1
|
Huang C, Qiu H, Xu C, Tan Z, Jin M, Hu J, Huang Z, Zhou Y, Ge S, Hu X. Downregulation of tropomyosin 2 promotes the progression of lung adenocarcinoma by regulating neutrophil infiltration through neutrophil elastase. Cell Death Dis 2025; 16:264. [PMID: 40199876 PMCID: PMC11978998 DOI: 10.1038/s41419-025-07531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Lung adenocarcinoma (LUAD) is a common malignant tumor in the lung that seriously endangers the health of people worldwide. The neutrophil-associated inflammatory microenvironment contributes to the activation of tumor cells. In this study, we report a role of tumor-associated neutrophils (TANs) promote tumor progression of LUAD by crosstalk between neutrophils and tumor cells. Mechanistically, in co-culture with tumor cells, downregulation of TPM2 on tumor cells increases neutrophil elastase (ELANE) levels in neutrophils regulated by p38/ MAPK signaling activation, and ELANE promotes tumor cell progression through the Hippo pathway. Furthermore, downregulation of TPM2 activates ELANE of neutrophils to facilitate ERK1/2 activation, thus enhancing IL1β and IL8 secretion for chemoattraction of more neutrophils to tumor microenvironment. The new studies identify an accomplice role for the interaction between TPM2 and ELANE in promoting LUAD progression and provide potential strategies in the prevention and/or treatment of LUAD and other cancers.
Collapse
Affiliation(s)
- Caixiu Huang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Hao Qiu
- The First People's Hospital of Changde City, Changde, PR China
| | - Changting Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zilong Tan
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Mei Jin
- Pingxiang People's Hospital, Pingxiang, PR China
| | - Jing Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | | | - Yuwei Zhou
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Shengyou Ge
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| | - Xiaoyuan Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Lu Y, Qin M, Qi X, Yang M, Zhai F, Zhang J, Yan Z, Yan L, Qiao J, Yuan P. Sex differences in human pre-gastrulation embryos. SCIENCE CHINA. LIFE SCIENCES 2025; 68:397-415. [PMID: 39327393 DOI: 10.1007/s11427-024-2721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Human fetuses exhibit notable sex differences in growth rate and response to the intrauterine environment, yet their origins and underlying mechanisms remain uncertain. Here, we conduct a detailed investigation of sex differences in human pre-gastrulation embryos. The lower methylation and incomplete inactivation of the X chromosome in females, as well as the sex-specific cell-cell communication patterns, contribute to sex-differential transcription. Male trophectoderm is more inclined toward syncytiotrophoblast differentiation and exhibits a stronger hormone secretion capacity, while female trophectoderm tends to retain cytotrophoblast program with stronger mitochondrial function as well as higher vasculogenesis and immunotolerance signals. Male primitive endoderm initiates the anterior visceral endoderm transcriptional program earlier than females. The cell cycle activities of the epiblast and primitive endoderm are higher in males compared to females, while the situation is opposite in the trophectoderm. In conclusion, our study provides in-depth insights into the sex differences in human pre-gastrulation embryos and contributes to unraveling the origins of the sex differences in human fetal development.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jiaqi Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
3
|
Huang G, Liu Y, Li L, Li B, Jiang T, Cao Y, Yang X, Liu X, Qu H, Li S, Zheng X. Integration analysis of microRNAs as potential biomarkers in early-stage lung adenocarcinoma: the diagnostic and therapeutic significance of miR-183-3p. Front Oncol 2024; 14:1508715. [PMID: 39759146 PMCID: PMC11697600 DOI: 10.3389/fonc.2024.1508715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) poses a significant therapeutic challenge, primarily due to delayed diagnosis and the limited efficacy of existing treatments. Methods To understand the pathogenesis and identify diagnostic biomarkers for LUAD in the early stage, we investigated differential miRNA expression in 33 stage I LUAD patients between tumor and matched paracancerous tissues by Illumina Sequencing. Target genes of differentially expressed miRNAs were predicted using TargetScan and miRDB databases and further analyzed by GO and KEGG pathway enrichment analysis. The miRNAs expression results were verified using qRT-PCR. Additionally, we evaluated the clinical significance of miRNAs by the TCGA database. miR-183-3p was chosen for subsequent biological functional studies by cell proliferation assays, cell migration and cell invasion assays, cell apoptosis and cell cycle assays in LUAD cells. The clinical relevance target genes of miR-183-3p were predicted by TargetScan databases and bioinformatics assays. Gene-specific experimental validation was performed using qRT-PCR, western blotting and luciferase reporter assays. Results We identified 36 differentially expressed miRNAs between LUAD tissues and matched paracancerous tissues. Target genes for these miRNAs revealed associations with processes and pathways such as RNA biosynthesis, intracellular signaling, protein transport, and the Ras, MAPK, and PI3K-AKT pathways. The qRT-PCR results were in alignment with the sequencing data for 19 out of these 21 miRNAs which not yet implicated in LUAD, 13 were up-regulated, 6 were down-regulated. The clinical relevance assays showed that 5 up-regulated miRNAs have diagnostic value for LUAD. miR-183-3p showed significant advantages in the result of sequencing, qRT-PCR, and clinical relevance assay. Biological functional assays showed that miR-183-3p emerged as a key regulator, promoting LUAD cell proliferation, decreasing apoptosis, and augmenting migration and invasion capabilities. The clinical relevance assays and experimental validation showed SESN1 as a clinical significance target of miR-183-3p. Discussion Our study lays the foundation for investigating miRNAs with diagnostic significance in early-stage LUAD, pointing out that inhibition of miR-183-3p may serve as a novel therapeutic in LUAD.
Collapse
Affiliation(s)
- Guodong Huang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yuxia Liu
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lisha Li
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Bing Li
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ting Jiang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yufeng Cao
- Cancer Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xiaoping Yang
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xinning Liu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Honglin Qu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Shitao Li
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zheng
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
4
|
Yang X, Liu C, Li Z, Wen J, He J, Lu Y, Liao Q, Wang T, Tang H, Yang X, Zeng L. Paclitaxel hyperthermia suppresses gastric cancer migration through MiR-183-5p/PPP2CA/AKT/GSK3β/β-catenin axis. J Cancer Res Clin Oncol 2024; 150:416. [PMID: 39249161 PMCID: PMC11383839 DOI: 10.1007/s00432-024-05923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Gastric cancer (GC), a prevalent malignant tumor which is a leading cause of death from malignancy around the world. Peritoneal metastasis accounts for the major cause of mortality in patients with GC. Despite hyperthermia intraperitoneal chemotherapy (HIPEC) improves the therapeutic effect of GC, it's equivocal about the mechanism under HIPEC. METHODS MiR-183-5p expression was sifted from miRNA chip and detected in both GC patients and cell lines by qRT-PCR. Gene interference and rescue experiments were performed to identified biological function in vitro and vivo. Next, we affirmed PPP2CA as targeted of miR-183-5p by dual luciferase reporter assay. Finally, the potential relationship between HIPEC and miR-183-5p was explored. RESULTS MiR-183-5p is up-regulated in GC and associated with advanced stage and poor prognosis. MiR-183-5p accelerate GC migration in vitro which is influenced by miR-183-5p/PPP2CA/AKT/GSK3β/β-catenin Axis. HIPEC exerts migration inhibition via attenuating miR-183-5p expression. CONCLUSION MiR-183-5p can be used as a potential HIPEC biomarker in patients with CC.
Collapse
Affiliation(s)
- Xiansheng Yang
- Department of Anus and Intestine Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Chang Liu
- Medical Affair Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zheng Li
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Juncai Wen
- Department of Medical Oncology, Puning People's Hospital, Puning, 515300, China
| | - Jinfu He
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yunxin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Quanxing Liao
- First Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Tian Wang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hongsheng Tang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Xianzi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lisi Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
5
|
Fu Z, Sun G, Li J, Yu H. Identification of hub genes related to metastasis and prognosis of osteosarcoma and establishment of a prognostic model with bioinformatic methods. Medicine (Baltimore) 2024; 103:e38470. [PMID: 38847690 PMCID: PMC11155596 DOI: 10.1097/md.0000000000038470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and adolescents. Improvements in our understanding of the OS pathogenesis and metastatic mechanism on the molecular level might lead to notable advances in the treatment and prognosis of OS. Biomarkers related to OS metastasis and prognosis were analyzed and identified, and a prognostic model was established through the integration of bioinformatics tools and datasets in multiple databases. 2 OS datasets were downloaded from the Gene Expression Omnibus database for data consolidation, standardization, batch effect correction, and identification of differentially expressed genes (DEGs); following that, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DEGs; the STRING database was subsequently used for protein-protein interaction (PPI) network construction and identification of hub genes; hub gene expression was validated, and survival analysis was conducted through the employment of the TARGET database; finally, a prognostic model was established and evaluated subsequent to the screening of survival-related genes. A total of 701 DEGs were identified; by gene ontology and KEGG pathway enrichment analyses, the overlapping DEGs were enriched for 249 biological process terms, 13 cellular component terms, 35 molecular function terms, and 4 KEGG pathways; 13 hub genes were selected from the PPI network; 6 survival-related genes were identified by the survival analysis; the prognostic model suggested that 4 genes were strongly associated with the prognosis of OS. DEGs related to OS metastasis and survival were identified through bioinformatics analysis, and hub genes were further selected to establish an ideal prognostic model for OS patients. On this basis, 4 protective genes including TPM1, TPM2, TPM3, and TPM4 were yielded by the prognostic model.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Guofeng Sun
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| | - Jingtian Li
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| | - Hongjian Yu
- Department of Orthopedics, Binzhou People’s Hospital, Binzhou,China
| |
Collapse
|
6
|
Wang H, Liu J, Tang R, Hu J, Liu M, Wang J, Zhang J, Hou H. Deciphering the significance of anoikis in bladder cancer and systematic analysis of S100A7 as a potential therapeutic target. Eur J Med Res 2024; 29:52. [PMID: 38217031 PMCID: PMC10785515 DOI: 10.1186/s40001-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Bladder cancer is an epidemic and life-threating urologic carcinoma. Anoikis is a unusual type of programmed cell death which plays a vital role in tumor survival, invasion and metastasis. Nevertheless, the relationship between anoikis and bladder cancer has not been understood thoroughly. METHODS We downloaded the transcriptome and clinical information of BLCA patients from TCGA and GEO databases. Then, we analyzed different expression of anoikis-related genes and established a prognostic model based on TCGA database by univariate Cox regression, lasso regression, and multivariate Cox regression. Then the Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were performed. GEO database was used for external validation. BLCA patients in TCGA database were divided into two subgroups by non-negative matrix factorization (NMF) classification. Survival analysis, different gene expression, immune cell infiltration and drug sensitivity were calculated. Finally, we verified the function of S100A7 in two BLCA cell lines. RESULTS We developed a prognostic risk model based on three anoikis-related genes including TPM1, RAC3 and S100A7. The overall survival of BLCA patients in low-risk groups was significantly better than high-risk groups in training sets, test sets and external validation sets. Subsequently, the checkpoint and immune cell infiltration had significant difference between two groups. Then we identified two subtypes (CA and CB) through NMF analysis and found CA had better OS and PFS than CB. Besides, the accuracy of risk model was verified by ROC analysis. Finally, we identified that knocking down S100A7 gene expression restrained the proliferation and invasion of bladder cancer cells. CONCLUSION We established and validated a bladder cancer prognostic model consisting of three genes, which can effectively evaluate the prognosis of bladder cancer patients. Additionally, through cellular experiments, we demonstrated the significant role of S100A7 in the metastasis and invasion of bladder cancer, suggesting its potential as a novel target for future treatments.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jianyong Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Runhua Tang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jie Hu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ming Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jianye Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jingwen Zhang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Huimin Hou
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China.
| |
Collapse
|
7
|
Zhou X, Li Z, Chen H, Jiao M, Zhou C, Li H. Relevance Analysis of TPM2 and Clinicopathological Characteristics in Breast Cancer. Int J Gen Med 2024; 17:59-74. [PMID: 38221941 PMCID: PMC10788065 DOI: 10.2147/ijgm.s442004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background The function of tropomyosin 2 (TPM2) in breast cancer is still far understudied. In this study, we aim to explore the roles of TPM2 in breast cancer progression. Methods This research included 155 breast cancer tissues. The expression of TPM2 was analyzed by immunohistochemical staining and grading. The mRNA expression of TPM2 in pan-cancer was analyzed with The Cancer Genome Atlas (TCGA) data plate form. The differential expression of TPM2 protein and the differential promoter methylation level of TPM2 between breast cancer tissues and normal breast tissues were analyzed by the UALCAN online database. The relationship between TPM2 and signaling pathways was interpreted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathway enrichment analyses. The survival curve of TPM2 was analyzed across the Kaplan-Meier plotter online database. Furthermore, the relationship between TPM2 expression and infiltrating macrophages was validated through in vitro co-culture experiments. Results TPM2 expression was significantly down-regulated in breast cancer samples. In addition, TPM2 expression was correlated with lymph node metastasis and high-grade histopathological morphology. The receiver operating characteristic (ROC) curve indicated that TPM2 expression could well distinguish between normal breast tissue and breast cancer tissue. TPM2 may have potential value in breast cancer diagnosis. Bioinformatics analysis illustrated that TPM2 was mainly involved in extracellular matrix organization, collagen fibril organization, cell junction assembly, focal adhesion, cAMP signaling pathway, estrogen signaling pathway, Wnt signaling pathway, and adaptive immune system. TPM2 expression was correlated with immune infiltrating cells and immune checkpoint molecules. Our in vitro co-culture experiments showed that the M2 macrophages could upregulate the expression of TPM2. Conclusion TPM2 may play key roles in breast cancer occurrence and development, especially in cancer metastasis. TPM2 may be a potential biomarker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Xingchen Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zhishuang Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Huan Chen
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Meng Jiao
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hui Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
8
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Pan Z, Yun H, Xiao Y, Tong F, Liu G, Zhang G, Han J. MiR-934 Exacerbates Malignancy of Gastric Cancer Cells by Targeting ZFP36. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1720-1729. [PMID: 37744530 PMCID: PMC10512137 DOI: 10.18502/ijph.v52i8.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 09/26/2023]
Abstract
Background In order to explore new targets for the treatment of gastric cancer (GC), we investigated the regulatory mechanism of miR-934 in the malignant phenotype of gastric cancer. Methods The miRNA and mRNA expressions were determined by RT-qPCR, and protein levels were quantified by western blotting assay. Malignancy of AGS cell line was evaluated by MTT, flow cytometry, wound healing and Transwell assays. The putative binding site between miR-934 and ZFP36 was validated using luciferase reporter assay. Immunohistochemistry (IHC) assay was used to visualize the ZFP36-positive cells in the xenograft sections. All experiments were conducted in General Surgery Laboratory of Nanjing Red Cross Hospital Jiangsu Province, China from June 2019 to June 2021. Results GC tissues and cell lines showed notably higher levels of miR-934. Overexpression of miR-934 promoted cell viability, migration and invasion, while inhibited cell apoptosis of GC cells. ZFP36 was predicted and verified to be the target of miR-934 and low protein levels of ZFP36 were observed in GC tissues. The ZFP36 protein expressions were suppressed by miR-934 overexpression, while were facilitated by miR-934 inhibition. Furthermore, the carcinogenic functions of miR-934 were partially reversed after ZFP36 overexpression. The results of in vivo experiments further demonstrated that miR-934 promoted tumor growth and repressed the protein expression of ZFP36. Conclusion miR-934 served as a tumor promoter in GC via targeting ZFP36, and ZFP36 overexpression could efficiently relieve malignant phenotypes caused by miR-934, which prompted an exploitable molecular target for GC treatment.
Collapse
Affiliation(s)
- Zhicheng Pan
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Huazhong Yun
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Yun Xiao
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Fei Tong
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Guodong Liu
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Ge Zhang
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Jianbo Han
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| |
Collapse
|
10
|
Darang E, Pezeshkian Z, Mirhoseini SZ, Ghovvati S. Bioinformatics and pathway enrichment analysis identified hub genes and potential biomarker for gastric cancer prognosis. Front Oncol 2023; 13:1187521. [PMID: 37361568 PMCID: PMC10288990 DOI: 10.3389/fonc.2023.1187521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Gastric cancer is one of the most common cancers in the world. This study aimed to identify genes, biomarkers, and metabolic pathways affecting gastric cancer using bioinformatic analysis and meta-analysis. Methods Datasets containing gene expression profiles of tumor lesions and adjacent non-tumor mucosa samples were downloaded. Common differentially expressed genes between data sets were selected to identify hub genes and further analysis. Gene Expression Profiling and Interactive Analyses (GEPIA) and the Kaplan-Meier method were used to further validate the expression level of genes and plot the overall survivalcurve, respectively. Results and disscussion KEGG pathway analysis showed that the most important pathway was enriched in ECM-receptor interaction. Hub genes includingCOL1A2, FN1, BGN, THBS2, COL5A2, COL6A3, SPARC and COL12A1 wereidentified. The top interactive miRNAs including miR-29a-3p, miR-101-3p,miR-183-5p, and miR-15a-5p targeted the most hub genes. The survival chart showed an increase in mortality in patients with gastric cancer, which shows the importance of the role of these genes in the development of the disease and can be considered candidate genes in the prevention and early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Elham Darang
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
- Research and Development Center (R&D), BioGenTAC Inc., Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| |
Collapse
|
11
|
Gamal NS, Ashraf S, Hesham N, Aboushousha T, Hegab F, Safwat G, Magdy M. Immunohistochemical Expression of CD90, CD133, and TPM1 in Relation to Gastric Cancer and H. pylori Association. Asian Pac J Cancer Prev 2023; 24:2121-2127. [PMID: 37378943 PMCID: PMC10505886 DOI: 10.31557/apjcp.2023.24.6.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer-related death worldwide. Multiple malignancies overexpress CD90, making it a helpful diagnostic and prognostic marker. CD133 is suggested to be related to poor prognosis in GC. Tropomyosin-1 (TPM1) tumor-suppressor gene low expression may predict poor survival in GC. Our study aimed to investigate CD90, CD133, and TPM1 immunohistochemical expression in GC in relation to diagnosis, prognosis, and Helicobacter pylori (H. pylori) infection. METHODS 144 paraffin blocks containing gastric cancerous (108 cases), and non-cancerous (36 cases) tissue were analyzed histopathologically for the type of lesion, grade, and stage of malignancy and by using an immunohistochemical assay for studying the expression of CD90, CD133, and TPM1. Data analysis was carried out using the Statistical Package for the Social Sciences (SPSS) version 20.0. RESULTS The obtained results showed a significantly higher expression of CD90 and CD133 while showing a significantly lower expression of TPM1 in malignant samples compared to benign ones. CD90 was significantly higher in grade-3, stage-3, and N3 (p<0.05), with no significant difference concerning positive and negative H. pylori samples. CD133 percentage and H-score were significantly higher in grade-2 and stage-4 tumors than in other grades and stages, while being insignificantly higher in N3 and H. pylori-positive cases. TPM1 expression levels were significantly downregulated in GC and H. pylori-positive cases (p<0.05). TPM1 downregulation was associated with grade progression, increased depth of invasion, and tumor node metastasis. CONCLUSION CD90, CD133, and TPM1 immunohistochemical expression in the gastric biopsy are related firmly to grades and stages of GC as well as H. pylori infection, so they could be of prognostic value. Further studies on a larger sample size are recommended.
Collapse
Affiliation(s)
- Noha Sayed Gamal
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Salma Ashraf
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Noha Hesham
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Tarek Aboushousha
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| | - Fatma Hegab
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Science and Arts, Giza, Egypt.
| | - Mona Magdy
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt.
| |
Collapse
|
12
|
Duan P, Cui J, Li H, Yuan L. Tropomyosin 2 exerts anti-tumor effects in lung adenocarcinoma and is a novel prognostic biomarker. Histol Histopathol 2023; 38:669-680. [PMID: 36102257 DOI: 10.14670/hh-18-514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tropomyosin 2 (TPM2), a member of the actin filament binding protein family, plays distinct roles in the progression of different cancer types. Until now, there has been no study reporting TPM2 expression nor its function in lung adenocarcinoma (LUAD). METHODS In the present study, we examined the expression profile of TPM2 by immunohistochemistry (IHC). The clinical significance of TPM2 was assessed by univariate and multivariate analyses. Function of TPM2 in LUAD was evaluated by knockdown and overexpression strategies in three LUAD cell lines, followed by proliferation and invasion assays. Xenografts were conducted in nude mice to further validate the tumor-related role of TPM2. RESULTS Our results showed that TPM2 was downregulated in LUAD specimens and the low expression of TPM2 was associated with poor outcomes of LUAD patients. Overexpressing TPM2 inhibited cell proliferation and invasion of LUAD cell lines, while silencing TPM2 exerted the opposite effects. The effects of TPM2 in LUAD were further confirmed by xenograft assays. CONCLUSIONS Our results indicated that TPM2 exerted an anti-oncogenic role in LUAD via inhibiting tumor progression, thus providing a novel direction for the prognostic prediction and disease treatment.
Collapse
Affiliation(s)
- Peng Duan
- Department of Oncology, The Third People's Hospital of Qingdao, Qingdao, China
| | - Jing Cui
- Department of Emergency, The Third People's Hospital of Qingdao, Qingdao, China
| | - Hongyan Li
- Department of Oncology, The Third People's Hospital of Qingdao, Qingdao, China
| | - Lei Yuan
- Department of Respiratory, The Third People's Hospital of Qingdao, Qingdao, China.
| |
Collapse
|
13
|
Meng LB, Xu HX, Shan MJ, Hu GF, Liu LT, Chen YH, Liu YQ, Wang L, Chen Z, Li YJ, Gong T, Liu DP. A Potential Target for Clinical Atherosclerosis: A Novel Insight Derived from TPM2. Aging Dis 2022; 13:373-378. [PMID: 35371599 PMCID: PMC8947840 DOI: 10.14336/ad.2021.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 11/02/2022] Open
Abstract
Atherosclerosis (AS) is a potential inducer of numerous cardio-cerebrovascular diseases. However, little research has investigated the expression of TPM2 in human atherosclerosis samples. A total of 34 clinical samples were obtained, including 17 atherosclerosis and 17 normal artery samples, between January 2018 and April 2021. Bioinformatics analysis was applied to explore the potential role of TPM2 in atherosclerosis. Immunohistochemistry, immunofluorescence, and western blotting assays were used to detect the expression of TPM2 and α-SMA proteins. The mRNA expression levels of TPM2 and α-SMA were detected using RT-qPCR. A neural network and intima-media thickness model were constructed. A strong relationship existed between the intima-media thickness and relative protein expression of TPM2 (P<0.001, R=-0.579). The expression of TPM2 was lower in atherosclerosis than normal artery (P<0.05). Univariate logistic regression showed that TPM2 (OR=0.150, 95% CI: 0.026-0.868, P=0.034) had clear correlations with atherosclerosis. A neural network model was successfully constructed with a relativity of 0.94434. TPM2 might be an independent protective factor for arteries, and one novel biomarker of atherosclerosis.
Collapse
Affiliation(s)
- Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hong-xuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Meng-jie Shan
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of plastic surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Gai-feng Hu
- Department of Cardiology, The First A?liated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Long-teng Liu
- Department of pathology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yu-hui Chen
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yun-qing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Li Wang
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-jun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - De-ping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Han T, Zheng H, Zhang J, Yang P, Li H, Cheng Z, Xiang D, Wang R. Downregulation of MUC15 by miR-183-5p.1 promotes liver tumor-initiating cells properties and tumorigenesis via regulating c-MET/PI3K/AKT/SOX2 axis. Cell Death Dis 2022; 13:200. [PMID: 35236826 PMCID: PMC8891362 DOI: 10.1038/s41419-022-04652-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Mucin 15 (MUC15) is reportedly aberrant in human malignancies, including hepatocellular carcinoma (HCC). However, the role of MUC15 in the regulation of liver tumor-initiating cells (T-ICs) remains unknown. Here, we report that expression of MUC15 is downregulated in liver T-ICs, chemoresistance and recurrent HCC samples. Functional studies reveal that MUC15 inhibits hepatoma cells self-renewal, malignant proliferation, tumorigenicity, and chemoresistance. Mechanistically, MUC15 interacts with c-MET and subsequently inactivates the PI3K/AKT/SOX2 signaling pathway. Moreover, we find that miR-183-5p.1 directly targets MUC15 3′-UTR in liver T-ICs. Coincidentally, SOX2 feedback inhibits MUC15 expression by directly transactivating miR-183-5p.1, thus completing a feedforward regulatory circuit in liver T-ICs. Importantly, MUC15/c-MET/PI3K/AKT/SOX2 axis determines the responses of hepatoma cells to lenvatinib treatment, and MUC15 overexpression abrogated lenvatinib resistance. Analysis of patient cohort, patient-derived tumor organoids and patient-derived xenografts further suggests that the MUC15 may predict lenvatinib benefits in HCC patients. Collectively, our findings suggest the crucial role of the miR-183-5p.1/MUC15/c-MET/PI3K/AKT/SOX2 regulatory circuit in regulating liver T-ICs properties, suggesting potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, 110001, Shenyang, China
| | - Hao Zheng
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Hepatocellular Carcinoma Ministry of Education, 200438, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, 200438, Shanghai, China.,Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, 200433, Shanghai, People's Republic of China
| | - Jin Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China
| | - Hengyu Li
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Zhangjun Cheng
- Department of Hepato-Pancreato-Biliary Centers, Zhong Da Hospital, School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Daimin Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 200438, Shanghai, China.
| |
Collapse
|
15
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
16
|
ARHGAP11A Promotes the Malignant Progression of Gastric Cancer by Regulating the Stability of Actin Filaments through TPM1. JOURNAL OF ONCOLOGY 2021; 2021:4146910. [PMID: 34912455 PMCID: PMC8668285 DOI: 10.1155/2021/4146910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
The mechanism underlying the poor prognosis of gastric cancer, including its high degree of malignancy, invasion, and metastasis, is extremely complicated. Rho GTPases are involved in the occurrence and development of a variety of malignant tumors. ARHGAP11A, in the Rho GTPase activating protein family, is highly expressed in gastric cancer, but its function and mechanism have not yet been explored. In this study, the effect of ARHGAP11A on the occurrence and development of gastric cancer and the mechanism related to this effect were studied. The expression of ARHGAP11A was increased in gastric cancer cells and tissues, and high ARHGAP11A expression in tissues was related to the degree of tumor differentiation and poor prognosis. Moreover, ARHGAP11A knockout significantly inhibited cell proliferation, cell migration, and invasion in vitro and significantly inhibited the tumorigenic ability of gastric cancer cells in nude mice in vivo. Further studies revealed that ARHGAP11A promotes the malignant progression of gastric cancer cells by interacting with TPM1 to affect cell migration and invasion and the stability of actin filaments. These results suggest that ARHGAP11A plays an important role in gastric cancer and may become a useful prognostic biomarker and therapeutic target for gastric cancer patients.
Collapse
|
17
|
Wang Y, Zhang J, Liu M, Zhang S, Wang W, Cheng S. Clinical values and potential pathways of miR-183-5p in gastric cancer: a study based on integrational bioinformatics analysis. J Gastrointest Oncol 2021; 12:2123-2131. [PMID: 34790379 DOI: 10.21037/jgo-21-599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers. This study further explored the transcriptome profile regulated by miR-183-5p. Methods Messenger RNA (mRNA) expression data, miRNA expression, and clinical information of stomach adenocarcinoma (STAD) were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) that related to mir-189-5p expression and cancer proliferation were acquired using bioinformatics analysis. The biological functions of these genes were analyzed in terms of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes relating to gastric cancer (GC) signal pathway were explored. The results were validated by further experiments. Results A total of 308 genes were found to be regulated by miR-183-5p, and they were related to cancer and GC patients' survival outcome. The biological function of these genes was found to act mainly on biological processes and the involved signal pathways included neuroactive ligand-receptor interaction, cell adhesion molecules, and axon guidance. In addition, miR-183-5p was also shown to regulate the mTOR, Wnt, MAPK, and PI3K-Akt signaling pathways through the genes WNT2B, NGFR, and NTRK2. Conclusions The miRNA miR-183-5p participates in the tumorigenesis and development of GC via certain signaling pathways, in particular the nerve- and immunity-related genes.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jinku Zhang
- Department of Pathology, No. 1 Central Hospital of Baoding, Baoding, China
| | - Mingkai Liu
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shun Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weina Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shujie Cheng
- Department of Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
18
|
The Mechanism of miR-141 Regulating the Proliferation and Metastasis of Liver Cancer Cells by Targeting STAT4. JOURNAL OF ONCOLOGY 2021; 2021:5425491. [PMID: 34675977 PMCID: PMC8526259 DOI: 10.1155/2021/5425491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023]
Abstract
Background In recent years, it has been reported that miRNA can be used as one of the markers of tumor diagnosis, treatment, and prognosis (including liver cancer), and it plays an important role in tumorigenesis. However, there are still very few studies on the mechanism and role of miR-141 in liver cancer. Methods qRT-PCR was used to test the expressions of miR-141 and STAT4 in collected liver cancer tissues and adjacent tissues, cultured liver cancer cell lines MHCC97H, Hep3B, and Huh7, and normal human liver cells HL7702. After processing the results of the qRT-PCR experiment, liver cancer cell MHCC97H which has the lowest expression level was decided to be taken as the research object. miR-NC, miR-141 mimics, si-NC, si-STAT4, miR-141 mimics and pcDNA-NC, and miR-141 mimics and pcDNA-STAT4 were transfected into MHCC97H cells, respectively. The MTT assay was used to detect the proliferation of each group of cells, and the Transwell test was used to detect the effect of miR-141 on cell proliferation, migration, and invasion. The interaction between miR-141 and STAT4 was verified by the dual-luciferase reporter experiment, and the expression level of Cyclin D1 and MMP2 was detected by the western blot. Results Compared with normal cell HL7702, the expression level of miR-141 in liver cancer cell lines was relatively low (P < 0.05) and the expression level of STAT4 in liver cancer cell lines was relatively high (P < 0.05) after testing the expression level of STAT4; transfecting miR-141 mimics or Si-SLBP can inhibit cell proliferation, migration, and invasion; dual-luciferase reporter experiments confirmed that miR-141 can specifically bind to the 3′UTR of STAT4; cotransfection of miR-141 mimics and pcDNA-STAT4 can antagonize the effects of miR-141 mimics on cell proliferation, migration, and invasion. Conclusion miR-141 can target the STAT4 gene expression to inhibit the proliferation, migration, and invasion of liver cancer cells.
Collapse
|
19
|
Han GD, Sun Y, Hui HX, Tao MY, Liu YQ, Zhu J. MiR-1224 Acts as a Prognostic Biomarker and Inhibits the Progression of Gastric Cancer by Targeting SATB1. Front Oncol 2021; 11:748896. [PMID: 34604093 PMCID: PMC8484804 DOI: 10.3389/fonc.2021.748896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
Objective MiR-1224 has been reported to exhibit abnormal expression in several tumors. However, the expressing pattern and roles of miR-1224 in gastric cancer (GC) remain unclear. Our current research aimed to explore the potential involvement of miR-1224 in the GC progression. Materials and Methods The expression of miR-1224 was examined in tissue samples of 128 GC patients and cell lines by RT-PCR. Besides, the associations of miR-1224 expressions with clinicopathologic features and prognosis of GC patients were analyzed. Then, the possible influences of miR-1224 on cell proliferation and cell migration were determined. Afterward, the molecular target of miR-1224 was identified using bioinformatics assays and confirmed experimentally. Finally, RT-PCR and Western blot assays were performed to investigate the effect of the abnormal miR-1224 expression on the EMT and Wnt/β-catenin pathway. Results miR-1224 was lowly expressed in the GC specimens and cell lines due to T classification and TNM stage. Survival assays demonstrated that GC patients with low expressions of miR-1224 possessed poor overall survivals. Moreover, in vitro and in vivo assays revealed that the overexpression of miR-1224 inhibited cell proliferation, migration, and invasion in GC cells. SATB homeobox 1 (SATB1) was verified as a direct target of miR-1224 in GC. Furthermore, β-catenin and c-myc were significantly inhibited in miR-1224-overexpression cells. Conclusions Our findings highlight the potential of miR-1224 as a therapeutic target and novel biomarker for GC patients
Collapse
Affiliation(s)
- Guo-Dong Han
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuan Sun
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong-Xia Hui
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ming-Yue Tao
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang-Qing Liu
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jing Zhu
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
20
|
Zhang C, Li YZ, Dai DQ. Aberrant DNA Methylation-Mediated FOXF2 Dysregulation Is a Prognostic Risk Factor for Gastric Cancer. Front Mol Biosci 2021; 8:645470. [PMID: 34568422 PMCID: PMC8460759 DOI: 10.3389/fmolb.2021.645470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background: The prognosis of gastric cancer (GC) patients is poor. The effect of aberrant DNA methylation on FOXF2 expression and the prognostic role of FOXF2 methylation in GC have not yet been identified. Methods: The RNA-Seq and gene methylation HM450 profile data were used for analyzing FOXF2 expression in GC and its association with methylation level. Bisulfite sequencing PCR (BSP) was performed to measure the methylation level of the FOXF2 promoter region in GC cell lines and normal GES-1 cells. The cells were treated with the demethylation reagent 5-Aza-dC, and the mRNA and protein expression levels of FOXF2 were then measured by qRT-PCR and western blot assays. The risk score system from SurvivalMeth was calculated by integrating the methylation level of the cg locus and the corresponding Cox regression coefficient. Results: FOXF2 was significantly downregulated in GC cells and tissues. On the basis of RNA-Seq and Illumina methylation 450 data, FOXF2 expression was significantly negatively correlated with the FOXF2 methylation level (Pearson’s R = −0.42, p < 2.2e−16). The FOXF2 methylation level in the high FOXF2 expression group was lower than that in the low FOXF2 expression group. The BSP assay indicated that the methylation level of the FOXF2 promoter region in GC cell lines was higher than that in GES-1 cells. The qRT-PCR and western blot assay showed that FOXF2 mRNA and protein levels were increased in GC cells following treatment with 5-Aza-Dc. The methylation risk score model indicated that patients in the high risk group had poorer survival probability than those in the low risk group (HR = 1.84 (1.11–3.07) and p = 0.0068). FOXF2 also had a close transcriptional regulation network with four miRNAs and their corresponding target genes. Functional enrichment analysis of the target genes revealed that these genes were significantly related to several important signaling pathways. Conclusion: FOXF2 was downregulated due to aberrant DNA methylation in GC, and the degree of methylation in the promoter region of FOXF2 was related to the prognosis of patients. The FOXF2/miRNAs/target genes axis may play a vital biological regulation role in GC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong-Zhi Li
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Mi C, Zhang D, Li Y, Ren M, Ma W, Lu G, He S. miR-4677-3p participates proliferation and metastases of gastric cancer cell via CEMIP-PI3K/AKT signaling pathway. Cell Cycle 2021; 20:1978-1987. [PMID: 34437815 DOI: 10.1080/15384101.2021.1971375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gastric cancer is one of the top three leading causes of cancer-related death in the world. Evidence indicated that miR-4677-3p was dysregulated and involved in modulating invasion and migration in multiple types of cancer cells. The aim of this research is to explore the function and mechanism of miR-4677-3p in the development of gastric cancer. In this study, we discovered that miR-4677-3p was down-regulated in gastric cancer tissues and cells. Over-expression of miR-4677-3p suppressed the proliferation, migration and invasion of gastric cancer cells. Furthermore, miR-4677-3p directly bond to CEMIP 3'UTR region and inhibited CEMIP expression. CEMIP promoted cell proliferation, migration and invasion of gastric cancer cells via accelerating PI3K/AKT signaling pathway. siCEMIP or PI3K/AKT signaling inhibitor (Akti-1/2 and LY294002) partly reversed the effects of miR-4677-3p on the cellular growth and metastasis of gastric cancer. In general, miR-4677-3p regulated the development of gastric cancer through CEMIP-PI3K/AKT signaling pathway axis. This study verified the function and molecular mechanism of miR-4677-3p in gastric cancer cells, and may provide a potential diagnosis/prognosis target for patients with gastric cancer.
Collapse
Affiliation(s)
- Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Wenhui Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| |
Collapse
|
22
|
Wu H, Jiang W, Ji G, Xu R, Zhou G, Yu H. Exploring microRNA target genes and identifying hub genes in bladder cancer based on bioinformatic analysis. BMC Urol 2021; 21:90. [PMID: 34112125 PMCID: PMC8194198 DOI: 10.1186/s12894-021-00857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is the second most frequent malignancy of the urinary system. The aim of this study was to identify key microRNAs (miRNAs) and hub genes associated with BC as well as analyse their targeted relationships. METHODS According to the microRNA dataset GSE112264 and gene microarray dataset GSE52519, differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using the R limma software package. The FunRich software database was used to predict the miRNA-targeted genes. The overlapping common genes (OCGs) between miRNA-targeted genes and DEGs were screened to construct the PPI network. Then, gene ontology (GO) analysis was performed through the "cluster Profiler" and "org.Hs.eg.db" R packages. The differential expression analysis and hierarchical clustering of these hub genes were analysed through the GEPIA and UCSC Cancer Genomics Browser databases, respectively. KEGG pathway enrichment analyses of hub genes were performed through gene set enrichment analysis (GSEA). RESULTS A total of 12 DEMs and 10 hub genes were identified. Differential expression analysis of the hub genes using the GEPIA database was consistent with the results for the UCSC Cancer Genomics Browser database. The results indicated that these hub genes were oncogenes, but VCL, TPM2, and TPM1 were tumour suppressor genes. The GSEA also showed that hub genes were most enriched in those pathways that were closely associated with tumour proliferation and apoptosis. CONCLUSIONS In this study, we built a miRNA-mRNA regulatory targeted network, which explores an understanding of the pathogenesis of cancer development and provides key evidence for novel targeted treatments for BC.
Collapse
Affiliation(s)
- Hongjian Wu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Wubing Jiang
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Guanghua Ji
- Department of Urology, Taizhou Municipal Hospital, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Rong Xu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Gaobo Zhou
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Hongyuan Yu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Ouyang J, Xie Z, Lei X, Tang G, Gan R, Yang X. Clinical crosstalk between microRNAs and gastric cancer (Review). Int J Oncol 2021; 58:7. [PMID: 33649806 PMCID: PMC7895535 DOI: 10.3892/ijo.2021.5187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, there were over 1 million new gastric cancer (GC) patients in 2018 and GC has become the sixth most common cancer worldwide. GC caused 783,000 deaths worldwide in 2018, making it the third most deadly cancer type. miRNAs are short (~22 nucleotides in length) non‑coding RNA molecules, which can regulate gene expression passively at a post‑transcriptional level. There are more and more in‑depth studies on miRNAs. There are numerous conclusive evidences that there is an inseparable link between miRNAs and GC. miRNAs can affect the entire process of GC, including the oncogenesis, development, diagnosis, treatment and prognosis of GC. Although many miRNAs have been linked to GC, few can be applied to clinical practice. This review takes the clinical changes of GC as a clue and summarizes the miRNAs related to GC that have confirmed the mechanism of action in the past three years. Through in‑depth study and understanding of the mechanism of those miRNAs, we predict their possible clinical uses, and suggest some new insights to overcome GC.
Collapse
Affiliation(s)
- Jing Ouyang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, University of South China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China
| |
Collapse
|
24
|
Su M, Qiao KY, Xie XL, Zhu XY, Gao FL, Li CJ, Zhao DQ. Development of a Prognostic Signature Based on Single-Cell RNA Sequencing Data of Immune Cells in Intrahepatic Cholangiocarcinoma. Front Genet 2021; 11:615680. [PMID: 33613623 PMCID: PMC7890365 DOI: 10.3389/fgene.2020.615680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of single-cell RNA sequencing (scRNA-seq) data of immune cells from the tumor microenvironment (TME) may identify tumor progression biomarkers. This study was designed to investigate the prognostic value of differentially expressed genes (DEGs) in intrahepatic cholangiocarcinoma (ICC) using scRNA-seq. We downloaded the scRNA-seq data of 33,991 cell samples, including 17,090 ICC cell samples and 16,901 ICC adjacent tissue cell samples regarded as normal cells. scRNA-seq data were processed and classified into 20 clusters. The immune cell clusters were extracted and processed again in the same way, and each type of immune cells was divided into several subclusters. In total, 337 marker genes of macrophages and 427 marker genes of B cells were identified by comparing ICC subclusters with normal subclusters. Finally, 659 DEGs were obtained by merging B cell and macrophage marker genes. ICC sample clinical information and gene expression data were downloaded. A nine-prognosis-related-gene (PRG) signature was established by analyzing the correlation between DEGs and overall survival in ICC. The robustness and validity of the signature were verified. Functional enrichment analysis revealed that the nine PRGs were mainly involved in tumor immune mechanisms. In conclusion, we established a PRG signature based on scRNA-seq data from immune cells of patients with ICC. This PRG signature not only reflects the TME immune status but also provides new biomarkers for ICC prognosis.
Collapse
Affiliation(s)
- Miao Su
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, Hengshui People's Hospital, Hengshui, China
| | - Kuang-Yuan Qiao
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-Ying Zhu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fu-Lai Gao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Juan Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Qiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Chen S, Zhang J, Chen Q, Cheng J, Chen X, Mao Y, Chen W, Liu C, Wu H, Lv Y, Lin Y. MicroRNA-200a and microRNA-141 have a synergetic effect on the suppression of epithelial-mesenchymal transition in liver cancer by targeting STAT4. Oncol Lett 2020; 21:137. [PMID: 33552256 PMCID: PMC7798046 DOI: 10.3892/ol.2020.12398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding small RNAs that target specific messenger RNAs to inhibit protein translation. miR-200a and miR-141 function as tumor suppressors by targeting STAT4. These two miRNAs belong to the same family, and their expression is often decreased in various cancer types, but are located on different chromosomes of the human genome. The present study showed that the expression levels of miR-141 and miR-200a in serum and cells of liver cancer are significantly downregulated. The expression levels of miR-141 and miR-200a are closely associated with clinicopathological features of liver cancer, especially metastasis and invasion. It is first reported that STAT4 is the new common target gene of miR-141 and miR-200a. In the present study, miR-141 and miR-200a were confirmed to inhibit the expression of E-cadherin and vimentin synergistically during epithelial-mesenchymal transition to regulate the proliferation, migration and invasion of liver cancer cells by targeting STAT4. Simultaneous overexpression of miR-200a and miR-141 resulted in stronger effects compared with each miRNA alone. In addition, overexpression of STAT4 significantly reversed the tumor suppressive roles of miR-200a and miR-141 in liver cancer cells. These findings enrich the tumor suppressor mechanisms of the miR-200 family, and may also provide new experimental and theoretical basis for the use of miRNAs for early diagnosis, prognosis and thorough treatment of liver cancer.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingjun Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qiudan Chen
- Department of Central Laboratory, Clinical Laboratory, Jingan District Central Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Juan Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiaotong Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yuan Lv
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
26
|
Cheng S, Jiang Z, Xiao J, Guo H, Wang Z, Wang Y. The prognostic value of six survival-related genes in bladder cancer. Cell Death Discov 2020; 6:58. [PMID: 32695477 PMCID: PMC7359373 DOI: 10.1038/s41420-020-00295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to identify genes that are differentially expressed in paracancerous tissue and to determine the potential predictive value of selected gene panel. Gene transcriptome data of bladder tissue was downloaded from UCSC Xena browser and NCBI GEO repository, including GTEx (the Genotype-Tissue Expression project) data, TCGA (The Cancer Genome Atlas) data, and GEO (Gene Expression Omnibus) data. Differentially Expressed Genes (DEGs) analysis was performed to identify tumor-DEGs candidate genes, using the intersection of tumor-paracancerous DEGs genes and paracancerous-normal DEGs genes. The survival-related genes were screened by Kaplan-Meier (KM) survival analysis and univariable Cox regression with the cutoff criteria of KM < 0.05 and cox p-value < 0.05. The risk model was developed using Lasso regression. The clinical data were analyzed by univariate and multivariate Cox regression analysis. Gene Ontology (GO) and KEGG enrichment analysis were performed in the DEGs genes between the high-risk and low-risk subgroups. We identified six survival-related genes, EMP1, TPM1, NRP2, FGFR1, CAVIN1, and LATS2, found in the DEG analyses of both, tumor-paracancerous and paracancerous-normal differentially expressed data sets. Then, the patients were classified into two clusters, which can be distinguished by specific clinical characteristics. A three-gene risk prediction model (EMP1, FGFR1, and CAVIN1) was constructed in patients within cluster 1. The model was applied to categorize cluster 1 patients into high-risk and low-risk subgroups. The prognostic risk score was considered as an independent prognostic factor. The six identified survival-related genes can be used in molecular characterization of a specific subtype of bladder cancer. This subtype had distinct clinical features of T (topography), N (lymph node), stage, grade, and survival status, compared to the other subtype of bladder cancer. Among the six identified survival-related genes, three-genes, EMP1, FGFR1, and CAVIN1, were identified as potential independent prognostic markers for the specific bladder cancer subtype with clinical features described.
Collapse
Affiliation(s)
- Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|