1
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
4
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
5
|
Metselaar DS, du Chatinier A, Stuiver I, Kaspers GJL, Hulleman E. Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments. Front Oncol 2021; 11:662209. [PMID: 33869066 PMCID: PMC8047603 DOI: 10.3389/fonc.2021.662209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death in children. These epigenetically dysregulated tumors often harbor mutations in genes encoding histone 3, which contributes to a stem cell-like, therapy-resistant phenotype. Furthermore, pHGG are characterized by a diffuse growth pattern, which, together with their delicate location, makes complete surgical resection often impossible. Radiation therapy (RT) is part of the standard therapy against pHGG and generally the only modality, apart from surgery, to provide symptom relief and a delay in tumor progression. However, as a single treatment modality, RT still offers no chance for a cure. As with most therapeutic approaches, irradiated cancer cells often acquire resistance mechanisms that permit survival or stimulate regrowth after treatment, thereby limiting the efficacy of RT. Various preclinical studies have investigated radiosensitizers in pHGG models, without leading to an improved clinical outcome for these patients. However, our recently improved molecular understanding of pHGG generates new opportunities to (re-)evaluate radiosensitizers in these malignancies. Furthermore, the use of radio-enhancing agents has several benefits in pHGG compared to other cancers, which will be discussed here. This review provides an overview and a critical evaluation of the radiosensitization strategies that have been studied to date in pHGG, thereby providing a framework for improving radiosensitivity of these rapidly fatal brain tumors.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Iris Stuiver
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
6
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
7
|
Recent Advances in Understanding the Role of Autophagy in Paediatric Brain Tumours. Diagnostics (Basel) 2021; 11:diagnostics11030481. [PMID: 33803216 PMCID: PMC8000899 DOI: 10.3390/diagnostics11030481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a degradative process occurring in eukaryotic cells to maintain homeostasis and cell survival. After stressful conditions including nutrient deprivation, hypoxia or drugs administration, autophagy is induced to counteract pathways that could lead to cell death. In cancer, autophagy plays a paradoxical role, acting both as tumour suppressor—by cleaning cells from damaged organelles and inhibiting inflammation or, alternatively, by promoting genomic stability and tumour adaptive response—or as a pro-survival mechanism to protect cells from stresses such as chemotherapy. Neural-derived paediatric solid tumours represent a variety of childhood cancers with unique anatomical location, cellular origins, and clinical presentation. These tumours are a leading cause of morbidity and mortality among children and new molecular diagnostics and therapies are necessary for longer survival and reduced morbidity. Here, we review advances in our understanding of how autophagy modulation exhibits antitumor properties in experimental models of paediatric brain tumours, i.e., medulloblastoma (MB), ependymoma (EPN), paediatric low-grade and high-grade gliomas (LGGs, HGGs), atypical teratoid/rhabdoid tumours (ATRTs), and retinoblastoma (RB). We also discuss clinical perspectives to consider how targeting autophagy may be relevant in these specific paediatric tumours.
Collapse
|
8
|
Ahmed AR, Candeo A, D'Abrantes S, Needham SR, Yadav RB, Botchway SW, Parker AW. Directly imaging the localisation and photosensitization properties of the pan-mTOR inhibitor, AZD2014, in living cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 213:112055. [PMID: 33142217 PMCID: PMC7762844 DOI: 10.1016/j.jphotobiol.2020.112055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The range of cellular functions the mechanistic target of rapamycin (mTOR) protein performs makes it an attractive drug target for cancer therapy. However, the cellular localisation and mode of action of second generation inhibitors of mTOR is poorly understood despite the level of attention there is in targeting the mTOR protein. We have therefore studied the properties of the pan-mTOR inhibitor AZD2014, an ideal candidate to study because it is naturally fluorescent, characterising its photochemical properties in solution phase (DMSO, PBS and BSA) and within living cells, where it localises within both the nucleus and the cytoplasm but with different excited state lifetimes of 4.8 (+/- 0.5) and 3.9 (+/- 0.4) ns respectively. We measure the uptake of the inhibitor AZD2014 (7 μM) in monolayer HEK293 cells occurring with a half-life of 1 min but observe complex behaviour for 3D spheroids with the core of the spheroid showing a slower uptake and a slow biphasic behaviour at longer times. From a cellular perspective using fluorescence lifetime imaging microscopy AZD2014 was found to interact directly with GFP-tagged mTORC1 proteins including the downstream target, S6K1. We observe light sensitive behaviour of the cells containing AZD2014 which leads to cell death, in both monolayer and spheroids cells, demonstrating the potential of AZD2014 to act as a possible photodynamic drug under both single photon and multiphoton excitation and discuss its use as a photosensitizer. We also briefly characterise another pan-mTOR inhibitor, INK128.
Collapse
Affiliation(s)
- Abdullah R Ahmed
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK; Larch House, Woodlands Business Park, Breckland, Linford Wood, Milton Keynes MK14 6FG, UK
| | - Alessia Candeo
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Sofia D'Abrantes
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK; CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sarah R Needham
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Rahul B Yadav
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Stanley W Botchway
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.
| | - Anthony W Parker
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.
| |
Collapse
|
9
|
Sun Y, Bailey CP, Sadighi Z, Zaky W, Chandra J. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol 2020; 150:17-26. [PMID: 32504402 PMCID: PMC10141680 DOI: 10.1007/s11060-020-03546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Supratentorial pediatric high-grade gliomas (pHGGs) are aggressive malignancies that lack effective treatment options. Deep genomic sequencing by multiple groups has revealed that the primary alterations unique to pHGGs occur in epigenetic and kinase genes. These mutations, fusions, and deletions present a therapeutic opportunity by use of small molecules targeting epigenetic modifiers and kinases that contribute to pHGG growth. METHODS Using a targeted search of the pre-clinical literature and clinicaltrials.gov for kinase and epigenetic pathways in pHGG, we collectively describe how these mechanisms are being targeted in pre-clinical animal models and in current clinical trials, as well as propose unexplored therapeutic possibilities for future investigations. RESULTS Relevant pHGG kinases are targetable by several FDA-approved or clinical-stage kinase inhibitors, including altered BRAF/MET/NTRK/ALK and wild-type PI3K/EGFR/PDGFR/VEGF/AXL. Epigenetic proteins implicated in pHGG are also clinically targetable and include histone erasers, writers and readers such as HDACs, demethylases LSD1/JMJD3, methyltransferase EZH2, chromatin reader bromodomains, and chromatin remodeler subunit BMI-1. Crosstalk between these pathways can occur involving kinases such as EGFR and AMPK interacting with epigenetic modifiers such as HDACs or EZH2. Single agent trial results of kinase inhibitors or epigenetic targets alone are underwhelming and hampered by poor pharmacokinetics, adaptive resistance, and broad inclusion criteria. CONCLUSIONS The genetic and phenotypic diversity of pHGGs is now well characterized after large-scale sequencing studies on patient tissue. However, clinical treatment paradigms have not yet shifted in response to this information. Combination therapies targeting multiple kinases or epigenetic targets may hold more promise, especially if attempted in selected patient populations with hemispheric pHGG tumors and relevant targeted therapeutic biomarkers.
Collapse
Affiliation(s)
- Yusha Sun
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Cavan P Bailey
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Zsila Sadighi
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Joya Chandra
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA. .,Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Zhao D, Jiang M, Zhang X, Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Mol Med 2020; 26:20. [PMID: 32041519 PMCID: PMC7011243 DOI: 10.1186/s10020-020-0146-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-activation.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China.
| |
Collapse
|
12
|
Green AL, Flannery P, Hankinson TC, O’Neill B, Amani V, DeSisto J, Knox A, Chatwin H, Lemma R, Hoffman LM, Mulcahy Levy J, Raybin J, Hemenway M, Gilani A, Koschmann C, Dahl N, Handler M, Pierce A, Venkataraman S, Foreman N, Vibhakar R, Wempe MF, Dorris K. Preclinical and clinical investigation of intratumoral chemotherapy pharmacokinetics in DIPG using gemcitabine. Neurooncol Adv 2020; 2:vdaa021. [PMID: 32642682 PMCID: PMC7212907 DOI: 10.1093/noajnl/vdaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hundreds of systemic chemotherapy trials in diffuse intrinsic pontine glioma (DIPG) have not improved survival, potentially due to lack of intratumoral penetration, which has not previously been assessed in humans. METHODS We used gemcitabine as a model agent to assess DIPG intratumoral pharmacokinetics (PK) using mass spectrometry. RESULTS In a phase 0 clinical trial of i.v. gemcitabine prior to biopsy in children newly diagnosed with DIPG by MRI, mean concentration in 4 biopsy cores in patient 1 (H3K27M diffuse midline glioma) was 7.65 µM. These compare favorably to levels for patient 2 (mean 3.85 µM, found to have an H3K27-wildtype low-grade glioma on histology), and from a similar study in adult glioblastoma (adjusted mean 3.48 µM). In orthotopic patient-derived xenograft (PDX) models of DIPG and H3K27M-wildtype pediatric glioblastoma, gemcitabine levels and clearance were similar in tumor, pons, and cortex and did not depend on H3K27 mutation status or tumor location. Normalized gemcitabine levels were similar in patient 1 and the DIPG PDX. CONCLUSIONS These findings, while limited to one agent, provide preliminary evidence for the hypotheses that lack of intratumoral penetration is not why systemic chemotherapy has failed in DIPG, and orthotopic PDX models can adequately model intratumoral PK in human DIPG.
Collapse
Affiliation(s)
- Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Patrick Flannery
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brent O’Neill
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Vladimir Amani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Aaron Knox
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Hannah Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Rakeb Lemma
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Lindsey M Hoffman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jean Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jennifer Raybin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Molly Hemenway
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ahmed Gilani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Nathan Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicholas Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael F Wempe
- University of Colorado School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Kathleen Dorris
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Temozolomide is a first-line treatment for newly diagnosed glioblastoma. In this review, we will examine the use of temozolomide in other contexts for treating gliomas, including recurrent glioblastoma, glioblastoma in the elderly, diffuse low- and high-grade gliomas, non-diffuse gliomas, diffuse intrinsic pontine glioma (DIPG), ependymoma, pilocytic astrocytoma, and pleomorphic xanthoastrocytoma. RECENT FINDINGS Temozolomide improved survival in older patients with glioblastoma, anaplastic gliomas regardless of 1p/19q deletion status, and progressive ependymomas. Temozolomide afforded less toxicity and comparable efficacy to radiation in high-risk low-grade gliomas and to platinum-based chemotherapy in pediatric high-grade gliomas. The success of temozolomide in promoting survival has expanded beyond glioblastoma to benefit patients with non-glioblastoma tumors. Identifying practical biomarkers for predicting temozolomide susceptibility, and establishing complementary agents for chemosensitizing tumors to temozolomide, will be key next steps for future success.
Collapse
Affiliation(s)
- Jason Chua
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA
| | - Elizabeth Nafziger
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA
| | - Denise Leung
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Abe H, Natsumeda M, Kanemaru Y, Watanabe J, Tsukamoto Y, Okada M, Yoshimura J, Oishi M, Fujii Y. MGMT Expression Contributes to Temozolomide Resistance in H3K27M-Mutant Diffuse Midline Gliomas and MGMT Silencing to Temozolomide Sensitivity in IDH-Mutant Gliomas. Neurol Med Chir (Tokyo) 2018; 58:290-295. [PMID: 29848907 PMCID: PMC6048353 DOI: 10.2176/nmc.ra.2018-0044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone H3 mutations are frequently found in diffuse midline gliomas (DMGs), which include diffuse intrinsic pontine gliomas and thalamic gliomas. These tumors have dismal prognoses. Recent evidence suggests that one reason for the poor prognoses is that O6-methylguanine-DNA methyltransferase (MGMT) promoter frequently lacks methylation in DMGs. This review compares the epigenetic changes brought about by histone mutations to those by isocitrate dehydrogenase-mutant gliomas, which frequently have methylated MGMT promoters and are known to be sensitive to temozolomide.
Collapse
Affiliation(s)
- Hideaki Abe
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Yu Kanemaru
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | | | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Junichi Yoshimura
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University
| |
Collapse
|