1
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide towards cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
2
|
Li C, Sun C, Li Y, Dong L, Wang X, Li R, Su J, Cao Q, Xin S. Therapeutic and prognostic effect of disulfidptosis-related genes in lung adenocarcinoma. Heliyon 2024; 10:e33764. [PMID: 39050421 PMCID: PMC11267016 DOI: 10.1016/j.heliyon.2024.e33764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.
Collapse
Affiliation(s)
- Changshuan Li
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Chao Sun
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Yakun Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Lin Dong
- Department of Oncology, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Xian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| |
Collapse
|
3
|
Zimta AA, Cenariu D, Tigu AB, Moldovan C, Jurj A, Pop L, Berindan-Neagoe I. The carcinogenic capacity of arsenic in normal epithelial breast cells and double-positive breast cancer cells. Med Pharm Rep 2024; 97:184-195. [PMID: 38746032 PMCID: PMC11090272 DOI: 10.15386/mpr-2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 05/16/2024] Open
Abstract
Background and aims The carcinogenic effect of arsenic is a subject of controversy in relation to breast cancer. In our current research, we aimed to simulate the effects of chronic low-level arsenic exposure on breast cells by intoxicating MCF-10A and MCF-7 cells with 1 μM Arsenic trioxide (As2O3) for 3 weeks (3w) and 6 weeks (6w), respectively. Methods We assessed the cellular responses to As2O3 through various assays, including confocal fluorescence microscopy, flow cytometry for cell cycle analysis, Transwell invasion assay, scratch assay, and colony assay. Additionally, we analyzed the mutation burden in all the exposed cells by using the next generation sequencing technology. Results Our findings indicate that As2O3 has a minor carcinogenic effect in normal cells, with no definitive evidence of malignant transformation observed after 6 weeks of exposure. In the case of breast cancer cells, As2O3 exhibits a dual effect, both inhibitory and stimulatory. It leads to reduced colony formation ability at 6 weeks, while enhancing the cells' ability for invasion. The mutations triggered by As2O3 exposure are distributed across genes with both tumor-suppressive and oncogenic functions. Five mutations are common to both cell lines, involving the following genes: Kinase Insert Domain Receptor (KDR) (c.798+54G>A), Colony Stimulating Factor 1 Receptor (CSF1R) (c.*37AC>C, c.*35C>TC), SWI/SNF-Related Matrix-Associated Actin-Dependent Regulator of Chromatin Subfamily B Member 1 (SMARCB1) (c.1119-41C>T), and Fms-like Tyrosine Kinase 3 (FLT3) (c.1310-3T>C). Additionally, Human Epidermal Growth Factor Receptor 4 (ERBB4/HER4) (c.421+58A>G) and Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) (c.2307+46A>G) mutations were exclusively found in MCF-10A cells exposed to As2O3. Furthermore, MCF-7 cells exhibited unique mutations in the KIT Proto-Oncogene (KIT) (c.1594G>A) and TP53 (c.215C>G). Conclusion In summary, our study reveals that a 6-weeks exposure to arsenic has a limited carcinogenic effect in normal breast cells and a dual role in breast cancer cells.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
5
|
Sheng L, Kang Y, Chen D, Shi L. Knockdown of ANLN inhibits the progression of lung adenocarcinoma via pyroptosis activation. Mol Med Rep 2023; 28:177. [PMID: 37539739 PMCID: PMC10433705 DOI: 10.3892/mmr.2023.13064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
Significant advancements have been achieved in the area of molecular targeted therapy for lung adenocarcinoma (LUAD). However, the complex molecular patterns and high heterogeneity of LUAD confine the efficacy of these therapies to a specific subset of patients; therefore, it is necessary to explore novel targets for LUAD treatment. The expression levels of anillin (ANLN) in LUAD were analyzed using the Gene Expression Profiling Interactive Analysis database. Furthermore, the association between ANLN gene expression and patient survival outcomes was evaluated using the Kaplan‑Meier Plotter. Subsequently, small interfering RNA (siRNA) transfection was performed to knock down ANLN in A549 and H1299 cell lines, after which, TUNEL, colony formation and Transwell assays were conducted to assess cell death, colony formation and migration, respectively. Additionally, western blot analysis was performed to analyze the expression levels of caspase‑1, interleukin (IL)‑18 (IL‑18), IL‑1β, NLR family pyrin domain‑containing 3 (NLRP3), apoptosis‑associated speck‑like protein containing a CARD domain (ASC) and cleaved gasdermin D (GSDMD) following ANLN knockdown. The results revealed that ANLN mRNA expression was significantly increased in LUAD tissues compared with adjacent normal samples. Furthermore, the expression levels of ANLN displayed an increasing trend with advancing clinical stage. Furthermore, patients with high ANLN expression levels exhibited poor overall survival rates compared with those with low ANLN expression levels. Subsequent ANLN knockdown experiments indicated elevated cell death rate, and reduced colony formation and migration in both A549 and H1299 cells. Additionally, ANLN knockdown resulted in increased protein expression levels of pyroptosis‑associated molecules, including caspase‑1, NLRP3, cleaved‑GSDMD, IL‑1β, ASC and IL‑18 in both A549 and H1299 cells. In conclusion, ANLN represents an important gene and a promising therapeutic target for LUAD. Its potential as a therapeutic target makes it an interesting candidate for further exploration in the development of novel treatment strategies for LUAD.
Collapse
Affiliation(s)
- Li Sheng
- Department of Medical Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yanhai Kang
- Department of Psychology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Denglin Chen
- Department of Medical Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Linyang Shi
- Department of Medical Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
6
|
Li L, Wang X, Hu K, Liu X, Qiu L, Bai C, Cui Y, Wang B, Wang Z, Wang H, Cheng R, Hua J, Hai L, Wang M, Liu M, Song Z, Xiao C, Li B. ZNF133 is a potent suppressor in breast carcinogenesis through dampening L1CAM, a driver for tumor progression. Oncogene 2023:10.1038/s41388-023-02731-5. [PMID: 37221223 DOI: 10.1038/s41388-023-02731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Due to the complexity and heterogeneity of breast cancer, the therapeutic effects of breast cancer treatment vary between subtypes. Breast cancer subtypes are classified based on the presence of molecular markers for estrogen or progesterone receptors and human epidermal growth factor 2. Thus, novel, comprehensive, and precise molecular indicators in breast carcinogenesis are urgently needed. Here, we report that ZNF133, a zinc-finger protein, is negatively associated with poor survival and advanced pathological staging of breast carcinomas. Moreover, ZNF133 is a transcription repressor physically associated with the KAP1 complex. It transcriptionally represses a cohort of genes, including L1CAM, that are critically involved in cell proliferation and motility. We also demonstrate that the ZNF133/KAP1 complex inhibits the proliferation and invasion of breast cancer cells in vitro and suppresses breast cancer growth and metastasis in vivo by dampening the transcription of L1CAM. Taken together, the findings of our study confirm the value of ZNF133 and L1CAM levels in the diagnosis and prognosis of breast cancer, contribute to a deeper understanding of the regulation mechanism of ZNF133 for the first time, and provide a new therapeutic strategy and precise intervention target for breast cancer.
Collapse
Affiliation(s)
- Lifang Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
| | - Xuefei Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Kai Hu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Li Qiu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Yanfen Cui
- Public Laboratory, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Biyun Wang
- Laboratory Animal Center, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Zhaosong Wang
- Laboratory Animal Center, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Hailong Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Runfen Cheng
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Jialei Hua
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Linyue Hai
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Mengdie Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Miao Liu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Zian Song
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Chunhua Xiao
- First Surgical Department of Breast Cancer, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
| | - Binghui Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
7
|
Screening for Biomarkers for Progression from Oral Leukoplakia to Oral Squamous Cell Carcinoma and Evaluation of Diagnostic Efficacy by Multiple Machine Learning Algorithms. Cancers (Basel) 2022; 14:cancers14235808. [PMID: 36497288 PMCID: PMC9738227 DOI: 10.3390/cancers14235808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of the study is to identify key genes during the progression from oral leukoplakia (OL) to oral squamous cell carcinoma (OSCC) and predict effective diagnoses. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to identify seven genes associated with the progression from OL to OSCC. Twelve machine learning algorithms including k-nearest neighbor (KNN), neural network (NNet), and extreme gradient boosting (XGBoost) were used to construct multi-gene models, which revealed that each model had good diagnostic efficacy. The functional mechanism or the pathways associated with these genes were evaluated using enrichment analysis, subtype clustering, and immune infiltration analysis. The enrichment analysis revealed that the genes enriched were associated with the cell cycle, cell division, and intracellular energy metabolism. The immunoassay results revealed that the genes primarily affected the infiltration of proliferating T cells and macrophage polarization. Finally, a nomogram and Kaplan-Meier survival analysis were used to predict the prognostic efficacy of key genes in OSCC patients. The results showed that genes could predict the prognosis of the patients, and patients in the high-risk group had a poor prognosis. Our study identified that the seven key genes, including DHX9, BCL2L12, RAD51, MELK, CDC6, ANLN, and KIF4A, were associated with the progression from OL to OSCC. These genes had good diagnostic efficacy and could be used as potential biomarkers for the prognosis of OSCC patients.
Collapse
|
8
|
Hu DM, Zhang WD, Shi ZE, Zhang MY, Li R, Wang QX, Ji XL, Qu YQ. FOXP family DNA methylation correlates with immune infiltration and prognostic value in NSCLC. Front Genet 2022; 13:937069. [PMID: 36160018 PMCID: PMC9500381 DOI: 10.3389/fgene.2022.937069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Forkhead box P (FOXP) family was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. This study aimed to summarize the involvement of the FOXP family in non-small cell lung cancer (NSCLC).Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) were used to analyse the expression levels of the FOXP family in NSCLC. The prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv, UALCAN, and cBioPortal were applied to analyse the DNA methylation and mutation status of the FOXP family respectively. COEXPEDIA, STRING, and GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB was used to investigate all of the immune-related characteristics regulated by the FOXP family.Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC tissues than that in normal tissues. Groups with low expression levels of FOXP1/4 and high expression levels of FOXP2/3 were associated with poor prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated with prognosis. Pathway enrichment analysis indicated the FOXP family was mainly related to immune-related pathways. After DNA methylation, the correlations between FOXP family and immune factors were opposite to that before alteration in NSCLC.Conclusion: This study elucidated FOXP family could serve as vital diagnostic and prognostic biomarkers in NSCLC. Our study highlighted novel potential functions of FOXP family DNA methylation in regulation of immune-related signatures in NSCLC.
Collapse
Affiliation(s)
- Dong-Mei Hu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Di Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhuang-E Shi
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Xiang Wang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| | - Yi-Qing Qu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| |
Collapse
|
9
|
Liu K, Cui L, Li C, Tang C, Niu Y, Hao J, Bu Y, Chen B. Pan-cancer analysis of the prognostic and immunological role of ANLN: An onco-immunological biomarker. Front Genet 2022; 13:922472. [PMID: 35991576 PMCID: PMC9390797 DOI: 10.3389/fgene.2022.922472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Anillin actin-binding protein (ANLN) is crucially involved in cell proliferation and migration. Moreover, ANLN is significantly in tumor progression in several types of human malignant tumors; however, it remains unclear whether ANLN acts through common molecular pathways within different tumor microenvironments, pathogeneses, prognoses and immunotherapy contexts. Therefore, this study aimed to perform bioinformatics analysis to examine the correlation of ANLN with tumor immune infiltration, immune evasion, tumor progression, immunotherapy, and tumor prognosis. We observed increased ANLN expression in multiple tumors, which could be involved in tumor cell proliferation, migration, infiltration, and prognosis. The level of ANLN methylation and genetic alteration was associated with prognosis in numerous tumors. ANLN facilitates tumor immune evasion through different mechanisms, which involve T-cell exclusion in different cancer types and tumor-infiltrating immune cells in colon adenocarcinoma, kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma. Additionally, ANLN is correlated with immune or chemotherapeutic outcomes in malignant cancers. Notably, ANLN expression may be a predictive biomarker for the response to immune checkpoint inhibitors. Taken together, our findings suggest that ANLN can be used as an onco-immunological biomarker and could serve as a hallmark for tumor screening, prognosis, individualized treatment design, and follow-up.
Collapse
Affiliation(s)
- Kejun Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, China
| | - Lei Cui
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Cunquan Li
- Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, China
| | - Yiming Niu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ji Hao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yang Bu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Hepatobiliary Surgery, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- *Correspondence: Yang Bu, ; Bendong Chen,
| | - Bendong Chen
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Hepatobiliary and Pancreatic Surgical Diseases Clinical Medical Research Center, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yang Bu, ; Bendong Chen,
| |
Collapse
|
10
|
Comprehensive Analysis of ANLN in Human Tumors: A Prognostic Biomarker Associated with Cancer Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5322929. [PMID: 35340220 PMCID: PMC8947880 DOI: 10.1155/2022/5322929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Background Anillin (ANLN), a ubiquitously expressed actin-binding protein, plays a critical tumor-promoting role in cell growth, migration, and cytokinesis. Numerous studies have suggested that ANLN is upregulated in many cancer types, as well as significantly associated with patient prognosis and malignant cancer characteristics. Herein, we performed an integrated pan-cancer analysis of ANLN and highlighted its underlying mechanism, which may benefit further exploration of the potential therapeutic options for cancer. Methods ANLN expression data were extracted from online databases, including TCGA, GTEx, and CCLE databases. The TIMER database was used to study the association between ANLN expression with immune checkpoint genes and immunocyte infiltration. The ScanNeo pipeline was adopted for neoantigen discovery. KEGG analysis and the STRING tool were used to elucidate the potential mechanism of ANLN in cancer development. Results ANLN is abnormally overexpressed in almost all cancer tissues compared with normal tissues. The high-ANLN expression level was positively associated with various malignant characteristics, suggesting its potential role in the immune microenvironment and poor prognosis. In addition, ANLN expression was correlated with the number of neoantigens and different phosphorylation pattern in various cancer types, revealing a functional role of genetic mutation accumulation and high phosphorylation in ANLN-mediated oncogenesis. Moreover, we found that ANLN was an important regulatory factor participating in many signaling events, especially the cell cycle and nucleocytoplasmic transport pathways. Conclusions ANLN expression is generally overexpressed in various types of cancers, and it may have an important influence on tumor progression and development. ANLN expression is significantly associated with the immune checkpoint biomarkers and tumor immunity. Together, these findings suggest that ANLN may be a predictive marker for patient prognosis across cancers.
Collapse
|
11
|
Wang Z, Hu S, Li X, Liu Z, Han D, Wang Y, Wei L, Zhang G, Wang X. MiR-16-5p suppresses breast cancer proliferation by targeting ANLN. BMC Cancer 2021; 21:1188. [PMID: 34743685 PMCID: PMC8574041 DOI: 10.1186/s12885-021-08914-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In recent years, gene expression-based analysis has been used for disease biomarker discovery, providing ways for better diagnosis, leading to improvement of clinical treatment efficacy. This study aimed to explore the role of miR-16-5p and ANLN in breast cancer (BC). METHODS Cohort datasets of BC were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) and analyzed by bioinformatics tools. qRT-PCR and western blotting were applied to validate ANLN and its protein expression. A dual-luciferase reporter assay was used to prove the regulatory relationship of miR-16-5p and ANLN. Finally, MTT, wound healing, Transwell invasion and flow cytometry analyses of the cell cycle and apoptosis were performed to assess cell proliferation, migration, invasion, cell cycle and apoptosis, respectively. RESULTS A total of 195 differentially expressed genes (DEGs) and 50 overlapping microRNAs (miRNAs) were identified. Among these DEGs and miRNAs, ANLN, associated with poor overall survival in BC, overlapped in the GSE29431, GSE42568, TCGA and GEPIA2 databases. Moreover, ANLN was highly expressed, while miR-16-5p was lower in BC cells than in breast epithelial cells. Then, we confirmed that ANLN was directly targeted by miR-16-5p in BC cells. Over-expression of miR-16-5p and knock-down of ANLN remarkably inhibited cell proliferation and migration as well as cell invasion, arrested the cells in G2/M phase and induced apoptosis in BC cells. CONCLUSIONS These findings suggest that miR-16-5p restrains proliferation, migration and invasion while affecting cell cycle and promotes apoptosis by regulating ANLN, thereby providing novel candidate biomarkers for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Ziming Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Siyuan Hu
- Zhoukou first people's Hospital, Zhoukou, China
| | - Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Zhiwei Liu
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Danyang Han
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Yukun Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Limin Wei
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Guangping Zhang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics; Cancer hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, No.24 jinghua Road, Jianxi District, Luoyang, 471003, China.
| |
Collapse
|
12
|
Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis 2021; 12:764. [PMID: 34344861 PMCID: PMC8333361 DOI: 10.1038/s41419-021-04063-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common cancer with high mortality. Anilin actin-binding protein (ANLN) has been reported to be associated with carcinogenesis in multiple tumors. However, the expression pattern and functional effects of ANLN in HNSCC remain to be unclear. Clinical data and online databases were used to analyze the expression of ANLN and its relationship with HNSCC patient survival. Expression of two major splice variants of ANLN was assessed in HNSCC tissues and cell lines. The functional effects and related mechanisms of ANLN isoforms were investigated in HNSCC in vitro and in vivo. Our study showed that patients with high expression of ANLN had a poor prognosis. The two primary isoforms of ANLN transcripts ANLN-201 and ANLN-210 were highly expressed in HNSCC tissues and cell lines. Knockout of ANLN restrained cell proliferation, migration, and invasion of SCC-9 cells. Mechanically, ANLN-201 could interact with c-Myc to keep its protein stability, thereby playing a oncogenic role in HNSCC. ANLN-210 could be transferred to macrophages via exosomes by binding to RNA-binding protein hnRNPC. Exosomal ANLN-210 promoted macrophage polarization via PTEN/PI3K/Akt signaling pathway, thus stimulating tumor growth of HNSCC. ANLN was an independent prognostic factor in patients with HNSCC. Alternatively spliced ANLN isoforms collaboratively promote HNSCC tumorigenesis in vitro and in vivo, which might provide the in-depth role and mechanism of ANLN in HNSCC development.
Collapse
|
13
|
Liu L, Qu J, Dai Y, Qi T, Teng X, Li G, Qu Q. An interactive nomogram based on clinical and molecular signatures to predict prognosis in multiple myeloma patients. Aging (Albany NY) 2021; 13:18442-18463. [PMID: 34260414 PMCID: PMC8351694 DOI: 10.18632/aging.203294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Although novel drugs and treatments have been developed and improved, multiple myeloma (MM) is still recurrent and difficult to cure. In the present study, the magenta module containing 400 hub genes was determined from the training dataset of GSE24080 through weighted gene co-expression network analysis (WGCNA). Then, using the least absolute shrinkage and selection operator (Lasso) analysis, a fifteen-gene signature was firstly selected and the predictive performance for overall survival (OS) was favorable, which was identified by Receiver Operating Characteristic (ROC) curves. The risk score model was constructed based on survival-associated fifteen genes from the Lasso model, which classified MM patients into high-risk and low-risk groups. Areas under the curve (AUC) of ROC curve and log-rank test showed that the high-risk group was correlated to the dismal survival outcome of MM patients, which was also identified in testing dataset of GSE9782. The calibration plot, the AUC value of the ROC curve and Concordance-index showed that the interactive nomogram with risk score could favorably predict the probability of multi-year OS of MM patients. Therefore, it may help clinicians make a precise therapeutic decision based on the easy-to-use tool of the nomogram.
Collapse
Affiliation(s)
- Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinqi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Savukaitytė A, Gudoitytė G, Bartnykaitė A, Ugenskienė R, Juozaitytė E. siRNA Knockdown of REDD1 Facilitates Aspirin-Mediated Dephosphorylation of mTORC1 Target 4E-BP1 in MDA-MB-468 Human Breast Cancer Cell Line. Cancer Manag Res 2021; 13:1123-1133. [PMID: 33574709 PMCID: PMC7872862 DOI: 10.2147/cmar.s264414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mutations within genes encoding components of the PI3K/AKT/mTOR (phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin) signaling axis frequently activate the pathway in breast cancer, making it an attractive therapeutic target. Inhibition of mTORC1 (mechanistic target of rapamycin complex 1) activity upon aspirin treatment has been reported in breast cancer cells harboring PI3KCA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) mutation and is considered to account for anticancer action. Methods MDA-MB-468 (harbors mutated PTEN (phosphatase and TENsin homolog)), MCF-7 (PI3KCA-mutated), MDA-MB-231 (no PI3K pathway mutations) cancer cell lines and MCF10A non-cancerous breast epithelial cells were employed for the assessment of modulation of mTORC1 signaling by aspirin. Targeted amplicon-based next-generation sequencing using the Ion Torrent technology was carried out to determine gene expression changes following drug treatment. Western blot was performed to analyze the expression and phosphorylation of proteins. Knockdown by siRNA approach was applied to assess the role of REDD1/DDIT4 (DNA damage-inducible transcript 4) in mTORC1 inhibition by aspirin. Results We show a decline in phosphorylation of mTORC1 downstream substrate 4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1) in response to treatment with aspirin and its metabolite salicylic acid in MDA-MB-468, MCF-7, MDA-MB-231, and MCF10A cell lines. We further demonstrate a novel molecular response to aspirin in breast cancer cells. Specifically, we found that aspirin and salicylic acid increase the expression of REDD1 protein, that is known for its suppressive function towards mTORC1. Unexpectedly, we observed that siRNA knockdown of REDD1 expression facilitated aspirin-mediated suppression of mTORC1 downstream substrate 4E-BP1 phosphorylation in the MDA-MB-468 cell line. REDD1 downregulation slightly encouraged reduction in 4E-BP1 phosphorylation by aspirin in MCF-7 cells but did not elicit a reproducible effect in the MDA-MB-231 cell line. siRNA knockdown of REDD1 did not affect the expression of phosphorylated form of 4E-BP1 following aspirin treatment in MCF10A non-cancerous breast epithelial cells. Conclusion The current findings suggest that REDD1 downregulation might improve the anticancer activity of aspirin in a subset of breast tumors.
Collapse
Affiliation(s)
- Aistė Savukaitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gudoitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agnė Bartnykaitė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| |
Collapse
|
15
|
Jia H, Yu F, Li B, Gao Z. Actin-binding protein Anillin promotes the progression of gastric cancer in vitro and in mice. J Clin Lab Anal 2021; 35:e23635. [PMID: 33089886 PMCID: PMC7891526 DOI: 10.1002/jcla.23635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To detect the expression levels of actin-binding protein anillin (ANLN) in human gastric cancer (GC) tissues and explore the possible involvement of ANLN in GC cell proliferation, migration, and invasion. METHODS The bioinformation analysis was performed in TCGA database to explore the expression of ANLN in human GC tissues and the difference of ANLN expression between multiple types of cancers. IHC assays and clinical pathological analysis were performed to confirm ANLN expression and its correlation with clinical features of GC patients. Colony formation, CCK-8, wound closure, and transwell assays were performed to detect its effects on GC cell proliferation, migration, and invasion in vitro. Tumor growth was also measured using a xenograft animal model. RESULTS We found the high expression of ANLN in human GC tissues based on the results from TCGA database and IHC staining. We further noticed ANLN depletion resulted in the inhibition of GC cell proliferation, migration, and invasion. Our data further confirmed that ANLN contributed to tumor growth of GC cells in vivo. CONCLUSIONS We confirmed the involvement of ANLN in GC progression and thought ANLN could serve as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Huanxia Jia
- School of MedicineXuchang UniversityXuchangChina
| | - Fang Yu
- School of MedicineXuchang UniversityXuchangChina
| | - Baoyu Li
- Department of General SurgeryThe Secondary Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhenya Gao
- School of MedicineXuchang UniversityXuchangChina
| |
Collapse
|
16
|
Wang F, Xiang Z, Huang T, Zhang M, Zhou WB. ANLN Directly Interacts with RhoA to Promote Doxorubicin Resistance in Breast Cancer Cells. Cancer Manag Res 2020; 12:9725-9734. [PMID: 33116832 PMCID: PMC7548225 DOI: 10.2147/cmar.s261828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Chemotherapy resistance is the leading cause of cancer treatment failure. This research was conducted to explore a potential link between actin-binding protein anillin (ANLN) and doxorubicin resistance in breast cancer. Materials and Methods We compared ANLN expression and 50% inhibition concentration (IC50) of doxorubicin in human breast cancer cells (MDA-MB-231) and human breast cancer cells with doxorubicin resistance (MDA-MB-231/ADM). Co-immunoprecipitation was used to investigate the interaction between ANLN and RhoA. The cell viability, apoptosis, gene and protein expression were estimated by MTT, flow cytometry, quantitative real-time PCR and western blot. Results The doxorubicin resistance in MDA-MB-231/ADM cells (IC50 = 19.40 ± 1.16 μg/mL) was significantly higher than that in MDA-MB-231 cells (IC50 = 1.65 ± 0.23 μg/mL). ANLN was up-regulated in MDA-MB-231/ADM cells compared to MDA-MB-231 cells. Furthermore, ANLN overexpression promoted cell viability and inhibited apoptosis of MDA-MB-231 cells. The gene and protein expression of multidrug resistance (MDR1) and cancer resistance protein (BCRP) were enhanced by ANLN overexpression in MDA-MB-231 cells. ANLN silencing suppressed cell viability and the expression of MDR1 and BCRP and facilitated apoptosis in MDA-MB-231/ADM cells. Moreover, ANLN promoted RhoA activation by interacting with RhoA. ANLN up-regulation enhanced cell viability and the expression of MDR1 and BCRP and decreased apoptosis of MDA-MB-231 cells. The influence conferred by ANLN overexpression was effectively abolished by C3 transferase. Conclusion This work revealed that ANLN promoted doxorubicin resistance in breast cancer cells by activating RhoA. Thus, our study suggests a novel target for breast cancer treatment.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Zhen Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Teng Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
17
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
18
|
Tuan NM, Lee CH. Role of Anillin in Tumour: From a Prognostic Biomarker to a Novel Target. Cancers (Basel) 2020; 12:E1600. [PMID: 32560530 PMCID: PMC7353083 DOI: 10.3390/cancers12061600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023] Open
Abstract
Anillin (ANLN), an actin-binding protein, reportedly plays a vital role in cell proliferation and migration, particularly in cytokinesis. Although there have been findings pointing to a contribution of ANLN to the development of cancer, the association of ANLN to cancer remains not fully understood. Here, we gather evidence to determine the applicability of ANLN as a prognostic tool for some types of cancer, and the impact that ANLN has on the hallmarks of cancer. We searched academic repositories including PubMed and Google Scholar to find and review studies related to cancer and ANLN. The conclusion is that ANLN could be a potent target for cancer treatment, but the roles ANLN, other than in cytokinesis and its influence on tumour microenvironment remodeling in cancer development, must be further elucidated, and specific ANLN inhibitors should be found.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea;
| |
Collapse
|