-healing and transwell assays were employed to evaluate cell migration and invasion. Combined treatment with rottlerin and phorbol 12-myristate 13-acetate (PMA) reversed the inhibition of the PKA/CREB/ERK signaling pathway, downregulated cell apoptosis, and reduced growth hormone secretion in GH3 cells. A decrease in the level of PKCδ also inhibited the PKA/CREB/ERK signaling pathway, reduced cell apoptosis, and suppressed the secretion of growth hormone. Notably, growth hormone reversed the decline in cell migration and invasion following PKCδ siRNA treatment. Moreover, in nude mice with tumor models, growth hormone reversed the reduction in tumor volume induced by PKCδ siRNA. In conclusion, this study demonstrates that reducing PKCδ inhibits tumor growth by suppressing growth hormone via inhibition of the PKA/CREB/ERK signaling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Jianyao Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Liwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Weichao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Zhangyu Li
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Yukui Li
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Guowei Tan
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Yuanyuan Xie
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, Xiamen Medical Quality Control Center for NeurologyThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Jinli Sun
- Department of Reproduction, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
2
|
Parveen S, Ikhlas S, Faruqui T, Hasan A, Khatoon A, Saeed M, Alkhathami AG, Siddiqui S, Uddin S, Mir SS. Identifying Potential Autophagy Modulators in Panch Phoron Spices (P5S): An In Silico approach. ACS OMEGA 2025; 10:871-884. [PMID: 39829452 PMCID: PMC11740127 DOI: 10.1021/acsomega.4c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Despite recent breakthroughs in diagnosis and treatment, cancer remains a worldwide health challenge with high mortality. Autophagy plays a major role in the progression and development. Starving cancer cells obtain nutrients through the upregulation of autophagy. Several compounds derived from natural sources, including animals, plants, and microorganisms, have been identified as potential novel anticancer drugs. Spices play an important role in human health and possess many medicinal properties. Our study aimed to identify potential autophagy modulators from panch phoron spices (P5S) through in silico approaches. Herein, we report a structure-based virtual screening of compounds isolated from P5S (i.e., cumin, fenugreek, fennel, black mustard, and black cumin) against the molecular targets of autophagy. Using various computational tools, we attempted to identify potential modulators of autophagy. Among all the screening results (such as binding energy, hydrogen bonding, drug-likeness, bioactivity, ADME properties, and toxicity), P5S, stigmasterol, and tigogenin showed the best drug-like properties and binding affinity toward the selected targets of autophagy. Furthermore, the stability of both complexes was evaluated by performing a 100 ns molecular dynamics simulation (MDS) using Schrodinger's Desmond Module. Our results provide insight into the efficacy of P5S components against cancer. Therefore, targeting autophagy using these molecules may be an effective and potential drug candidate for cancer treatment. In conclusion, stigmasterol and tigogenin may act as potential candidates for anticancer drugs by targeting autophagy.
Collapse
Affiliation(s)
- Sana Parveen
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
| | - Shoeb Ikhlas
- Department
of Cell Biology, Albert Einstein College
of Medicine, 1300, Moris
Park Ave, New York, New York 10461, United States
| | - Tabrez Faruqui
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
| | - Adria Hasan
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
- Department
of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
| | - Aisha Khatoon
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
| | - Mohd Saeed
- Department
of Biology College of Science, University
of Hail, Hail 2240, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Services Management, College of Public Health and Health
Informatics, University of Hail, Hail 2240, Saudi Arabia
| | - Shahab Uddin
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
- Translational
Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Snober S. Mir
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow, Uttar
Pradesh 226026, India
| |
Collapse
|
3
|
Hanna DA, Messiha BAS, Abo-Saif AA, Ali FEM, Azouz AA. Lysosomal membrane stabilization by imipramine attenuates gentamicin-induced renal injury: Enhanced LAMP2 expression, down-regulation of cytoplasmic cathepsin D and tBid/cytochrome c/cleaved caspase-3 apoptotic signaling. Int Immunopharmacol 2024; 126:111179. [PMID: 37995569 DOI: 10.1016/j.intimp.2023.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Nephrotoxicity is a serious complication commonly encountered with gentamicin (GTM) treatment. Permeabilization of lysosomes with subsequent cytoplasmic release of GTM and cathepsins is considered a crucial issue in progression of GTM toxicity. This study was designed to evaluate the prospective defensive effect of lysosomal membrane stabilization by imipramine (IMP) against GTM nephrotoxicity in rats. GTM (30 mg/kg/h) was intraperitoneally administered over 4 h daily (120 mg/kg/day) for 7 days. IMP (30 mg/kg/day) was orally administered for 14 days; starting 7 days before and then concurrently with GTM. On 15th day, samples (urine, blood, kidney) were collected to estimate biomarkers of kidney function, lysosomal stability, apoptosis, and inflammation. IMP administration to GTM-treated rats ameliorated the disruption in lysosomal membrane stability induced by GTM. That was evidenced by enhanced renal protein expressions of LAMP2 and PI3K, but reduced cathepsin D cytoplasmic expression in kidney sections. Besides, IMP guarded against apoptosis in GTM-treated rats by down-regulation of the pro-apoptotic (tBid, Bax, cytochrome c) and the effector cleaved caspase-3 expressions, while the anti-apoptotic Bcl-2 expression was enhanced. Additionally, the inflammatory cascade p38 MAPK/NF-κB/TNF-α was attenuated in GTM + IMP group along with marked improvement in kidney function biomarkers, compared to GTM group. These findings were supported by the obvious improvement in histological architecture. Furthermore, in vitro enhancement of the antibacterial activity of GTM by IMP confers an additional benefit to their combination. Conclusively, lysosomal membrane stabilization by IMP with subsequent suppression of tBid/cytochrome c/cleaved caspase-3 apoptotic signaling could be a promising protective strategy against GTM nephrotoxicity.
Collapse
Affiliation(s)
- Dina A Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
4
|
Suo L, Gao M, Ma T, Gao Z. Effect of RPL27 knockdown on the proliferation and apoptosis of human liver cancer cells. Biochem Biophys Res Commun 2023; 682:156-162. [PMID: 37812860 DOI: 10.1016/j.bbrc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
RPL27 is linked to the development of various diseases including malignant tumors. RPL27 may play an oncogenic function in hepatocellular carcinoma (HCC), but this is unknown. So, the aim of this study was to investigate how the human liver cancer cell lines SNU449 and HepG2 responded to RPL27 knockdown in terms of proliferation and apoptosis. SNU449 and HepG2 were cultured and infected with shCon and shRPL27 lentiviral particles to induce RPL27 knockdown, and then RPL27 expression was detected using qPCR and Western blot. Cell proliferation was measured using CCK8, cell cloning, cell scraping, and transwell migration and invasion, while apoptosis was measured using flow cytometry (FCM). The qPCR revealed that mRNA expression of RPL27 decreased after knocking down RPL27 in cells. The CCK8 and cell cloning assay confirmed that knocking down RPL27 significantly reduced cell viability. The cell scratch assay and transwell assays showed that the proliferation rate decreased after knocking down RPL27. A substantial increase in apoptotic cells was discovered by FCM. According to WB, RPL27 knockdown increased the expression of Bax and Caspase-3 while decreasing the expression of bcl-2. The findings showed that RPL27 knockdown inhibited cell proliferation in SNU449 and HepG2 via inducing apoptosis, proving that RPL27 is a novel gene linked with HCC and is crucial for both proliferation and apoptosis. These outcomes imply that RPL27 may be a potential target for liver cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lida Suo
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Taiheng Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Xie Y, Li Y, Chen J, Ding H, Zhang X. Early growth response-1: Key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovasc Med 2023; 10:1162662. [PMID: 37057102 PMCID: PMC10086247 DOI: 10.3389/fcvm.2023.1162662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
SignificanceCardiovascular diseases are seen to be a primary cause of death, and their prevalence has significantly increased across the globe in the past few years. Several studies have shown that cell death is closely linked to the pathogenesis of cardiovascular diseases. Furthermore, many molecular and cellular mechanisms are involved in the pathogenesis of the cardiac cell death mechanism. One of the factors that played a vital role in the pathogenesis of cardiac cell death mechanisms included the early growth response-1 (Egr-1) factor.Recent AdvancesStudies have shown that abnormal Egr-1 expression is linked to different animal and human disorders like heart failure and myocardial infarction. The biosynthesis of Egr-1 regulates its activity. Egr-1 can be triggered by many factors such as serum, cytokines, hormones, growth factors, endotoxins, mechanical injury, hypoxia, and shear stress. It also displays a pro-apoptotic effect on cardiac cells, under varying stress conditions. EGR1 mediates a broad range of biological responses to oxidative stress and cell death by combining the acute changes occurring in the cellular environment with sustained changes in gene expression.Future DirectionsThe primary regulatory role played by the Egr-1-targeting DNAzymes, microRNAs, and oligonucleotide decoy strategies in cardiovascular diseases were identified to provide a reference to identify novel therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Correspondence: Xiaowei Zhang
| |
Collapse
|
6
|
Tsai WH, Zeng YH, Lee CC, Chien MN, Liu SC, Chien KL, Cheng SP, Tseng PJ, Tsai MC. Association between thyroid cancer and cardiovascular disease: A meta-analysis. Front Cardiovasc Med 2023; 10:1075844. [PMID: 36937933 PMCID: PMC10020713 DOI: 10.3389/fcvm.2023.1075844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Objective To determine the association between thyroid cancer and coronary artery disease, atrial fibrillation, cerebrovascular disease, and cardiovascular disease mortality. Methods The PubMed, Embase, and Cochrane Library databases were searched for eligible studies from inception to September 22, 2022. Keywords included "thyroid cancer", "atrial fibrillation", "coronary artery disease", "cerebrovascular disease", and "mortality". Primary outcomes included the incidence of coronary artery disease, cerebrovascular disease, atrial fibrillation, and cardiovascular disease mortality among patients with thyroid cancer. Secondary outcomes included cardiovascular disease events among those with thyroid cancer that received or did not receive radioactive iodine or lenvatinib. Estimates were pooled using fixed- and random-effects meta-analysis. Results A total of 771,220 patients who underwent thyroidectomy in 15 studies were included. Risk for cerebrovascular disease (risk ratio [RR] 1.15 [95% confidence interval (CI) 1.10-1.21]) and atrial fibrillation [RR 1.59 (95% CI: 1.45-1.73)] were significantly increased. Risk for coronary artery disease was significantly increased [RR 1.12 (95% CI: 1.08-1.17)] in the common effect model. Cardiovascular disease mortality associated with thyroid cancer was not significant [RR 0.93 (95% CI: 0.59-1.45)]. Radioactive iodine had a neutral effect on cardiovascular disease [RR 1.00 (95% CI: 0.87-1.16)], and there was no beneficial nor harmful effect among different RAI doses. Conclusions Thyroid cancer was significantly associated with a higher risk for cerebrovascular disease and atrial fibrillation; however, the hazard risk was not different between patients with and without radioactive iodine treatment. Thyroid cancer treatment should be individualized considering the potential harms and benefits to cardiovascular health.
Collapse
Affiliation(s)
- Wen-Hsuan Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hong Zeng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chun-Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Sung-Chen Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of General Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Jung Tseng
- Division of Cardiovascular Surgery, Department of Surgery, Hsin Chu Armed Force Hospital, Hsinchu, Taiwan
| | - Ming-Chieh Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Tang M, Zheng Y, Li J, Hu Y. The X box binding protein 1/C/EBP homologous protein pathway induces apoptosis of endothelial cells under hyperglycemia. Exp Ther Med 2022; 24:454. [PMID: 35720621 DOI: 10.3892/etm.2022.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/16/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maoshun Tang
- Department of Neurosurgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yi Zheng
- Department of Science and Education, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Jianping Li
- Department of Cardiology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Yuanlang Hu
- Department of Obstetrics and Gynecology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| |
Collapse
|
8
|
Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6153772. [PMID: 35571249 PMCID: PMC9095366 DOI: 10.1155/2022/6153772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an efficient antitumor anthracycline drug, but its cardiotoxicity adversely affects the prognosis of the patients. In this study, we explored whether endogenous gasotransmitter hydrogen sulfide (H2S) could protect against DOX-induced cardiomyocyte apoptosis and its mechanisms. The results indicated that DOX significantly downregulated endogenous H2S production and endogenous synthetase cystathionine γ-lyase (CSE) expression and obviously stimulated the apoptosis in H9C2 cells. The supplement of H2S donor sodium hydrosulfide (NaHS) or overexpression of CSE inhibited DOX-induced H9C2 cell apoptosis. DOX enhanced the activities of caspase family members in cardiomyocytes, while NaHS attenuated DOX-enhanced caspase-3, caspase-2, and caspase-9 activities by 223.1%, 73.94%, and 52.29%, respectively. Therefore, taking caspase-3 as a main target, we demonstrated that NaHS or CSE overexpression alleviated the cleavage of caspase-3, suppressed caspase-3 activity, and inhibited the cleavage of poly ADP-ribose polymerase (PARP). Mechanistically, we found that H2S persulfidated caspase-3 in H9C2 cells and human recombinant caspase-3 protein, while the thiol-reducing agent dithiothreitol (DTT) abolished H2S-induced persulfidation of caspase-3 and thereby prevented the antiapoptotic effect of H2S on caspase-3 in H9C2 cells. The mutation of caspase-3 C148S and C170S failed to block caspase-3 persulfidation by H2S in H9C2 cells. However, caspase-3 C163S mutation successfully abolished the effect of H2S on caspase-3 persulfidation and the corresponding protection of H9C2 cells. Collectively, these findings indicate that endogenous H2S persulfidates caspase-3 at cysteine 163, inhibiting its activity and cardiomyocyte apoptosis. Sufficient endogenous H2S might be necessary for the protection against myocardial cell apoptosis induced by DOX. The results of the study might open new avenues with respect to the therapy of DOX-stimulated cardiomyopathy.
Collapse
|
9
|
Zhong F, Yang Y, Ren D, Long S, Qin X, Liu J, Zeng Y, Lan W, Ma W, Liu W. Hirsutanol A inhibits T-acute lymphocytic leukemia Jurkat cell viability through cell cycle arrest and p53-dependent induction of apoptosis. Exp Ther Med 2021; 22:741. [PMID: 34055057 PMCID: PMC8138276 DOI: 10.3892/etm.2021.10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Acute lymphocytic leukemia (ALL) is a type of childhood leukemia with the highest incidence; T-acute lymphocytic leukemia (T-ALL) is far more difficult to treat than B-acute lymphocytic leukemia (B-ALL) and has a poor long-term prognosis. Therefore, there is an urgent requirement to develop effective drugs for the treatment of T-ALL. Hirsutanol A is a natural sesquiterpenoid compound. The aim of the present study was to evaluate the in vitro anticancer activity of hirsutanol A against T-acute lymphocytic leukemia Jurkat cells and investigate the mechanism of action. A Cell Counting Kit-8 assay demonstrated that hirsutanol A inhibited the viability of Jurkat cells in a dose- and time-dependent manner. In addition, hirsutanol A induced cell cycle arrest at the G2 phase as determined via flow cytometry. Furthermore, Hoechst staining, Annexin V-FITC/propidium iodide double staining, mitochondrial membrane potential detection using JC-1 and western blot analysis of apoptotic proteins indicated that the inhibitory effect of hirsutanol A on Jurkat cells was associated with the induction of apoptosis. Of note, hirsutanol A induced the expression of the tumor suppressor p53, whereas simultaneous treatment with pifithrin-α, an inhibitor of p53, significantly reduced Jurkat cell apoptosis induced by hirsutanol A. In summary, the present study suggested that hirsutanol A inhibited Jurkat cell viability through induction of cell cycle arrest and p53-dependent initiation of apoptosis, thus hirsutanol may serve as a promising compound for the treatment of T-ALL.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Danwei Ren
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Sili Long
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Jing Liu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| | - Wenjian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China
| | - Wenjun Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, Macau SAR, P.R. China.,Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
10
|
Liu SD, Timur Y, Xu L, Meng WX, Sun B, Qiu DY. Inhibiting the ROCK Pathway Ameliorates Acute Lung Injury in Mice following Myocardial Ischemia/reperfusion. Immunol Invest 2021; 51:931-946. [PMID: 33655821 DOI: 10.1080/08820139.2021.1887887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To clarify the role of Y-27632, a selective inhibitor of Rho-associated coiled-coil forming protein kinase (ROCK), in acute lung injury (ALI) induced by myocardial ischemia/reperfusion (I/R). Mice were randomized into Sham, I/R, and Y-27632 (10, 20 or 30 mg/kg) + I/R groups, and hemodynamics, infarcted area, the protein concentration, neutrophils in bronchoalveolar lavage fluid (BALF), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels were assessed. Pathological changes were evaluated by hematoxylin-eosin (HE) staining; protein and gene expression were measured by Western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR); and apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining. ROCK1 and ROCK2 expression was up-regulated in lung tissues of I/R mice compared to sham mice. Y-27632 decreased the protein concentration and the neutrophils in BALF in I/R mice, improved hemodynamics and reduced infarct size (IS)/area at risk (AAR) ratio. In addition, pathological changes in lung tissues of Y-27632-treated mice were mitigated, and these alterations were accompanied by decreases in MDA levels in lung tissues and increases in SOD and GSH-Px levels. Moreover, in I/R group, the number of apoptotic cells in lung tissue was higher than that in sham group, and p53, Caspase-3 and Bax expression was up-regulated; however, following treatment with Y-27632 (10, 20 and 30 mg/kg), these changes were reversed. Inhibition of ROCK pathway by Y-27632 ameliorated ALI in myocardial I/R mice by mitigating oxidative stress, inflammation and cell apoptosis.
Collapse
Affiliation(s)
- Shang-Dian Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yagudin Timur
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Department of Pharmacology, Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russian Federation
| | - Lei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei-Xin Meng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dong-Yun Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun 2021; 12:522. [PMID: 33483496 PMCID: PMC7822959 DOI: 10.1038/s41467-020-20844-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
Cardiac ischemia-reperfusion (I/R) injury is a pathological process resulting in cardiomyocyte death. The present study aims to evaluate the role of the long noncoding RNA Cardiac Injury-Related Bclaf1-Inhibiting LncRNA (lncCIRBIL) on cardiac I/R injury and delineate its mechanism of action. The level of lncCIRBIL is reduced in I/R hearts. Cardiomyocyte-specific transgenic overexpression of lncCIRBIL reduces infarct area following I/R injury. Knockout of lncCIRBIL in mice exacerbates cardiac I/R injury. Qualitatively, the same results are observed in vitro. LncCIRBIL directly binds to BCL2-associated transcription factor 1 (Bclaf1), to inhibit its nuclear translocation. Cardiomyocyte-specific transgenic overexpression of Bclaf1 worsens, while partial knockout of Bclaf1 mitigates cardiac I/R injury. Meanwhile, partial knockout of Bclaf1 abrogates the detrimental effects of lncCIRBIL knockout on cardiac I/R injury. Collectively, the protective effect of lncCIRBIL on I/R injury is accomplished by inhibiting the nuclear translocation of Bclaf1. LncCIRBIL and Bclaf1 are potential therapeutic targets for ischemic cardiac disease.
Collapse
|
12
|
Wang Y, Chen Y, Yang M, Chen C. Effects of ginsenoside Rb1 on serum brain natriuretic peptide level and caspase-3 protein expression in cardiomyocytes of rats with chronic heart failure. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_561_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Nine Genes Mediate the Therapeutic Effects of Iodine-131 Radiotherapy in Thyroid Carcinoma Patients. DISEASE MARKERS 2020; 2020:9369341. [PMID: 32626543 PMCID: PMC7317313 DOI: 10.1155/2020/9369341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Background Thyroid carcinoma (THCA) is one of the most common malignancies of the endocrine system, which is usually treated by surgery combined with iodine-131 (I131) radiotherapy. Aims This study is aimed at exploring the potential targets of I131 radiotherapy in THCA. Methods The RNA-sequencing data of THCA in The Cancer Genome Atlas database (including 568 THCA samples) was downloaded. The differentially expressed genes (DEGs) between the tumour samples whether or not subjected to I131 radiotherapy were identified using edgeR package. Using the WGCNA package, the module that was relevant with I131 radiotherapy was selected. The intersection genes of the hub module nodes and the DEGs were obtained as hub genes, followed by the function and pathway enrichment analyses using the clusterProfiler package. Moreover, the protein-protein interaction (PPI) network for the hub genes was constructed using Cytoscape software. In addition, more important hub genes were analysed with function mining using the GenCLiP2 online tool. The qPCR analysis was used to verify the mRNA expression of more important hub genes in THCA tissues. Results There were 500 DEGs (167 upregulated and 333 downregulated) between the two groups. WGCNA analysis showed that the green module (428 nodes) exhibited the most significant correlation with I131 radiotherapy. A PPI network was built after the identification of 53 hub genes. In the PPI network, CDH5, KDR, CD34, FLT4, EMCN, FLT1, ROBO4, PTPRB, and CD93 exhibited higher degrees, which were mainly implicated in the vascular function. The relative expression of nine mRNAs in the THCA tissues treated with I131 was lower. Conclusion I131 radiotherapy might exert therapeutic effects by targeting CDH5, KDR, CD34, FLT4, EMCN, FLT1, ROBO4, PTPRB, and CD93 in THCA patients.
Collapse
|
14
|
Zhang M, Chen L, Xu F, Jiang L, Yan W, Kunwar B, Tang F, Yang K, Shen C, Huang H, Lv J, Qin C, Wu X, Zeng S, Li M, Zhong S, Chen Q. Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush. Curr Mol Med 2019; 20:51-59. [PMID: 31533600 DOI: 10.2174/1566524019666190918160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Purpose:
Retinal ganglion cells (RGCs) apoptosis is a common characteristic
of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known
regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into
three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the
physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC)
model.
Methods:
All animals were evenly randomized into four groups: sham-control group,
con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA).
Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by
Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated
with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced
RGCs apoptosis using TUNEL staining.
Results:
The level of full-length PIDD was weakly present and showed no significant
differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in
the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly
increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of
PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented
RGCs apoptosis by inhibiting caspase-2 and tBid activation.
Conclusions:
Taken together, PIDD may play a crucial role in RGCs apoptosis after
ONC, and this process may be relevant to caspase-2 and tBid.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bibhav Kunwar
- Guangzhou Medical University, Guangzhou 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Ke Yang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chen Qin
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shan Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
15
|
Ma M, Zhang C, Xiang XH, Deng XQ, Dai SL, Wei SS, Zhang XM, Zhao LM, Liu YJ, Shan BE. p-Hydroxylcinnamaldehyde from cochinchinamomordica seed reverses resistance to TRAIL in human oesophageal squamous cell carcinoma via the activation of the p38 mitogen-activated protein kinase signalling pathway. Biomed Pharmacother 2019; 121:109611. [PMID: 31731196 DOI: 10.1016/j.biopha.2019.109611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Our previous studies have showed that p-Hydroxylcinnamaldehyde (CMSP) could induce the differentiation of ESCC cells via the cAMP-RhoA-MAPK signalling pathway, which suggests a new potential strategy for ESCC treatment. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in several tumour cells by binding to the death receptors DR4 and DR5. However, TRAIL has little effect on oesophageal squamous cell carcinoma (ESCC) cells due to the loss of the receptors. The present study determined the effect of CMSP, the firstly found chemical constituent of Cochinchinamomordica seed (CMS), on TRAIL-induced apoptosis and its mechanism in ESCC cells. METHODS MTS assays were performed to examine the CMSP- and TRAIL-mediated inhibition of ESCC cell growth. Flow cytometry and Hoechst 33258 staining assays were used to detect apoptosis in ESCC cells treated with CMSP combined with TRAIL. Western blotting was used to determine the effect of CMSP on the expression of p38, p-p38, DR4, DR5, Bid and caspase-3/8 in ESCC cells treated with CMSP combined with TRAIL. Additionally, immunodeficient Balb-c/null mouse model was used to determine the chemotherapeutic efficacy of CMSP and TRAIL against ESCC tumour xenograft growth in vivo. RESULTS We found that the combination of CMSP and TRAIL had a greater inhibitory effect on ESCC cell viability in vitro than CMSP or TRAIL alone. CMSP enhanced the TRAIL-induced apoptosis in ESCC cells by upregulating the expression of DR4 and DR5 via the p38 MAPK signalling pathway. Furthermore, the increased expression of DR4 and DR5 upon TRAIL-induced apoptosis in ESCC cells was mediated at least in part by subsequent caspase-3 and caspase-8 activation. Moreover, the in vivo model showed that tumour growth was significantly slower in CMSP and TRAIL combination-treated mice than in mice treated with CMSP or TRAIL alone. CONCLUSION Taken together, our findings indicate that CMSP as an extract from TCM, might be as a potential sensitizer of TRAIL and thus provide a novel strategy for the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Ming Ma
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China; Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050021, China
| | - Cong Zhang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiao-Han Xiang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiao-Qing Deng
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Su-Li Dai
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Si-Si Wei
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiang-Mei Zhang
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lian-Mei Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Yun-Jiang Liu
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Bao-En Shan
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
16
|
Yang L, Dou Y, Sui Z, Cheng H, Liu X, Wang Q, Gao P, Qu Y, Xu M. Upregulated miRNA-182-5p expression in tumor tissue and peripheral blood samples from patients with non-small cell lung cancer is associated with downregulated Caspase 2 expression. Exp Ther Med 2019; 19:603-610. [PMID: 31897103 PMCID: PMC6923754 DOI: 10.3892/etm.2019.8074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest morbidity and mortality rates among all malignant tumors worldwide. Previous studies demonstrated that microRNA (miR)-182-5p may serve different roles in different types of cancer, including renal cell carcinoma and liver cancer. However, the functional role of miR-182-5p in non-small cell lung cancer (NSCLC) remains unknown. In the current study, the expression level of miR-182-5p in tumor tissue and peripheral blood samples obtained from patients with NSCLC was examined. The biological function of miR-182-5p on NSCLC cell proliferation was also investigated. Tissue and adjacent normal tissue samples were collected from 33 patients with NSCLC. In addition, peripheral blood samples were obtained from patients with NSCLC and 26 healthy control patients. The NSCLC cell line H1299 was used for all functional assays. Reverse transcription-quantitative polymerase chain reaction was used to determine the miR-182-5p or Caspase 2 (CASP2) mRNA expression levels in NSCLC tissue and peripheral blood samples, as well as in the NSCLC cell line. Western blotting was used to examine the protein expression level of CASP2 in tissue samples and cells, and ELISA was performed to measure the protein level of CASP2 in peripheral blood samples. MTT assay was performed to examine NSCLC cell proliferation. Flow cytometry was used to detect apoptosis. Dual-luciferase reporter assay was used to examine whether miRN182-5p directly interacts with CASP2. The current study demonstrated that miR-182-5p expression was upregulated in NSCLC tissue and peripheral blood samples from patients with NSCLC, which suggests that miR-182-5p, may serve a functional role in NSCLC. In addition, inhibition of miR-182-5p expression suppressed cell proliferation and enhanced cell apoptosis in NSCLC cells. CASP2 expression was downregulated in NSCLC tissue and peripheral blood samples from patients with NSCLC. The current study demonstrated that miR-182-5p may regulate NSCLC cell proliferation and apoptosis by regulating CASP2 expression as miR-182-5p directly binds with the 3′-untranslated region of CASP2, thereby regulating CASP2 expression.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathology and Pathophysiology, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Ye Dou
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Zhuxin Sui
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Hui Cheng
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Xia Liu
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Qinglu Wang
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Peifu Gao
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Yin'e Qu
- Department of Histology and Embryology, School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ming Xu
- Department of Human Anatomy, Histology and Embryology, Teaching Department of Basic Medicine, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| |
Collapse
|