1
|
Lim HI, Kim GY, Choi YJ, Lee K, Ko SG. Uncovering the anti-cancer mechanism of cucurbitacin D against colorectal cancer through network pharmacology and molecular docking. Discov Oncol 2025; 16:551. [PMID: 40244518 PMCID: PMC12006582 DOI: 10.1007/s12672-025-02056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/01/2024] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer is a significant global health challenge due to chemoresistance, necessitating new treatments. Cucurbitacin D, with its anti-cancer properties, shows promise, but its effects on colorectal cancer are not well understood. We investigated the impact of cucurbitacin D on colorectal cancer cell lines using MTT assays and Annexin V/7-AAD staining followed by flow cytometry for apoptosis analysis. Public databases helped identify cucurbitacin D and colorectal cancer-related gene targets for network pharmacology analysis. Protein-protein interaction networks were constructed using STRING and analyzed in Cytoscape. Gene ontology and KEGG pathway enrichment analyses were performed using ClueGo. Molecular docking studies were conducted via Autodock Vina and visualized in Discovery Studio. Western blot assessed protein expression changes in key targets under cucurbitacin D. Cucurbitacin D dose-dependently reduced colorectal cancer cell viability and induced apoptosis. Network pharmacology pinpointed crucial targets like STAT3, AKT1, CCND1, and CASP3. Molecular docking confirmed strong interactions with these targets. Enrichment analysis highlighted involvement in the 'PI3K-AKT,' 'JAK-STAT,' and 'ErbB' signaling pathways. These findings suggest cucurbitacin D as a potential anti-colorectal cancer agent, demonstrating significant effects on cell viability and apoptosis, and engaging critical cancer-related pathways, making it a promising candidate for further colorectal cancer therapeutic research.
Collapse
Affiliation(s)
- Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ga Yoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yu-Jeong Choi
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Chen B, Dong X, Zhang J, Wang W, Song Y, Sun X, Zhao K, Sun Z. Effects of oxidative stress regulation in inflammation-associated gastric cancer progression treated using traditional Chinese medicines: A review. Medicine (Baltimore) 2023; 102:e36157. [PMID: 37986311 PMCID: PMC10659735 DOI: 10.1097/md.0000000000036157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Gastric cancer (GC) is a global public health concern that poses a serious threat to human health owing to its high morbidity and mortality rates. Due to the lack of specificity of symptoms, patients with GC tend to be diagnosed at an advanced stage with poor prognosis. Therefore, the development of new treatment methods is particularly urgent. Chronic atrophic gastritis (CAG), a precancerous GC lesion, plays a key role in its occurrence and development. Oxidative stress has been identified as an important factor driving the development and progression of the pathological processes of CAG and GC. Therefore, regulating oxidative stress pathways can not only intervene in CAG development but also prevent the occurrence and metastasis of GC and improve the prognosis of GC patients. In this study, PubMed, CNKI, and Web of Science were used to search for a large number of relevant studies. The review results suggested that the active ingredients of traditional Chinese medicine (TCM) and TCM prescriptions could target and improve inflammation, pathological status, metastasis, and invasion of tumor cells, providing a potential new supplement for the treatment of CAG and GC.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yujiao Song
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Chen W, Liu Q, Huang Z, Le C, Wang Y, Yang J. Cucurbitacin C as an effective anti-cancer agent: unveiling its potential role against cholangiocarcinoma and mechanistic insights. J Cancer Res Clin Oncol 2023; 149:13123-13136. [PMID: 37474681 DOI: 10.1007/s00432-023-05188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant epithelial tumor characterized by a dismal prognosis. Given the lack of therapeutic strategies and durable treatment options currently available, identifying innovative treatments for CCA is an urgent unmet clinical need. Cucurbitacin C (CuC) is a distinct variant of the cucurbitacin family, displaying promising anti-cancer activity against various tumor types. The primary objective of our research is to elucidate the promising effects of CuC on CCA. METHODS The impact of CuC on CCA cell lines was assessed by cell count kit-8 assay, EdU staining assay, colony formation assay, wound-healing assay, and Transwell assay. Flow cytometric analysis was conducted to explore the function of CuC treatments on cell-cycle distribution and apoptosis in CCA cells. Computational biology and network pharmacology approaches were utilized to predict potential targets of CuC. Furthermore, a tumor xenograft mouse model was established using CCA cells to explore the anti-cancer effects of CuC in vivo. RESULTS Our research findings revealed that CuC exerted a suppressive effect on CCA cell progression. Cell viability assays, EdU staining assays, and colony formation assays demonstrated that CuC effectively suppressed viability and proliferation of CCA cells. Wound-healing assays and Transwell assays indicated that CuC effectively inhibits the migratory and invasive capabilities of CCA cells. Flow cytometry analysis elucidated that CuC played its anti-proliferative role in CCA cells by arresting G0/G1 phase and increasing apoptosis. Through bioinformatics and network pharmacology analysis, in conjunction with western blot analysis, we demonstrated CuC mediated the inhibition of CCA cell progression through modulation of JAK2/STAT3 pathway. Additionally, the CCA xenograft tumor model was established, and the results supported the inhibition of CuC treatment against CCA progression in vivo. CONCLUSION Our study demonstrates that CuC possesses notable capabilities to suppress cell proliferation, migration, and invasion in CCA. Importantly, the inhibitory effects of CuC on CCA progression are attributed to its modulation of the JAK2/STAT3 signaling pathway. Altogether, our study demonstrated that CuC holds promise as a prospective therapeutic agent for treating CCA.
Collapse
Affiliation(s)
- Wangyang Chen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Chenyu Le
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China.
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
4
|
Guo N, Ma H, Li D, Fan H, Sun C, Sun Y. CS-NO suppresses inhibits glycolysis and gastric cancer progression through regulating YAP/TAZ signaling pathway. Cell Biochem Biophys 2023; 81:561-567. [PMID: 37558859 DOI: 10.1007/s12013-023-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Gastric cancer (GC) is a significant contributor to global mortality and is recognized for its elevated prevalence and fatality rates. Nitric Oxide (NO) plays a role in multiple aspects of cancer metastasis and progression. CS-NO is a polysaccharide-based biomaterial with NO-releasing properties that shows promising therapeutic potential. Nonetheless, the action mechanism of CS-NO in GC is still largely unclear. METHODS The present study employed various experimental techniques, including CCK-8 assay, colony formation assay, EdU staining, and transwell assays, to evaluate the proliferation, migration, and invasion of GC cells. Additionally, ELISA was utilized to measure glucose uptake, lactate production, and cellular ATP levels in GC cells. In vivo investigations on nude mice were conducted to validate the in vitro results. OBJECTIVE The present study aimed to examine the potential anti-tumor properties of CS-NO on GC through in vitro and in vivo investigations, while also exploring the underlying mechanisms involved. RESULTS Our data suggested that CS-NO might prevent GC cell invasion and migration. Decreased expressions of GLUT1, HK2, and LDHA further demonstrated that CS-NO significantly suppressed aerobic glycolysis in GC cells. The administration of CS-NO resulted in a significant reduction of YAP and TAZ levels in GC cells. Our data further show that CS-NO treatment could inhibit GC cancer growth in mice, consistent with the significant decrease in Ki67, GLUT1 and YAP expression levels. DISCUSSION AND CONCLUSION These findings could reveal the good effects of CS-NO therapy on inhibiting GC.
Collapse
Affiliation(s)
- Na Guo
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hongxuan Ma
- Faculty of Medicine, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dehui Li
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Huanfang Fan
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Chunxia Sun
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yunchao Sun
- The Second Surgical Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
5
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
6
|
Delgado-Tiburcio EE, Cadena-Iñiguez J, Santiago-Osorio E, Ruiz-Posadas LDM, Castillo-Juárez I, Aguiñiga-Sánchez I, Soto-Hernández M. Pharmacokinetics and Biological Activity of Cucurbitacins. Pharmaceuticals (Basel) 2022; 15:1325. [PMID: 36355498 PMCID: PMC9696414 DOI: 10.3390/ph15111325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Cucurbitacins are a class of secondary metabolites initially isolated from the Cucurbitaceae family. They are important for their analgesic, anti-inflammatory, antimicrobial, antiviral, and anticancer biological actions. This review addresses pharmacokinetic parameters recently reported, including absorption, metabolism, distribution, and elimination phases of cucurbitacins. It includes recent studies of the molecular mechanisms of the biological activity of the most studied cucurbitacins and some derivatives, especially their anticancer capacity, to propose the integration of the pharmacokinetic profiles of cucurbitacins and the possibilities of their use. The main botanical genera and species of American origin that have been studied, and others whose chemo taxonomy makes them essential sources for the extraction of these metabolites, are summarized.
Collapse
Affiliation(s)
| | - Jorge Cadena-Iñiguez
- Innovation in Natural Resource Management, Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Lucero Del Mar Ruiz-Posadas
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Israel Castillo-Juárez
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
- Department of Biomedical Sciences, School of Medicine, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Marcos Soto-Hernández
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| |
Collapse
|
7
|
Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Cucurbitacin D Induces G2/M Phase Arrest and Apoptosis via the ROS/p38 Pathway in Capan-1 Pancreatic Cancer Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6571674. [PMID: 33029168 PMCID: PMC7527894 DOI: 10.1155/2020/6571674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has a poor prognosis with a five-year survival rate of less than 10%. Moreover, chemotherapy is mostly rendered ineffective owing to chemotherapy resistance and cytotoxicity. Therefore, the development of effective therapeutic strategies and novel drugs against pancreatic cancer is an urgent need. Cucurbitacin D (CuD), a plant steroid derived from Trichosanthes kirilowii, is an anticancer agent effective against various cancer cell lines. However, the anticancer activity and molecular mechanism of CuD in pancreatic cancer remain unknown. Therefore, we aimed to investigate the anticancer activity and molecular mechanism of CuD in the human pancreatic cancer cell line, Capan-1. CuD induced cell cycle arrest at the G2/M phase, apoptosis, and reactive oxygen species generation in Capan-1 cell line. In addition, CuD induced the activation of the p38 MAPK signaling pathway that regulates apoptosis, which was also inhibited by N-acetyl-L-cysteine and the p38 inhibitor SB203580. These data suggest that CuD induces cell cycle arrest and apoptosis via the ROS/p38 pathway in Capan-1 pancreatic cancer cell line; hence, CuD is a promising candidate that should be explored further for its effectiveness as an anticancer agent against pancreatic cancer.
Collapse
|
9
|
Hong SH, Ku JM, Lim YS, Lee SY, Kim JH, Cheon C, Ko SG. Cucurbitacin D Overcomes Gefitinib Resistance by Blocking EGF Binding to EGFR and Inducing Cell Death in NSCLCs. Front Oncol 2020; 10:62. [PMID: 32133284 PMCID: PMC7041627 DOI: 10.3389/fonc.2020.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
In this study, the mechanism of the anticancer effect through which cucurbitacin D (CuD) can overcome gefitinib resistance in NSCLC was investigated. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, and cell migration and growth were observed by wound healing and colony formation assays, respectively. Levels of EGFR family members, protein kinase B, extracellular signal-regulated kinase, poly(ADP-ribose) polymerase, and G2/M phase-related proteins were detected by Western blot analysis. Immunofluorescence analysis was used to detect the intracellular expression of p-EGFR. Induction of apoptosis and cell cycle arrest was measured by flow cytometry. Solid-phase binding assays were used to determine binding to the EGFR family. CuD inhibits the phosphorylation of EGFR in gefitinib-resistant NSCLC cells and induces cell death via cell cycle arrest and apoptosis. CuD treatment or EGFR knockdown also suppressed the growth of gefitinib-resistant NSCLC cells. In addition, CuD overcame resistance by blocking EGF binding to EGFR in gefitinib-resistant NSCLC cells. In conclusion, we demonstrate that CuD overcomes gefitinib resistance by reducing the activation of EGFR-mediated survival in NSCLC and by inhibiting the combination of EGF and EGFR.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ye Seul Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ji Hye Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Novel Mechanistic Insight into the Anticancer Activity of Cucurbitacin D against Pancreatic Cancer (Cuc D Attenuates Pancreatic Cancer). Cells 2019; 9:cells9010103. [PMID: 31906106 PMCID: PMC7017063 DOI: 10.3390/cells9010103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PanCa) is one of the leading causes of death from cancer in the United States. The current standard treatment for pancreatic cancer is gemcitabine, but its success is poor due to the emergence of drug resistance. Natural products have been widely investigated as potential candidates in cancer therapies, and cucurbitacin D (Cuc D) has shown excellent anticancer properties in various models. However, there is no report on the therapeutic effect of Cuc D in PanCa. In the present study, we investigated the effects of the Cuc D on PanCa cells in vitro and in vivo. Cuc D inhibited the viability of PanCa cells in a dose and time dependent manner, as evident by MTS assays. Furthermore, Cuc D treatment suppressed the colony formation, arrest cell cycle, and decreased the invasion and migration of PanCa cells. Notably, our findings suggest that mucin 13 (MUC13) is down-regulated upon Cuc D treatment, as demonstrated by Western blot and qPCR analyses. Furthermore, we report that the treatment with Cuc D restores miR-145 expression in PanCa cells/tissues. Cuc D treatment suppresses the proliferation of gemcitabine resistant PanCa cells and inhibits RRM1/2 expression. Treatment with Cuc D effectively inhibited the growth of xenograft tumors. Taken together, Cuc D could be utilized as a novel therapeutic agents for the treatment/sensitization of PanCa.
Collapse
|
11
|
Sikander M, Malik S, Chauhan N, Khan P, Kumari S, Kashyap VK, Khan S, Ganju A, Halaweish FT, Yallapu MM, Jaggi M, Chauhan SC. Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11030364. [PMID: 30875788 PMCID: PMC6469021 DOI: 10.3390/cancers11030364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PrCa) metastasis is the major cause of mortality and morbidity among men. Metastatic PrCa cells are typically adopted for aberrant glucose metabolism. Thus, chemophores that reprogram altered glucose metabolic machinery in cancer cells can be useful agent for the repression of PrCa metastasis. Herein, we report that cucurbitacin D (Cuc D) effectively inhibits glucose uptake and lactate production in metastatic PrCa cells via modulating glucose metabolism. This metabolic shift by Cuc D was correlated with decreased expression of GLUT1 by its direct binding as suggested by its proficient molecular docking (binding energy −8.5 kcal/mol). Cuc D treatment also altered the expression of key oncogenic proteins and miR-132 that are known to be involved in glucose metabolism. Cuc D (0.1 to 1 µM) treatment inhibited tumorigenic and metastatic potential of human PrCa cells via inducing apoptosis and cell cycle arrest in G2/M phase. Cuc D treatment also showed inhibition of tumor growth in PrCa xenograft mouse model with concomitant decrease in the expression of GLUT1, PCNA and restoration of miR-132. These results suggest that Cuc D is a novel modulator of glucose metabolism and could be a promising therapeutic modality for the attenuation of PrCa metastasis.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Vivek Kumar Kashyap
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Aditya Ganju
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | | | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| |
Collapse
|