1
|
Christodoulidis G, Koumarelas KE, Kouliou MN, Thodou E, Samara M. Gastric Cancer in the Era of Epigenetics. Int J Mol Sci 2024; 25:3381. [PMID: 38542354 PMCID: PMC10970362 DOI: 10.3390/ijms25063381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein-Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor's metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Konstantinos-Eleftherios Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Marina-Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece; (G.C.); (K.-E.K.); (M.-N.K.)
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
2
|
He X, Chen X, Yang C, Wang W, Sun H, Wang J, Fu J, Dong H. Prognostic value of RNA methylation-related genes in gastric adenocarcinoma based on bioinformatics. PeerJ 2024; 12:e16951. [PMID: 38436027 PMCID: PMC10909369 DOI: 10.7717/peerj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.
Collapse
Affiliation(s)
- Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Junjie Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Jincheng Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| |
Collapse
|
3
|
Xu ZZ, Fei SK. Research progress of tight junction protein claudin-3 in hepatobiliary systemic diseases. Shijie Huaren Xiaohua Zazhi 2022; 30:668-673. [DOI: 10.11569/wcjd.v30.i15.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Claudin-3 is an important member of the claudin family of tight junction proteins and is the most abundant tight junction protein in the hepatobiliary system. It plays an important role in building tight junctions of hepatobiliary cells, and maintaining cellular barrier function and molecular delivery function. Dysregulation of hepatic claudin-3 expression leads to disruption of hepatobiliary system junctions, metabolic function, barrier function, proliferation capacity, and molecular delivery function, and is closely related to the development of various hepatobiliary diseases such as hepatic malignancies, cholesterol stones, and chronic liver diseases. In this paper, we review the progress in the research of claudin-3 in hepatobiliary diseases.
Collapse
Affiliation(s)
- Zu-Zhi Xu
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| | - Shu-Ke Fei
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| |
Collapse
|
4
|
Claudins and Gastric Cancer: An Overview. Cancers (Basel) 2022; 14:cancers14020290. [PMID: 35053454 PMCID: PMC8773541 DOI: 10.3390/cancers14020290] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer deaths worldwide, with a high frequency of recurrence and metastasis, and a poor prognosis. This review presents novel biological and clinical significance of claudin (CLDN) expression in GC, especially CLDN18, and clinical trials centered around CLDN18.2. It also presents new findings for other CLDNs. Abstract Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.
Collapse
|
5
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
6
|
Ren F, Zhao Q, Zhao M, Zhu S, Liu B, Bukhari I, Zhang K, Wu W, Fu Y, Yu Y, Tang Y, Zheng P, Mi Y. Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Sci 2021; 112:3569-3584. [PMID: 34251747 PMCID: PMC8409427 DOI: 10.1111/cas.15057] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/28/2022] Open
Abstract
The abundance and type of immune cells in the tumor microenvironment (TME) significantly influence immunotherapy and tumor progression. However, the role of immune cells in the TME of gastric cancer (GC) is poorly understood. We studied the correlations, proportion, and infiltration of immune and stromal cells in GC tumors. Data analyses showed a significant association of infiltration levels of specific immune cells with the pathological characteristics and clinical outcomes of GC. Furthermore, based on the difference in infiltration levels of immune and stromal cells, GC patients were divided into two categories, those with "immunologically hot" (hot) tumors and those with "immunologically cold" (cold) tumors. The assay for transposase-accessible chromatin using sequencing and RNA sequencing analyses revealed that the hot and cold tumors had altered epigenomic and transcriptional profiles. Claudin-3 (CLDN3) was found to have high expression in the cold tumors and negatively correlated with CD8+ T cells in GC. Overexpression of CLDN3 in GC cells inhibited the expression of MHC-I and CXCL9. Finally, the differentially expressed genes between hot and cold tumors were utilized to generate a prognostic model, which predicted the overall survival of GC as well as patients with immunotherapy. Overall, we undertook a comprehensive analysis of the immune cell infiltration pattern in GC and provided an accurate model for predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Feifei Ren
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Biotherapy Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghai Zhao
- Department of Gastrointestinal Surgery, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaogong Zhu
- Department of Gastrointestinal Surgery, People' s Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Liu
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Biotherapy Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanqing Wu
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Fu
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Yu
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youcai Tang
- Department of Pediatrics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Danilova NV, Anikina KA, Oleynikova NA, Vychuzhanin DV, Malkov PG. [Claudin-3 expression in gastric cancer]. Arkh Patol 2020; 82:5-11. [PMID: 32307433 DOI: 10.17116/patol2020820215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Claudins are a family of transmembrane proteins which are essential for the formation and maintenance of epithelial tight junctions. Altered expression of claudins may lead to structural and functional damage of tight junctions, which plays an important role in tumorigenesis and cancer progression. The expression of claudin-3 in gastric cancer is not yet well understood. AIM To evaluate the expression of claudin-3 in gasric cancer and in adjacent normal mucosa and its association with clinical and pathological parameters. SUBJECT AND METHODS Tissue specimens from a total of 69 patients with gastric cancer were obtained. Immunohistochemical reactions were performed using mouse polyclonal antibodies to claudin-3. RESULTS The expression of claudin-3 in gastric cancer was significantly higher than in adjacent normal mucosa (p<0,05). The absence of claudin-3 was significantly associated with poor differentiation (p<0,05). An abnormal nuclear expression of claudin-3 was observed in 69.6% cases. A significant association was found between nuclear expression and the absence of membranous claudin-3 expression (p<0,05).
Collapse
Affiliation(s)
- N V Danilova
- Medical Research and Educational Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - K A Anikina
- Medical Research and Educational Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - N A Oleynikova
- Medical Research and Educational Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - D V Vychuzhanin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - P G Malkov
- Medical Research and Educational Center, M.V. Lomonosov Moscow State University, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
8
|
Li XF, Zhang TG, Zhang YX. Correlation among VEGFR3 gene promoter methylation, protein overexpression, and clinical pathology in early gastric cancer. Transl Cancer Res 2020; 9:3499-3506. [PMID: 35117715 PMCID: PMC8798734 DOI: 10.21037/tcr.2020.03.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The occurrence and development of gastric cancer is a multi-factor, multi-stage, multi-gene abnormal accumulation process. Both genetic and epigenetic mechanisms play an important role in the molecular mechanism of gastric cancer. DNA methylation is one of the most studied epigenetic expression mechanisms. To study the correlation between gene promoter methylation status and protein expression of vascular endothelial growth factor receptor 3 (VEGFR3), as well as their association with clinicopathological features in early gastric cancer (EGC) cases. METHODS Immunohistochemical analysis and methylation-specific PCR (MSP) were used to detect the expression of VEGFR3 protein and methylation status of the VEGFR3 promoter in 50 cases of EGC and their paired normal gastric mucosa tissues. The level of DNA methylation of the VEGFR3 promoter, in situ VEGFR3 protein expression, and the clinicopathological characteristics of EGC patients were statistically analyzed. RESULTS The positive rate of VEGFR3 protein expression in EGC tumor tissue (60%) was significantly higher than that in the normal gastric mucosa (10%). The detectable methylation frequency of VEGFR3 promoter in EGC tumor tissue (48%) was significantly lower than that in the normal gastric mucosa (85%). As anticipated, the methylation level of the VEGFR3 gene promoter was negatively associated with the overexpression of VEGFR3 protein. In addition, methylation status of the VEGFR3 gene promoter was positively correlated with lymph node metastasis in EGC patients (P<0.05), but was not linked to patients' gender, age, tumor size, degree of differentiation, or tumor invasion depth (P>0.05). CONCLUSIONS Hypomethylation of the VEGFR3 gene promoter is one of the major mechanisms underlying VEGFR3 gene overexpression in EGC tumor tissues and is related to lymph node metastasis in EGC patients. DNA methylation of VEGFR3 is expected to become a molecular diagnostic and prognostic biomarker for EGC.
Collapse
Affiliation(s)
- Xiu-Feng Li
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
- Shandong University School of Medicine of China, Jinan 250012, China
| | - Ting-Guo Zhang
- Shandong University School of Medicine of China, Jinan 250012, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yun-Xiang Zhang
- Department of Pathology, Wei Fang People’s Hospital, Weifang 261041, China
| |
Collapse
|
9
|
Fang WL, Chen MH, Huang KH, Chang SC, Lin CH, Chao Y, Lo SS, Li AFY, Wu CW, Shyr YM. Analysis of the clinical significance of DNA methylation in gastric cancer based on a genome-wide high-resolution array. Clin Epigenetics 2019; 11:154. [PMID: 31675985 PMCID: PMC6824057 DOI: 10.1186/s13148-019-0747-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation is involved in gastric carcinogenesis and may serve as a useful biomarker in the diagnosis and detection of gastric cancer (GC) recurrence. RESULTS A total of 157 patients who received surgery for GC were enrolled in the present study. A genome-wide methylation analysis was performed in tumor and adjacent normal tissues for the discovery set of 16 GC patients; the top three hypermethylated CpG sites of DNA promoters were selected for validation in tissue and plasma samples for the validation set of 141 GC patients. The frequencies of the top three hypermethylated genes in available patient tissues (n = 141) and plasma samples (n = 106) were 41.8% and 38.7%, respectively, for ADAM19; 40.4% and 42.5%, respectively, for FLI1; and 56.7% and 50.9%, respectively, for MSC. In both tissue and plasma samples, FLI1 hypermethylation was associated with more advanced GC and liver and distant lymphatic metastasis, and ADAM19 hypermethylation was associated with more stage IV GC. In plasma samples, MSC hypermethylation was more common in non-superficial type GC than samples without MSC hypermethylation. In both tissue and plasma samples, patients with methylation of all the three genes had significantly more liver metastases, distant lymphatic metastases, and paraaortic lymph node metastases than patients with two or fewer hypermethylated genes. The survival analysis showed that only for stage III GC, patients with hypermethylation of two or three genes had a worse 5-year disease-free survival rate than those with hypermethylation of one or none of the three genes. Subgroup analysis showed that FLI1 hypermethylation in both tissue and plasma samples was associated with liver metastasis in MSI-/EBV- GC, and MSC hypermethylation in tissue samples was correlated with liver metastasis in MSI+ or EBV+ GC. Patients with FLI1 hypermethylation in plasma samples had a significantly worse 5-year disease-free survival rate than those without FLI1 hypermethylation in MSI-/EBV- GC. FLI1 hypermethylation was an independent prognostic factor affecting the overall survival and disease-free survival in both tissue and plasma samples. CONCLUSIONS DNA methylation is a useful biomarker for predicting tumor recurrence patterns and GC patient survival.
Collapse
Affiliation(s)
- Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei City, Taiwan, 11217. .,School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.,Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan, 11217
| | - Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei City, Taiwan, 11217.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217
| | - Shih-Ching Chang
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.,Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, 11217
| | - Chien-Hsing Lin
- Genome Research Center, National Yang-Ming University, Taipei City, Taiwan, 11217
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.,Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan, 11217
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.,National Yang-Ming University Hospital, Yilan County, Taiwan, 26058
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217.,Department of Pathology, Taipei Veterans General Hospital, Taipei City, 11217, Taiwan
| | - Chew-Wun Wu
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei City, Taiwan, 11217.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei City, Taiwan, 11217.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan, 11217
| |
Collapse
|