1
|
Xu L, Zhang S, Feng J, Tan D, Sun H, Guo H. ncRNAs-mediated overexpression of STIL predict unfavorable prognosis and correlated with the efficacy of immunotherapy of hepatocellular carcinoma. Cancer Cell Int 2023; 23:44. [PMID: 36899391 PMCID: PMC10007768 DOI: 10.1186/s12935-023-02869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND STIL centriolar assembly protein (STIL) is a cytoplasmic protein implicated in cellular growth and proliferation as well as chromosomal stability, which abnormal condition affected tumor immunity and tumor progression. However, the role of STIL in the biological mechanism of hepatocellular carcinoma (HCC) remains unclear. METHODS Comprehensive bioinformatic approaches, in vitro functional assays, and validation were conducted to elucidate the oncogenic value of STIL in HCC. RESULTS In the present study, we found that STIL may serve as an independent prognostic indicator and a potential oncogene in HCC. Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA) showed that upregulated expression of STIL was positively associated with pathways enriched in the cell cycle and DNA damage response. Subsequently, we identified several non-coding RNAs (ncRNAs) accounting for the upregulation of STIL expression using a combination of in silico bioinformatics approaches (including expression analysis, correlation analysis, and survival analysis). Finally, CCNT2-AS1/SNHG1-has-miR-204-5p-STIL axis was screened out as the most potential upstream ncRNA-related pathway of STIL in HCC. Moreover, STIL expression is highly associated with the infiltration of immune cells, the expression of immune checkpoints, as well as the survival benefit of immunotherapy/chemotherapy. CONCLUSIONS Our study discloses that ncRNAs-mediated overexpression of STIL independently predicted poor prognosis and correlated with the efficacy of PD-1-targeted immunotherapy in HCC.
Collapse
Affiliation(s)
- Longwen Xu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shirong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jinteng Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Deli Tan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hong Sun
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
2
|
Huang J, Jiang S, Liang L, He H, Liu Y, Cong L, Jiang Y. Analysis of PANoptosis-Related LncRNA-miRNA-mRNA Network Reveals LncRNA SNHG7 Involved in Chemo-Resistance in Colon Adenocarcinoma. Front Oncol 2022; 12:888105. [PMID: 35646635 PMCID: PMC9133343 DOI: 10.3389/fonc.2022.888105] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common malignancies, and its metastatic lesions are the leading cause of death in COAD patients. PANoptosis is a recently identified pathway for programmed cell death implicated in developing COAD. Long non-coding RNAs (lncRNAs) are key regulators of cancer occurrence and progress. Although their function has captured much attention in COAD, the relationship between COAD metastasis-associated lncRNA expression and PANoptosis remains elusive. Therefore, this study aimed to explore the potential regulatory roles of metastasis- and PANoptosis-associated lncRNAs in COAD. Nine lncRNAs associated with metastasis and PANoptosis in COAD were identified from The Cancer Genome Atlas (TCGA) and GEO databases. Their functions were analyzed by multiple bioinformatics methods, and the lncRNA-miRNA-mRNA network was constructed. Multivariate Cox analysis identified one lncRNA (SNHG7) significantly related to COAD prognosis. Subsequent analyses showed its expression correlated with tumor stage and lymph node metastasis. Moreover, drug sensitivity analysis and in vitro experiments suggest that lncRNA SNHG7 contributes to drug resistance in COAD. In summary, lncRNA SNHG7 is a potential target for diagnosing and treating COAD and plays a crucial role in regulating apoptosis, metastasis, and drug resistance in COAD.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Zhu L, Lu J, Yang Y, Miao Y, Chen H, Zhang J. LncRNA SNHG1 Expression Changes and Mechanism Regulating in Breast Cancer. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.932.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Song M, Li Y, Chen Z, Zhang J, Yang L, Zhang F, Song C, Miao M, Chang W, Shi H. The Long Non-Coding RNA FAM222A-AS1 Negatively Modulates MiR-Let-7f to Promote Colorectal Cancer Progression. Front Oncol 2022; 12:764621. [PMID: 35646686 PMCID: PMC9133450 DOI: 10.3389/fonc.2022.764621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that lncRNAs are potential biomarkers and key regulators of tumor development and progression. The present study aimed to screen abnormal expression lncRNAs and investigate the mechanisms underlying the function in the progression of colorectal cancer (CRC). Potential CRC prognosis-associated dysregulated lncRNAs were screened and identified using bioinformatics analysis. Loss/gain-of-function experiments were performed to detect the biological roles of FAM222A-AS1 in CRC cell phenotypes in vitro and in vivo. The potential microRNAs that interact with FAM222A-AS1 were identified using online tools and were verified using qRT-PCR and luciferase reporter assay. The expression of FAM222A-AS1 is significantly upregulated in CRC tumor samples and cell lines. CRC patients with elevated FAM222A-AS1 expression in the tumor samples had unfavorable overall survival and disease-free survival. Silencing FAM222A-AS1 expression significantly inhibited CRC cell proliferation, migration, and invasion both in vitro and in vivo. Furthermore, FAM222A-AS1 was mainly distributed in the cytoplasm. It may directly bound to miR-let-7f and inhibit its expression and upregulate MYH9. In summary, FAM222A-AS1, as a novel oncogene in CRC, may promote the CRC progression by inhibiting miR-let-7f/MYH9 axis. The FAM222A-AS1/miR-let-7f/MYH9 signaling pathway may be a novel valuable target for inhibiting CRC.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ye Li
- Department of Digestive Endoscopy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Fan Zhang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, Henan Key Laboratory of Tumor Epidemiology College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingyong Miao
- Department of Biochemistry, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Wenjun Chang
- Department of Environmental Health, Second Military Medical University, Shanghai, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- *Correspondence: Hanping Shi, ; Wenjun Chang, ; Mingyong Miao,
| |
Collapse
|
5
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
6
|
He X, Miao Q, Yi Y, Hu W, Wu M, Wu Y, Zhang Q. Analysis of the regulation of metastasis-associated lung adenocarcinoma transcript 1 on the biological behavior of breast cancer. Transl Cancer Res 2021; 10:1609-1619. [PMID: 35116487 PMCID: PMC8799144 DOI: 10.21037/tcr-20-3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a class of long non-coding RNA (lncRNA) that has been proved to be closely related to many cancers. METHODS The relevant research on MALAT1 in cancers published in recent years were collected and integrated. CiteSpace was employed to draw a knowledge map of MALAT1 in breast cancer, to evaluate the research front-burner issues. Then, multiple microarray data sets were searched from online data for meta-analysis to evaluate the relationship between MALAT1 and breast cancer survival rate. RESULTS The results showed that MALAT1 had been widely studied in the proliferation and differentiation of cancer cells, and MALAT1 might regulate breast cancer through the PI3K/AKT/mTOR signaling pathway. In addition, high expression of MALAT1 had a significant correlation with relapse-free survival (HR: 1.51, 95% CI: 0.79-2.29), while there was no significant correlation between MALAT1 expression and overall survival (HR: 1.09, 95% CI: 0.63-1.72). CONCLUSIONS The expression level of lncRNA MALAT1 was closely related to cancer progression and prognosis of cancer patients. Moreover, the expression of MALAT1 was strongly associated with the survival rate of recurrence-free breast cancer. However, since the present study only adopted the existing literature for visual analysis, subsequent experiments are needed to be done to verify this conclusion. It is hoped that this work could provide a theoretical foundation for promoting the clinical adoption of MALAT1 in the prediction, diagnosis, and treatment of breast cancer, and point out a new direction for the in-depth exploration of the function of MALAT1.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfang Miao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang X, Yang S, Lv X, Wang L, Li C. Overexpression of LncRNA SNHG1 Were Suitable for Oncolytic Adenoviruse H101 Therapy in Oral Squamous-Cell Carcinoma. Onco Targets Ther 2020; 13:13033-13039. [PMID: 33376352 PMCID: PMC7762447 DOI: 10.2147/ott.s285536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background As the most prevalent type of head and neck cancer, oral squamous-cell carcinoma (OSCC) accounts for nearly 90% of all oral cancer cases. Despite great progress having been made in the diagnosis and treatment of OSCC recently, the survival rate of OSCC patients has not risen remarkably. Chemotherapy is commonly used for OSCC treatment; however, the emergence of chemoresistance limits its long-term curative effect. Therefore, identifying effective biomarkers and molecular mechanisms is essential to the development of therapeutic strategies for OSCC. Methods qRT-PCR assays were performed to detect SNHG1 expression in OSCC tissue and cells, and CCK8 assays and animal experiments used to examine cell proliferation. In addition, CCK8 assays were used to detect IC50 values of cisplatin, 5Fu, Dox, and oncolytic adenovirus H101. Results We found that SNHG1 was overexpressed in OSCC tissue and cells and was associated with OSCC progression. In addition, knockdown of SNHG1 suppressed cell proliferation in vitro and in vivo. Importantly, we found that oncolytic adenovirus H101 showed better antitumor effects in OSCC with high SNHG1 expression, and chemotherapy showed worse anti-tumor effects in OSCC with high SNHG1 expression. Conclusion SNHG1 can act as a diagnostic biomarker for OSCC, and may be a biomarker for treatment options.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plastic Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| | - Song Yang
- Department of Plastic Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| | - Xuechao Lv
- Department of Pediatric Dentistry, School of Stomatology, Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Lina Wang
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, People's Republic of China
| | - Chunmei Li
- Department of Outpatient Stomatology, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| |
Collapse
|
8
|
Chen S, Shen X. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol Cancer 2020; 19:167. [PMID: 33246471 PMCID: PMC7697375 DOI: 10.1186/s12943-020-01287-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the carcinogenesis and progression of a wide variety of human malignancies including colon cancer. In this review, we describe the functions and mechanisms of lncRNAs involved in colon oncogenesis, such as HOTAIR, PVT1, H19, MALAT1, SNHG1, SNHG7, SNHG15, TUG1, XIST, ROR and ZEB1-AS1. We summarize the roles of lncRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in colon cancer. In addition, we briefly highlight the functions of circRNAs in colon tumorigenesis and progression, including circPPP1R12A, circPIP5K1A, circCTIC1, circ_0001313, circRNA_104916 and circRNA-ACAP2. This review provides the rationale for anticancer therapy via modulation of lncRNAs and circular RNAs (circRNAs) in colon carcinoma.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
9
|
Qi X, Lin Y, Liu X, Chen J, Shen B. Biomarker Discovery for the Carcinogenic Heterogeneity Between Colon and Rectal Cancers Based on lncRNA-Associated ceRNA Network Analysis. Front Oncol 2020; 10:535985. [PMID: 33194594 PMCID: PMC7662689 DOI: 10.3389/fonc.2020.535985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Emerging evidence has revealed that risk factors and metastatic patterns differ greatly between colon and rectal cancers. However, the molecular mechanism underlying their pathogenic differences remains unclear. Therefore, we here aimed to identify non-coding RNA biomarkers based on lncRNA-associated ceRNA network (LceNET) to elucidate the carcinogenic heterogeneity between colon and rectal cancers. Methods A global LceNET in human was constructed by employing experimental evidence-based miRNA-mRNA and miRNA-lncRNA interactions. Then, four context-specific ceRNA networks related to cancer initiation and metastasis were extracted by mapping differentially expressed lncRNAs, miRNAs and mRNAs to the global LceNET. Notably, a novel network-based bioinformatics model was proposed and applied to identify lncRNA/miRNA biomarkers and critical ceRNA triplets for understanding the carcinogenic heterogeneity between colon and rectal cancers. Moreover, the identified biomarkers were further validated by their diagnostic/prognostic performance, expression pattern and correlation analysis. Results Based on network modeling, lncRNA KCNQ1OT1 (AUC>0.85) and SNHG1 (AUC>0.94) were unveiled as common diagnostic biomarkers for the initiation and metastasis of colon and rectal cancers. qRT-PCR analysis uncovered that these lncRNAs had significantly higher expression level in CRC cell lines with high metastatic potential. In particular, KCNQ1OT1 and SNHG1 function in colon and rectal cancers via different ceRNA mechanisms. For example, KCNQ1OT1/miR-484/ANKRD36 axis was involved in the initiation of colon cancer, while KCNQ1OT1/miR-181a-5p/PCGF2 axis was implicated in the metastasis of rectal cancer; the SNHG1/miR-484/ORC6 axis played a role in colon cancer, while SNHG1/miR-423-5p/EZH2 and SNHG1/let-7b-5p/ATP6V1F axes participated in the initiation and metastasis of rectal cancer, respectively. In these ceRNA triplets, miR-484, miR-181a-5p, miR-423-5p and let-7b-5p were identified as miRNA biomarkers with excellent distinguishing ability between normal and tumor tissues, and ANKRD36, PCGF2, EZH2 and ATP6V1F were closely related to the prognosis of corresponding cancer. Conclusion The landscape of lncRNA-associated ceRNA network not only facilitates the exploration of non-coding RNA biomarkers, but also provides deep insights into the oncogenetic heterogeneity between colon and rectal cancers, thereby contributing to the optimization of diagnostic and therapeutic strategies of CRC.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.,Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China.,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou, China.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Yu J, Wang F, Zhang J, Li J, Chen X, Han G. LINC00667/miR-449b-5p/YY1 axis promotes cell proliferation and migration in colorectal cancer. Cancer Cell Int 2020; 20:322. [PMID: 32694944 PMCID: PMC7368754 DOI: 10.1186/s12935-020-01377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been defined as vital regulators in the progression of human cancers, including colorectal cancer (CRC). Long intergenic non-protein coding RNA 667 (LINC00667) is a tumor promoter in several cancer types, while its role in CRC remains to be unmasked. This study focused on exploring the potential function and regulatory mechanism of LINC00667 in CRC. Methods qRT-PCR analysis was applied to detect the expression of LINC00667 in CRC cells. Loss-of function assays revealed the role of LINC00667 silencing in regulating CRC cell proliferation, apoptosis and migration. In vivo study demonstrated the effect of LINC00667 silencing on CRC cell growth. Mechanism experiments were conducted to determine the upstream or the downstream molecular mechanism of LINC00667 in CRC cells. Results LINC00667 was expressed at high level in CRC cells. LINC00667 knockdown significantly inhibited CRC cell growth and migration. YY1 transcription factor induced the upregulation of LINC00667 in CRC cells by transcriptionally activating LINC00667. In addition, miR-449b-5p could interact with LINC00667 in CRC cells. Intriguingly, miR-449b-5p directly targeted to YY1, thus inhibiting YY1 expression. YY1 recovered the CRC cell functions impaired by LINC00667 silencing. Conclusions LINC00667 is transcriptionally activated by YY1 and promotes cell proliferation and migration in CRC by sponging miR-449b-5p to upregulate YY1.
Collapse
Affiliation(s)
- Juan Yu
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| | - Furang Wang
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| | - Jun Zhang
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| | - Jing Li
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| | - Xiaoguang Chen
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| | - Guangsen Han
- General Surgery Department, Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, 450003 Henan China
| |
Collapse
|
11
|
Bekric D, Neureiter D, Ritter M, Jakab M, Gaisberger M, Pichler M, Kiesslich T, Mayr C. Long Non-Coding RNAs in Biliary Tract Cancer-An Up-to-Date Review. J Clin Med 2020; 9:jcm9041200. [PMID: 32331331 PMCID: PMC7231154 DOI: 10.3390/jcm9041200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The term long non-coding RNA (lncRNA) describes non protein-coding transcripts with a length greater than 200 base pairs. The ongoing discovery, characterization and functional categorization of lncRNAs has led to a better understanding of the involvement of lncRNAs in diverse biological and pathological processes including cancer. Aberrant expression of specific lncRNA species was demonstrated in various cancer types and associated with unfavorable clinical characteristics. Recent studies suggest that lncRNAs are also involved in the development and progression of biliary tract cancer, a rare disease with high mortality and limited therapeutic options. In this review, we summarize current findings regarding the manifold roles of lncRNAs in biliary tract cancer and give an overview of the clinical and molecular consequences of aberrant lncRNA expression as well as of underlying regulatory functions of selected lncRNA species in the context of biliary tract cancer.
Collapse
Affiliation(s)
- Dino Bekric
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria;
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (M.R.); (M.J.); (M.G.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
12
|
Zhang L, Zhang Q, Lv L, Jianhua Z, Ting C, Wu Y. LncRNA SNHG1 regulates vascular endothelial cell proliferation and angiogenesis via miR-196a. J Mol Histol 2020; 51:117-124. [PMID: 32297149 DOI: 10.1007/s10735-020-09862-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory cytokines are important protagonists in the formation of atherosclerotic plaques, triggering effects throughout the atherosclerotic vessels due to the destruction in proliferation, migration and angiogenesis of endothelial cells. In this study, we found SNHG1 is upregulated in TNF-α-treated HUVECs. We silenced SNHG1 and found it inhibited vascular endothelial cell proliferation and angiogenesis. In the other hand, exogenetic overexpression of SNHG1 promotes proliferation, migration and angiogenesis. Then we demonstrated that SNHG1 may interact directly with miR-196a to act as a miR-196a sponge. Further, MAPK6 were predicted to be the target of miR-196a. So we blocked miR-196a, which increased expression level of MAPK6, enhanced cell proliferation, migration and angiogenesis. These data indicated that SNHG1/miR-196a/MAPK6 axis may take a part in autophagy regulation in TNF-α-treated HUVECs. The subsequent rescue experiments come to the results ascertained the specificity of SNHG1/miR-196a/MAPK6 axis in regulating MAPK6. Overall, our findings demonstrate a novel mechanism by which SNHG1 overexpression protects the function of HUVECs, which may delay the progression of AS. SNHG1/miR-196a/MAPK6 axis may be of therapeutic significance in AS.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiang Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lingxia Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zhu Jianhua
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chen Ting
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Number 79, Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
13
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
15
|
Wei L, Yang N, Sun L, Zhang L, Li Z, Li D, Qin T, Huang H. LncRNA SNHG1 upregulates ROCK2 to reduce cisplatin sensitivity of NSCLC cells by targeting miR-101-3p. Transl Cancer Res 2019; 8:2141-2150. [PMID: 35116964 PMCID: PMC8798157 DOI: 10.21037/tcr.2019.09.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cisplatin is the most commonly used chemotherapy drug in clinical settings, and decreased sensitivity or resistance to cisplatin is the main cause of chemotherapy failure or death among cancer patients. Long non-coding RNA (lncRNA) SNHG1 is highly expressed in non-small cell lung cancer (NSCLC) tissues and promotes the proliferation of NSCLC cells, but the effect of SNHG1 on cisplatin sensitivity of NSCLC cells is unclear. METHODS We compared the expression of SNHG1 in cisplatin-sensitive and insensitive NSCLC tissues and explored the molecular mechanism of SNHG1 regulation of the sensitivity of NSCLC cells to cisplatin in vitro. RESULTS We found that SNHG1 is upregulated in cisplatin insensitive NSCLC tissues and cells, and that it can regulate cisplatin sensitivity of NSCLC cells in vitro. Furthermore, we also found that the expression of miR-101-3p in NSCLC tissues is negatively correlated with SNHG1 or ROCK2. Additionally, in NSCLC cells, SNHG1 and miR-101-3p are mutually suppressed, but miR-101-3p targets the inhibition of ROCK2. More importantly, the regulation of ROCK2 expression in vitro can also change the sensitivity of NSCLC cells to cisplatin. CONCLUSIONS In summary, our results provide novel mechanistic insights into the role of SNHG1/miR-101-3p/ROCK2 signaling in cisplatin resistance of NSCLC cells.
Collapse
Affiliation(s)
- Lei Wei
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Nan Yang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhongdong Li
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hairong Huang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
16
|
Zhou W, Pan B, Liu L. Integrated bioinformatics analysis revealing independent prognostic long non-coding RNAs DNAH17-AS1 and RP11-400N13.2 and their potential oncogenic roles in colorectal cancer. Oncol Lett 2019; 18:3705-3715. [PMID: 31516583 PMCID: PMC6732947 DOI: 10.3892/ol.2019.10730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs) has been associated with a variety of malignancies, including colorectal cancer (CRC); however, the key lncRNAs associated with patient prognosis and their biological roles in CRC are yet to be determined. The aim of the present study was to determine the key lncRNAs associated with patient prognosis as well as their biological roles in CRC. Therefore, a dataset from The Cancer Genome Atlas containing the lncRNA expression data of 521 CRC and normal colorectal mucosal tissues, as well as the corresponding clinical data, were screened. A total of 1,180 significantly differentially expressed lncRNAs were associated with CRC as determined by t-tests in edgeR. Kaplan-Meier analysis revealed that 56 of the 1,180 lncRNAs were associated with overall survival (OS); 7 of the 56 lncRNAs were identified as key lncRNAs associated with the Tumor-Node-Metastasis stage of CRC by Kruskal-Wallis test. Subsequent univariate and multivariate Cox regression analyses of the 7 lncRNAs revealed 2 lncRNAs, DNAH17-AS1 and RP11-400N13.2, as potential independent prognostic factors for the OS of patients with CRC. Furthermore, the expression levelsof these 2 lncRNAs were significantly upregulated in CRC compared with those in normal tissues, which suggested that they may serve an oncogenic role in CRC. In addition, networks comprising the 2 lncRNAs and their respective co-expressed protein-coding genes (PCGs) were constructed using cor.test in R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these PCGs were conducted; DNAH17-AS1- and RP11-400N13.2-associated PCGs were reported to be involved in G-protein coupling-related functions. Thus, these independent prognostic lncRNAs and their associated functions identified in the present study may provide novel insight into potential prognostic biomarkers and therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Wen Zhou
- Clinical Laboratory, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
17
|
Sun L, Chu H, Li H, Liu Y. LncRNA SNHG1 correlates with higher T stage and worse overall survival, and promotes cell proliferation while reduces cell apoptosis in breast cancer. Transl Cancer Res 2019; 8:603-613. [PMID: 35116793 PMCID: PMC8798092 DOI: 10.21037/tcr.2019.03.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
Background The aim of this study was to investigate the correlation of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) with the prognosis in breast cancer patients, and its effect on breast cancer cell proliferation and apoptosis. Methods A total of 178 breast cancer patients were consecutively recruited, then tumor tissue and the paired adjacent tissue were obtained during surgery for lncRNA SNHG1 determination by quantitative polymerase chain reaction (qPCR). LncRNA SNHG1 expression was also measured in breast cancer cell lines and normal breast epithelial cell line. Subsequently, negative control (NC) overexpression plasmids, lncRNA SNHG1 overexpression plasmids, NC short hairpin RNA (shRNA) plasmids and lncRNA SNHG1 shRNA plasmids were transfected into MDA-MB-453 cells as well as MCF7 cells, and cell proliferation and apoptosis were measured afterward. Results LncRNA SNHG1 expression in tumor tissue was increased compared with paired adjacent tissue, and it correlated with higher T stage and worse overall survival (OS) in breast cancer patients. LncRNA SNHG1 expression was also elevated in breast cancer cell lines compared with normal breast epithelial cell line. Cell Counting Kit-8 (CCK8) assay revealed that lncRNA SNHG1 overexpression promoted while lncRNA SNHG1 shRNA reduced cell proliferation, and Annexin V-fluorescein isothiocyanate/propidium iodide staining (AV/PI) assay illustrated that lncRNA SNHG1 overexpression decreased while lncRNA SNHG1 shRNA increased cell apoptosis rate. In addition, Western Blot assay disclosed that lncRNA SNHG1 overexpression downregulated while lncRNA SNHG1 shRNA upregulated pro-apoptotic marker (C-Caspase3) expression, and lncRNA SNHG1 overexpression increased while lncRNA SNHG1 shRNA decreased anti-apoptotic marker (p-P38) expression. Conclusions LncRNA SNHG1 is upregulated in tumor tissue and correlates with higher T stage and worse OS, and it promotes cell proliferation but inhibits cell apoptosis in breast cancer.
Collapse
Affiliation(s)
- Lin Sun
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430014, China
| | - Huimin Chu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430014, China
| | - Hai Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430014, China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430014, China
| |
Collapse
|
18
|
Yu J, Jiang L, Gao Y, Sun Q, Liu B, Hu Y, Han X. LncRNA CCAT1 negatively regulates miR-181a-5p to promote endometrial carcinoma cell proliferation and migration. Exp Ther Med 2019; 17:4259-4266. [PMID: 30988798 DOI: 10.3892/etm.2019.7422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are identified as vital modulators in a number of biological processes, including tumorigenesis. However, the role of lncRNAs in endometrial carcinoma (EC) remains unknown. In the current study, the expression patterns, biological roles and functional mechanism of the lncRNA colon cancer associated transcript 1 (CCAT1) was examined in EC. The expression level of CCAT1 was significantly upregulated in EC tissue samples compared with matched adjacent healthy tissue samples from patients with endometrial cancer. Similarly, CCAT1 was significantly upregulated in several EC cell lines (KLE, Ishiwaka and HEC-1-A), compared with the normal human endometrial stromal cell line T-HESC. Cell counting kit-8 and Transwell migration assays demonstrated that CCAT1 knockdown significantly decreased EC cell proliferation and migration. In addition, CCAT1 was confirmed as a target gene of miR-181a-5p in EC. Overexpression of miR-181a-5p significantly decreased CCAT1 expression in EC cells, whilst knockdown of CCAT1 significantly increased miR-181a-5p expression in EC cells. Furthermore, miR-181a-5p expression was significantly downregulated in EC tissue samples compared with matched adjacent healthy tissue samples from patients with endometrial cancer. Similarly, miR-181a-5p expression was significantly downregulated in several EC cell lines (KLE, Ishiwaka and HEC-1-A), compared with normal human endometrial stromal cell line T-HESC. In addition, rescue experiments demonstrated that inhibition of miR-181a-5p significantly reversed the effect of CCAT1 knockdown on EC cell proliferation and migration. The results suggest that CCAT1 promotes EC progression by acting as a molecular sponge of miR-181a-5p.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University and Cancer Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Lijuan Jiang
- Department of Scientific Research and Education, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650200, P.R. China
| | - Yutao Gao
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qijian Sun
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Beibei Liu
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Hu
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xuesong Han
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, Shu Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:233-243. [PMID: 30317163 PMCID: PMC6190501 DOI: 10.1016/j.omtn.2018.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.
Collapse
Affiliation(s)
- Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Xu M, Chen X, Lin K, Zeng K, Liu X, Pan B, Xu X, Xu T, Hu X, Sun L, He B, Pan Y, Sun H, Wang S. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer 2018; 17:141. [PMID: 30266084 PMCID: PMC6162892 DOI: 10.1186/s12943-018-0894-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mounting evidence demonstrates that long noncoding RNAs (lncRNAs) have critical roles during the initiation and progression of cancers. In this study, we report that the small nucleolar RNA host gene 1 (SNHG1) is involved in colorectal cancer progression. METHODS We analyzed RNA sequencing data to explore abnormally expressed lncRNAs in colorectal cancer. The effects of SNHG1 on colorectal cancer were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, EdU assay, xenograft model, immunohistochemistry, and western blot). The mechanism of SNHG1 action was explored through bioinformatics, RNA fluorescence in situ hybridization, luciferase reporter assay, RNA pull-down assay, chromatin immunoprecipitation assay and RNA immunoprecipitation assay. RESULTS Our analysis revealed that SNHG1 was upregulated in human colorectal cancer tissues, and high SNHG1 expression was associated with reduced patient survival. We also found that high SNHG1 expression was partly induced by SP1. Moreover, SNHG1 knockdown significantly repressed colorectal cancer cells growth both in vitro and in vivo. Mechanistic investigations demonstrated that SNHG1 could directly interact with Polycomb Repressive Complex 2 (PRC2) and modulate the histone methylation of promoter of Kruppel like factor 2 (KLF2) and Cyclin dependent kinase inhibitor 2B (CDKN2B) in the nucleus. In the cytoplasm, SNHG1 acted as a sponge for miR-154-5p, reducing its ability to repress Cyclin D2 (CCND2) expression. CONCLUSIONS Taken together, the results of our studies illuminate how SNHG1 formed a regulatory network to confer an oncogenic function in colorectal cancer and suggest that SNHG1 may serve as a potential target for colorectal cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Lin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Xueni Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|