1
|
Jin Y, Tao H, Liu Y, Liu S, Tang X. LINC00704 boosts the immunologic escape of colorectal cancer cells by upregulating TLR4 by binding with miR- 203a- 3p. Eur J Med Res 2025; 30:263. [PMID: 40211393 PMCID: PMC11983970 DOI: 10.1186/s40001-025-02514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor and is the second most common cause of cancer-related deaths worldwide. Immune escape suppresses anti-tumor immunity and facilitates tumor cells to proliferate. MiR- 203a- 3p regulates cancer progression and LINC00704 may bind with miR- 203a- 3p to inhibit its effects. METHODS In this study, the levels of miR- 203a- 3p and LINC00704 were tested in tumor tissue and non-cancer tissues in vivo. In further in vitro experiments, transfection, cell vitality, apoptosis, and proliferation ability were detected. The expression level of TLR4 was also examined. Finally, a luciferase assay was conducted to detect whether LINC00704 could bind with miR- 203a- 3p. RESULTS A rise in LINC00704 mRNA was observed in CRC tissues while miR- 203a- 3p was reduced. LINC00704 boosts the proliferation of cells and inhibits cell apoptosis. LINC00704 regulates Toll- 1ike receptor- 4 (TLR4) expression through miR- 203a- 3p, thereby modulating cell viability. CRC cell immune escape was facilitated by LINC00704 via miR- 203a- 3p. CONCLUSION LINC00704 promotes CRC cell immunologic escape by upgrading TLR4 by binding with miR- 203a- 3p.
Collapse
Affiliation(s)
- Yalei Jin
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Hai Tao
- Dept. of Orthopedics, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Street, Wuchang District, Wuhan, Hubei, China
| | - Yuwei Liu
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Sha Liu
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Xiaoyan Tang
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Molaei P, Mahdavinezhad A, Najafi R, Hashemi M, Tapak L, Afshar S. Role of hsa_Circ_0001821 in Colorectal Cancer Pathogenesis and Response to 5-Fluorouracil through miR-203a-3p/FGF-2 Axis. IRANIAN BIOMEDICAL JOURNAL 2025; 29:82-89. [PMID: 40231340 PMCID: PMC12040633 DOI: 10.61186/ibj.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 04/20/2025]
Abstract
Background Chemoresistance, the primary cause of disease relapse and treatment failure, poses a significant challenge in the treatment of colorectal cancer (CRC). Understanding the molecular mechanisms that underlie the pathogenesis and chemoresistance of colorectal tumor cells, as well as identifying novel therapeutic strategies, would be crucial. This study aimed to evaluate the role of hsa_Circ_0001821 in response to 5-fluorouracil (5-FU) in CRC, a topic that has not been examined to date. Methods The current study investigated the effect of hsa_Circ_0001821 suppression using interfering RNAs on the response of colorectal tumor cells to 5-FU. The expression levels of hsa_Circ_0001821, hsa-miR-203a-3p, BAX, BCL-2, and FGF-2 were determined via quantitative RT-PCR. Cell survival, migration rate, and apoptosis induction of colorectal tumor cells subjected to 5-FU treatment were assessed using the MTT test, scratch assay, and flow cytometry analysis, respectively. Results Knockdown of hsa_Circ_0001821 with siRNA increased the expression level of hsa-miR-203a-3p and decreased the expression level of FGF-2. Additionally, the knockdown of hsa_Circ_0001821 enhanced the sensitivity of colorectal tumor cells to 5-FU. This circRNA significantly affected the viability, apoptosis, and migration of tumor cells. Conclusion Our study reveals the potential role of hsa_Circ_0001821 in controlling the tumor cell viability and response to 5-FU by targeting the hsa-miR-203a-3p/FGF-2 axis. These findings enhance our understanding of the molecular mechanisms that influence chemotherapy response in CRC, paving the way for the identification of more effective treatments for this disease.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of molecular medicine, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Institute of cancer, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Department of molecular medicine, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Institute of cancer, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of molecular medicine, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Institute of cancer, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Leili Tapak
- Modeling of Noncommunicable Diseases Research Center, Institute of Health Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Cancer Research Center, Institute of cancer, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Jerala M, Remic T, Hauptman N, Homan P, Zajšek N, Petitjean M, Chen L, Zidar N. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn's disease. Sci Rep 2024; 14:13810. [PMID: 38877292 PMCID: PMC11178913 DOI: 10.1038/s41598-024-64672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.
Collapse
Affiliation(s)
- Miha Jerala
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tinkara Remic
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Pia Homan
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Neža Zajšek
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | | | - Li Chen
- PharmaNest Inc., Princeton, NJ, 08540, USA
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Fang K, Deng Y, Yang P, Zhang Y, Luo D, Wang F, Cai Z, Liu Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol Histopathol 2023; 38:681-693. [PMID: 36382967 DOI: 10.14670/hh-18-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Circ_0079530 has been confirmed to be a novel potential oncogene in non-small cell lung cancer (NSCLC). This study aims to explore the role and mechanism of circ_0079530 in NSCLC progression. METHODS Levels of circ_0079530, microRNA (miR)-584-5p, thrombospondin-2 (THBS2), PCNA, Bax, E-cadherin, and ki67 were detected by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. The proliferation of NSCLC cells was measured using cell counting kit 8 (CCK8) assay, colony formation assay, and EdU staining. Cell apoptosis and motility were respectively detected by flow cytometry and transwell assays. Interaction between miR-584-5p and circ_0079530 or THBS2 was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was used to analyze the role of circ_0079530 in tumor growth in vivo. RESULTS Circ_0079530 was highly expressed in NSCLC tissues and cell lines. Circ_0079530 overexpression facilitated proliferation, migration, and invasion whereas it restrained the apoptosis of NSCLC cells. Circ_0079530 silence showed the opposite effects on the above malignant biological behaviors. Mechanistic analysis showed that circ_0079530 functioned as a sponge of miR-584-5p to relieve the suppressive action of miR-584-5p on its target THBS2. Additionally, circ_0079530 knockdown impeded the growth of xenografts in vivo. CONCLUSION Circ_0079530 promoted NSCLC progression by regulating the miR-584-5p/THBS2 axis, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Kun Fang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yibin Deng
- Department of Pediatric, Sichuan Science City Hospital, Mianyang, PR China
| | - Ping Yang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yurong Zhang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Dan Luo
- Department of Gynaecology and Obstetrics (Science and Education Department), Sichuan Science City Hospital, Mianyang, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Zhilong Cai
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yang Liu
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China.
| |
Collapse
|
5
|
Lu C, Zhang X, Luo Y, Huang J, Yu M. Identification of CXCL10 and CXCL11 as the candidate genes involving the development of colitis-associated colorectal cancer. Front Genet 2022; 13:945414. [PMID: 36003333 PMCID: PMC9393335 DOI: 10.3389/fgene.2022.945414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a well-known risk factor for developing colitis-associated colorectal cancer (CAC). However, the molecular mechanism of the pathogenesis of CAC remains unclear. This study aimed to explore candidate genes involved in the tumorigenesis of CAC. Methods: GSE75214 and the Cancer Genome Atlas Program (TCGA) dataset were used to analyze the differentially expressed genes (DEGs) in UC and colorectal cancer (CRC), respectively. Survival-hub genes were identified from these DEGs by sequentially constructing a protein–protein interaction network, selecting hub genes, and conducting survival analysis. Regulatory signatures were also predicted on these genes through the online database. Apcmin/+ and UC mice models were used to validate the expression of the above-predicted molecules. Gene set enrichment analysis and CIBERSORT were performed to explore the enriched molecular pathways and associated tissue-infiltrating immune cells of genes. Results: Here, 376 common DEGs were identified from the GSE75214 and TCGA datasets. Through survival-hub gene selection and in vivo experiments, we confirmed that CXCL10 and CXCL11 were significantly upregulated in UC and CRC. We also proved that miR-34a-5p and miR-203a-5p were potential regulators of CXCL10 and CXCL11. Meanwhile, CXCL10 and CXCL11 may activate the JAK–STAT signaling pathway via the interaction with cytokine receptors in UC. Furthermore, CXCL10 and CXCL11 were positively associated with the tissue infiltration of proinflammatory M1 macrophages in UC and CRC. Conclusion: CXCL10 and CXCL11 may act as the candidate genes involved in the tumorigenesis of CAC and potential therapeutic targets to prevent the development of CAC from UC.
Collapse
Affiliation(s)
- Can Lu
- Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Zhang
- School of Medicine, Technical University of Munich, Munich, Germany
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Minhao Yu,
| |
Collapse
|
6
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
7
|
Nersisyan SA. Isoforms of miR-148a and miR-203a are putative suppressors of colorectal cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs are short non-coding molecules which regulate translation in a gene-specific manner. MicroRNA isoforms that differ by few extra or missing nucleotides at the 5'-terminus (5'-isomiR) show strikingly different target specificity. This study aimed to identify functional roles of 5′-isomiR in colorectal cancers. Transcriptomic targets of microRNA isoforms were predicted using bioinformatics tools miRDB and TargetScan. The sets of putative targets identified for 5′-isomiR were integrated with mRNA and microRNA sequencing data for primary colorectal tumors retrieved from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database. The network of interactions among miRNA, their targets and transcription factors was built using the miRGTF-net algorithm. The results indicate that microRNA isoforms highly expressed in colorectal cancer and differing by a single nucleotide position at the 5'-terminus have ≤ 30% common targets. The regulatory network of interactions enables identification of the most engaged microRNA isoforms. Anti-correlated expression levels of canonical microRNA hsa-miR-148a-3p and its putative targets including CSF1, ETS1, FLT1, ITGA5, MEIS1, MITF and RUNX2 proliferation regulators suggest an anti-tumor role for this molecule. The canonical microRNA hsa-miR-203a-3p|0 and its 5′-isoform bind different sets of anti-correlated putative targets, although both of them interact with genes involved in the epithelial-mesenchymal transition: SNAI2 and TNC.
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
8
|
Lehmann TP, Guderska U, Kałek K, Marzec M, Urbanek A, Czernikiewicz A, Sąsiadek M, Karpiński P, Pławski A, Głowacki M, Jagodziński PP. The Regulation of Collagen Processing by miRNAs in Disease and Possible Implications for Bone Turnover. Int J Mol Sci 2021; 23:91. [PMID: 35008515 PMCID: PMC8745169 DOI: 10.3390/ijms23010091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
This article describes several recent examples of miRNA governing the regulation of the gene expression involved in bone matrix construction. We present the impact of miRNA on the subsequent steps in the formation of collagen type I. Collagen type I is a main factor of mechanical bone stiffness because it constitutes 90-95% of the organic components of the bone. Therefore, the precise epigenetic regulation of collagen formation may have a significant influence on bone structure. We also describe miRNA involvement in the expression of genes, the protein products of which participate in collagen maturation in various tissues and cancer cells. We show how non-collagenous proteins in the extracellular matrix are epigenetically regulated by miRNA in bone and other tissues. We also delineate collagen mineralisation in bones by factors that depend on miRNA molecules. This review reveals the tissue variability of miRNA regulation at different levels of collagen maturation and mineralisation. The functionality of collagen mRNA regulation by miRNA, as proven in other tissues, has not yet been shown in osteoblasts. Several collagen-regulating miRNAs are co-expressed with collagen in bone. We suggest that collagen mRNA regulation by miRNA could also be potentially important in bone metabolism.
Collapse
Affiliation(s)
- Tomasz P. Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Urszula Guderska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Klaudia Kałek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Marzec
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Agnieszka Urbanek
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Alicja Czernikiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| | - Maria Sąsiadek
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.S.); (P.K.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland;
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (U.G.); (K.K.); (M.M.); (A.U.); (A.C.); (P.P.J.)
| |
Collapse
|
9
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:9185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| |
Collapse
|
10
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
11
|
MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020136. [PMID: 33567635 PMCID: PMC7915952 DOI: 10.3390/ph14020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.
Collapse
|
12
|
Yang J, Zhang Z, Chen S, Dou W, Xie R, Gao J. miR-654-3p predicts the prognosis of hepatocellular carcinoma and inhibits the proliferation, migration, and invasion of cancer cells. Cancer Biomark 2021; 28:73-79. [PMID: 32176631 DOI: 10.3233/cbm-191084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing evidence reveals that aberrant microRNAs (miRNAs) expression play a crucial role in the tumorigenesis of cancers, including hepatocellular carcinoma (HCC), whereas the role of miR-654-3p in HCC remains unclear. This study aimed to investigate the role of miR-654-3p in HCC. METHODS Real-time quantitative PCR was performed to detect miR-654-3p expression in HCC tissues and cell lines. The association of miR-654-3p expression with clinical characteristics of HCC patients were analyzed. And the prognostic value of miR-654-3p was examined using Kaplan-Meier curve and Cox regression analysis. CCK-8 and Transwell assays were used to observe the effects of miR-654-3p on proliferation, migration, and invasion of HCC cells. RESULTS The miR-654-3p expression was downregulated in both HCC tissues and cell lines, which was significantly associated with lymph node metastasis and TNM stage. Downregulation of miR-654-3p predicted poor prognosis of HCC patients. Overexpression of miR-654-3p inhibited HCC cell proliferation, migration, and invasion, while knockdown of miR-654-3p promoted these cellular behaviors in vitro. CONCLUSION Our study suggested that miR-654-3p expression was downregulated in HCC and might serve as a potential prognostic marker and therapeutic target for the survival of HCC patients. miR-654-3p might exert a suppressor role in HCC through inhibiting tumor cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Zhen Zhang
- Department of Logistics, Yidu Central Hospital of Weifang, Weifang, Shandong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Shaoping Chen
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Ruizhu Xie
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Gao
- Department of Gastroenterology, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
13
|
Nair-Menon J, Daulagala AC, Connor DM, Rutledge L, Penix T, Bridges MC, Wellslager B, Spyropoulos DD, Timmers CD, Broome AM, Kourtidis A. Predominant Distribution of the RNAi Machinery at Apical Adherens Junctions in Colonic Epithelia Is Disrupted in Cancer. Int J Mol Sci 2020; 21:E2559. [PMID: 32272708 PMCID: PMC7177752 DOI: 10.3390/ijms21072559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.
Collapse
Affiliation(s)
- Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Dean M. Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (D.M.C.); (A.-M.B.)
| | - Lauren Rutledge
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Trevor Penix
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Bridgette Wellslager
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| | - Demetri D. Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Cynthia D. Timmers
- Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA;
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (D.M.C.); (A.-M.B.)
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (J.N.-M.); (A.C.D.); (L.R.); (T.P.); (M.C.B.); (B.W.)
| |
Collapse
|