1
|
Törzsök P, Santer FR, Kunz Y, van Creij NCH, Tymoszuk P, Klinglmair G, Culig Z, Pichler R. Biological and therapeutic implications of sex hormone-related gene clustering in testicular cancer. Basic Clin Androl 2025; 35:8. [PMID: 40011822 DOI: 10.1186/s12610-025-00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Gonadotropin dysregulation seems to play a potential role in the carcinogenesis of testicular germ cell tumor (TGCT). The aim of this study was to explore the expression of specific genes related to sex hormone regulation, synthesis, and metabolism in TGCT and to define specific hormonal clusters. Two publicly available databases were used for this analysis (TCGA and GSE99420). By means of hard-threshold regularized KMEANS clustering, we assigned TGCT samples into four clusters defined in respect to different expression of the sex hormone-related genes. We analysed clinical data, protein and gene expression, signaling regarding hormonal clusters. Based on whole-transcriptome gene expression, prediction of anti-cancer drug response was made by RIDGE models. RESULTS Cluster #1 (12-16%) consisted primarily of non-seminomatous germ cell tumor (NSGCT), characterized by high expression of PRL, GNRH1, HSD17B2 and SRD5A1. Cluster #2 (42-50%) included predominantly seminomas with high expression of SRD5A3, being highly infiltrated by T and B cells. Cluster #3 (8.3-18%) comprised of NSGCT with high expression of CGA, CYP19A1, HSD17B12, HSD17B1, SHBG. Cluster #4 (23-30%), which consisted primarily of NSGCT with a small fraction of seminomas, was outlined by increased expression of STAR, POMC, CYP11A1, CYP17A1, HSD3B2 and HSD17B3. Elevated fibroblast levels and increased extracellular matrix- and growth factor signaling-related gene signature scores were described in cluster #1 and #3. In the combined model of progression-free survival, S2/S3 tumor marker status, hormonal cluster #1 or #3 and teratoma histology, were independently associated with 25-30% increase of progression risk. Based on the increased receptor tyrosine kinase and growth factor signaling, cluster #1, #3 and #4 were predicted to be sensitive to tyrosine kinase inhibitors, FGFR inhibitors or EGFR/ERBB inhibitors. Cluster #2 and #4 were responsive to compounds interfering with DNA synthesis, cytoskeleton, cell cycle and epigenetics. Response to apoptosis modulators was predicted only for cluster #2. CONCLUSIONS Hormonal cluster #1 or #3 is an independent prognostic factor regarding poor progression-free survival. Hormonal cluster assignment also affects the predicted drug response with cluster-dependent susceptibility to specific novel therapeutic compounds.
Collapse
Affiliation(s)
- Péter Törzsök
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Frédéric R Santer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yannic Kunz
- Department of Urology, Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck (CCCI), Anichstraße 35, Innsbruck, 6020, Austria
| | - Nils C H van Creij
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Gerald Klinglmair
- Department of Urology, Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck (CCCI), Anichstraße 35, Innsbruck, 6020, Austria
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck (CCCI), Anichstraße 35, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Carrasco-Ceballos JM, Barrera-Hernández D, Locia-Espinosa J, Sampieri CL, Lara-Reyes JA, Hernández-Aguilar ME, Aranda-Abreu GE, Toledo-Cárdenas MR, Chi-Castañeda LD, Pérez-Estudillo CA, Rojas-Durán F. Involvement of the PRL-PAK1 Pathway in Cancer Cell Migration. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:17-25. [PMID: 36632591 PMCID: PMC9801455 DOI: 10.21873/cdp.10174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022]
Abstract
Prolactin (PRL) is a polypeptide hormone synthesized in the lactotrophs of the adenohypophysis and in extrahypophyseal glands (such as the prostate and breasts) where it promotes their development. PRL is also involved in cancer development in these glands. It has been shown to stimulate cancer cell migration, suggesting its possible involvement in metastasis, in which cell migration plays an essential role. However, the role of PRL in cell migration is still unclear. Moreover, the intracellular mechanisms activated by PRL to carry out cell migration are less well understood. PRL exerts its effects via the PRL receptor (PRLR), which leads intracellularly to phosphorylation of Janus protein kinase 2 (JAK2), which in turn phosphorylates p21-activated protein kinase (PAK1), leading to an increase in cell migration. Although several studies have described the involvement of the PRL-PAK1 pathway in breast cancer cell migration, the molecular mechanisms have not been fully elucidated and there is no integration of these into signaling pathways. This study was conducted based on literature search of review articles and original research in the PubMed database, using the following keywords: PRL, cell migration, PRL and cell migration, PAK1 and signaling pathways. The aim of this review article was to describe the major signaling pathways controlled by PRL-PAK1 and propose a comprehensive model of the signaling pathways associated with PRL-PAK1.
Collapse
Affiliation(s)
| | - David Barrera-Hernández
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - José Locia-Espinosa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
| | | | | | | | | | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
3
|
Martínez-Alarcón O, García-López G, Guerra-Mora JR, Molina-Hernández A, Diaz-Martínez NE, Portillo W, Díaz NF. Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology 2022; 112:201-214. [PMID: 33934093 DOI: 10.1159/000516939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is a versatile hormone that exerts more than 300 functions in vertebrates, mainly associated with physiological effects in adult animals. Although the process that regulates early development is poorly understood, evidence suggests a role of PRL in the early embryonic development regarding pluripotency and nervous system development. Thus, PRL could be a crucial regulator in oocyte preimplantation and maturation as well as during diapause, a reversible state of blastocyst development arrest that shares metabolic, transcriptomic, and proteomic similarities with pluripotent stem cells in the naïve state. Thus, we analyzed the role of the hormone during those processes, which involve the regulation of its receptor and several signaling cascades (Jak/Mapk, Jak/Stat, and PI3k/Akt), resulting in either a plethora of physiological actions or their dysregulation, a factor in developmental disorders. Finally, we propose models to improve the knowledge on PRL function during early development.
Collapse
Affiliation(s)
- Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José Raúl Guerra-Mora
- Departamento de Neurociencias, Instituto Nacional de Cancerología, Ciudad de México, Mexico
- Departamento de Cirugia Experimental, Instituto Nacional de Nutrición, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Néstor Emmanuel Diaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Quéretaro, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
4
|
Bhartiya D, Patel H, Kaushik A, Singh P, Sharma D. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. J Ovarian Res 2021; 14:145. [PMID: 34717703 PMCID: PMC8556987 DOI: 10.1186/s13048-021-00883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) is secreted by the anterior pituitary and acts on the germ cells indirectly through Granulosa cells in ovaries and Sertoli cells in the testes. Extragonadal action of FSH has been reported but is still debated. Adult tissues harbor two populations of stem cells including a reserve population of primitive, small-sized, pluripotent very small embryonic-like stem cells (VSELs) and slightly bigger, tissue-specific progenitors which include ovarian stem cells (OSCs) in ovaries, spermatogonial stem cells (SSCs) in testes, endometrial stem cells (EnSCs) in uterus and hematopoietic stem cells (HSCs) in the bone marrow. Data has accumulated in animal models showing FSHR expression on both VSELs and progenitors in ovaries, testes, uterus and bone marrow and eventually gets lost as the cells differentiate further. FSH exerts a direct action on the stem/progenitor cells via alternatively spliced FSHR-3 rather than the canonical FSHR-1. FSH stimulates VSELs to undergo asymmetrical cell divisions to self-renew and give rise to the progenitors that in turn undergo symmetrical cell divisions and clonal expansions followed by differentiation into specific cell types. Excessive self-renewal of VSELs results in cancer and this explains ubiquitous expression of embryonic markers including nuclear OCT-4 along with FSHR in cancerous tissues. Focus of this review is to compile published data to support this concept. FSHR expression in stem/progenitor cells was confirmed by immuno-fluorescence, Western blotting, in situ hybridization and by quantitative RT-PCR. Two different commercially available antibodies (Abcam, Santacruz) were used to confirm specificity of FSHR expression along with omission of primary antibody and pre-incubation of antibody with immunizing peptide as negative controls. Western blotting allowed detection of alternatively spliced FSHR isoforms. Oligoprobes and primers specific for Fshr-1 and Fshr-3 were used to study these alternately-sliced isoforms by in situ hybridization and their differential expression upon FSH treatment by qRT-PCR. To conclude, stem/progenitor cells in adult tissues express FSHR and directly respond to FSH via FSHR-3. These findings change the field of FSH-FSHR biology, call for paradigm shift, explain FSHR expression on cancer cells in multiple organs and provide straightforward explanations for various existing conundrums including extragonadal expression of FSHR.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
- Present address: Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
5
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|