1
|
Wang W, He L, Lin T, Xiang F, Wu Y, Zhou F, He Y. Homoharringtonine: mechanisms, clinical applications and research progress. Front Oncol 2025; 15:1522273. [PMID: 39949739 PMCID: PMC11821653 DOI: 10.3389/fonc.2025.1522273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Homoharringtonine is a natural alkaloid with significant pharmacological potential that has demonstrated promising efficacy in the treatment of hematological malignancies in recent years. This article systematically reviews the pharmacological mechanisms of Homoharringtonine, focusing on its key roles in inducing apoptosis, inhibiting cell cycle progression, and reducing cell migration and invasion. Additionally, HHT exhibits multiple biological activities, including immunomodulation, antiviral effects, and anti-fibrotic properties, with recent studies also revealing its potential neuroprotective functions. In clinical trials, Homoharringtonine has demonstrated promising efficacy in the treatment of hematological malignancies, particularly in various types such as acute myeloid leukemia and chronic myeloid leukemia. Despite the significant antitumor effects observed in clinical applications, its low bioavailability and potential side effects remain major challenges that limit its widespread use. This article details the latest research advancements aimed at enhancing the bioavailability of Homoharringtonine, including various drug delivery systems such as nanoparticles and liposomes, as well as chemical modification strategies. These approaches not only improve HHT's bioavailability in vivo but also enhance its targeting ability while reducing toxicity to normal cells. Furthermore, the combination of HHT with other drugs presents broader prospects for clinical treatment. By exploring the diverse pharmacological activities of Homoharringtonine in depth, this article aims to provide a foundation for developing novel therapeutic approaches based on natural products, thereby advancing HHT's application research in cancer treatment and other fields.
Collapse
Affiliation(s)
- Wen Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Lin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fulan Xiang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yibin Wu
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Fangliang Zhou
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Tilaoui M, Ait Mouse H, Zyad A. Update and New Insights on Future Cancer Drug Candidates From Plant-Based Alkaloids. Front Pharmacol 2021; 12:719694. [PMID: 34975465 PMCID: PMC8716855 DOI: 10.3389/fphar.2021.719694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex multifactorial disease that results from alterations in many physiological and biochemical functions. Over the last few decades, it has become clear that cancer cells can acquire multidrug resistance to conventional anticancer drugs, resulting in tumor relapse. Thus, there is a continuous need to discover new and effective anticancer drugs. Natural products from plants have served as a primary source of cancer drugs and continue to provide new plant-derived anticancer drugs. The present review describes plant-based alkaloids, which have been reported as active or potentially active in cancer treatment within the past 4 years (2017-2020), both in preclinical research and/or in clinical trials. In addition, recent insights into the possible molecular mechanism of action of alkaloid prodrugs naturally present in plants are also highlighted.
Collapse
Affiliation(s)
- Mounir Tilaoui
- Experimental Oncology and Natural Substances Team, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | | | |
Collapse
|
3
|
Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021; 26:molecules26216541. [PMID: 34770949 PMCID: PMC8587539 DOI: 10.3390/molecules26216541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.
Collapse
|
4
|
Zhang Y, Xiang J, Zhu N, Ge H, Sheng X, Deng S, Chen J, Yu L, Zhou Y, Shen J. Curcumin in Combination With Omacetaxine Suppress Lymphoma Cell Growth, Migration, Invasion, and Angiogenesis via Inhibition of VEGF/Akt Signaling Pathway. Front Oncol 2021; 11:656045. [PMID: 34458134 PMCID: PMC8386016 DOI: 10.3389/fonc.2021.656045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Background Both omacetaxine (HHT) and curcumin were shown to exhibit anti-proliferative effect on lymphoma cells. However, the role of combination of HHT with curcumin (HHT/curcumin combination) on lymphoma cells remains unclear. Thus, this study aimed to investigate the effect of HHT/curcumin combination on the proliferation, migration, and angiogenesis of lymphoma cells. Methods Cell counting kit-8 (CCK-8), Ki67 immunofluorescence and transwell assays were used to assess the viability, proliferation and migration of U937 and Raji cells respectively. In addition, tube formation assay was used to determine the effects of HHT/curcumin combination on angiogenesis in human umbilical vein endothelial cells (HUVECs). Results In this study, we found that HHT/curcumin combination significantly inhibited the proliferation, migration and invasion in U937 and Raji cells (all P < 0.01). In addition, combination treatment markedly inhibited the secreted levels of vascular endothelial growth factor (VEGF)-(A-D) (all P < 0.01) in Raji cells. Moreover, combination treatment exhibited anti-tumor effects in Raji cells, as shown by the decreased signals of phosphorylated VEGF receptor 2 (p-VEGFR2) and phosphorylated protein kinase B (p-Akt) (all P < 0.01). Meanwhile, combination treatment inhibited VEGFA levels (P < 0.01) in exosomes derived from Raji cells. Application of exosomes with downregulated VEGF to HUVECs notably inhibited proliferation, migration and tube formation of HUVECs, evidenced by the decreased signals of p-Akt, angiogenin-1, matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) (all P < 0.01). Conclusion Our findings indicated that combination of HHT and curcumin could inhibit lymphoma cell growth and angiogenesis via inhibition of VEGF/Akt signaling pathway. These results suggested that HHT combined with curcumin might be regarded as a promising therapeutic approach for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Xiang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni Zhu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangping Ge
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianfu Sheng
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu Deng
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfa Chen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lihong Yu
- First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Zhou
- First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianping Shen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Tuncer F, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nat Commun 2021; 12:3907. [PMID: 34162861 PMCID: PMC8222394 DOI: 10.1038/s41467-021-24156-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mads B Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Daniel P Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bill B Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|