1
|
Xu J, Zhang Z, Han K, Yang Z, Guo F. EXOSC5: a novel biomarker for poor prognosis in lung adenocarcinoma. BMC Cancer 2025; 25:681. [PMID: 40229765 PMCID: PMC11995474 DOI: 10.1186/s12885-025-14059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Exosome complex gene 5 (EXOSC5), a member of the exosome complex family, is highly tumorigenic in various cancers. However, its prognostic value and underlying mechanisms in lung adenocarcinoma (LUAD) remain unclear. METHODS We analysed LUAD data from The Cancer Genome Atlas (TCGA) via bioinformatics tools. Logistic regression was used to assess the associations between clinical information and EXOSC5 expression in LUAD patients. EXOSC5 expression was validated by immunohistochemistry (IHC) and western blotting, and its functional role was investigated through gene set enrichment analysis (GSEA) and in vitro experiments. RESULTS EXOSC5 was significantly upregulated in LUAD and associated with poor prognosis. The risk model based on EXOSC5 expression outperformed the traditional staging system for prognosis prediction. EXOSC5 promoted tumor progression by regulating the cell cycle, proliferation, and immune cell infiltration. High EXOSC5 expression was correlated with resistance to anti-PD1 immunotherapy. CONCLUSION EXOSC5 is a novel oncogenic factor in LUAD that promotes tumor progression and immune evasion and may serve as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jianxun Xu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Zhengwei Zhang
- Affiliated Hospital of Nantong University, Nantong, China
| | - Keyao Han
- Affiliated Hospital of Nantong University, Nantong, China
| | - Zhen Yang
- Affiliated Hospital of Nantong University, Nantong, China.
| | - Fengmei Guo
- Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Yang L, Ying J, Tao Q, Zhang Q. RNA N 6-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol 2024; 21:460-476. [PMID: 38347160 DOI: 10.1038/s41585-023-00851-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 08/04/2024]
Abstract
The N6-methyladenosine (m6A) modification is the most common modification of messenger RNAs in eukaryotes and has crucial roles in multiple cancers, including in urological malignancies such as renal cell carcinoma, bladder cancer and prostate cancer. The m6A RNA modification is controlled by three types of regulators, including methyltransferases (writers), demethylases (erasers) and RNA-binding proteins (readers), which are responsible for gene regulation at the post-transcriptional level. This Review summarizes the current evidence indicating that aberrant or dysregulated m6A modification is associated with urological cancer development, progression and prognosis. The complex and context-dependent effects of dysregulated m6A modifications in urological cancers are described, along with the potential for aberrantly expressed m6A regulators to provide valuable diagnostic and prognostic biomarkers as well as new therapeutic targets.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China.
- Department of Urology, Peking University Binhai Hospital, Tianjin, China.
| |
Collapse
|
3
|
Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou X, Zou J, Zhang G. The role of RNA modification in urological cancers: mechanisms and clinical potential. Discov Oncol 2023; 14:235. [PMID: 38117350 PMCID: PMC10733275 DOI: 10.1007/s12672-023-00843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
RNA modification is a post-transcriptional level of regulation that is widely distributed in all types of RNAs, including mRNA, tRNA, rRNA, miRNA, and lncRNA, where N6-methyladenine (m6A) is the most abundant mRNA methylation modification. Significant evidence has depicted that m6A modifications are closely related to human diseases, especially cancer, and play pivotal roles in RNA transcription, splicing, stabilization, and translation processes. The most common urological cancers include prostate, bladder, kidney, and testicular cancers, accounting for a certain proportion of human cancers, with an ever-increasing incidence and mortality. The recurrence, systemic metastasis, poor prognosis, and drug resistance of urologic tumors have prompted the identification of new therapeutic targets and mechanisms. Research on m6A modifications may provide new solutions to the current puzzles. In this review, we provide a comprehensive overview of the key roles played by RNA modifications, especially m6A modifications, in urologic cancers, as well as recent research advances in diagnostics and molecularly targeted therapies.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Zhao Z, Zheng B, Zheng J, Zhang Y, Jiang C, Nie C, Jiang X, Yao D, Zhao H. Integrative Analysis of Inflammatory Response-Related Gene for Predicting Prognosis and Immunotherapy in Glioma. J Mol Neurosci 2023; 73:608-627. [PMID: 37488455 PMCID: PMC10516783 DOI: 10.1007/s12031-023-02142-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Inflammatory response plays a crucial role in the development and progression of gliomas. Whereas the prognostic esteem of inflammatory response-related genes has never been comprehensively explored in glioma, the RNA-seq information and clinical data of patients with glioma were extracted from TCGA, CGGA, and Rembrandt databases. The differentially expressed genes (DEGs) were picked out between glioma tissue and non-tumor brain tissue (NBT). Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct the prognostic signature in the TCGA cohort and verified in other cohorts. Kaplan-Meier survival analyses were conducted to compare the overall survival (OS) between the high and low-risk groups. Univariate and multivariate Cox analyses were subsequently used to confirm the independent prognostic factors of OS, and then, the nomogram was established based them. Furthermore, immune infiltration, immune checkpoints, and immunotherapy were also probed and compared between high and low-risk groups. The four genes were also analyzed by qRT-PCR, immunohistochemistry, and western blot trials between glioma tissue and NBT. The 39 DEGs were identified between glioma tissue and NBT, of which 31 genes are associated to the prognosis of glioma. The 8 optimal inflammatory response-related genes were selected to construct the prognostic inflammatory response-related signature (IRRS) through the LASSO regression. The effectiveness of the IRRS was verified in the TCGA, CGGA, and Rembrandt cohorts. Meanwhile, a nomogram with better accuracy was established to predict OS based on the independent prognostic factors. The IRRS was highly correlated with clinicopathological features, immune infiltration, and genomic alterations in glioma patients. In addition, four selective genes also verified the difference between glioma tissue and NBT. A novel prognostic signature was associated with the prognosis, immune infiltration, and immunotherapy effect in patients with gliomas. Thus, this study could provide a perspective for glioma prognosis and treatment.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Zhang
- Department of Neonatology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
7
|
Liang Y, Zhang X, Ma C, Hu J. m 6A Methylation Regulators Are Predictive Biomarkers for Tumour Metastasis in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14164035. [PMID: 36011028 PMCID: PMC9406868 DOI: 10.3390/cancers14164035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recurrence and metastatic progression always lead to dismal outcomes in prostate cancer (PCa). There is no reliable biomarker for the prediction of recurrence and metastasis other than the Prostate Cancer Antigen (PCA). N6-methyladenosine (m6A) is the most common post-transcriptional mRNA modification and is regulated by m6A regulators dynamically. Since m6A modification is associated with cancer development and outgrowth, we performed a consensus clustering on PCa with regard to the gene expression of all m6A regulators. We identified three subtypes of Pca with distinct m6A expression patterns and enriched biological pathways. We also established an m6A score for metastasis prediction based on our clustering, which is potentially a predictive biomarker for Pca metastasis. Abstract Prostate cancer (PCa) is one of the most common cancers in men. Usually, most PCas at initial diagnosis are localized and hormone-dependent, and grow slowly. Patients with localized PCas have a nearly 100% 5-year survival rate; however, the 5-year survival rate of metastatic or progressive PCa is still dismal. N6-methyladenosine (m6A) is the most common post-transcriptional mRNA modification and is dynamically regulated by m6A regulators. A few studies have shown that the abnormal expression of m6A regulators is significantly associated with cancer progression and immune cell infiltration, but the roles of these regulators in PCa remain unclear. Here, we examined the expression profiles and methylation levels of 21 m6A regulators across the Cancer Genome Atlas (TCGA), 495 PCas by consensus clustering, and correlated the expression of m6A regulators with PCa progression and immune cell infiltration. Consensus clustering was applied for subtyping Pca samples into clusters based on the expression profiles of m6A regulators. Each subtype’s signature genes were obtained by a pairwise differential expression analysis. Featured pathways of m6A subtypes were predicted by Gene Ontology. The m6A score was developed to predict m6A activation. The association of the m6A score with patients’ survival, metastasis and immune cell infiltration was also investigated. We identified three distinct clusters in PCa based on the expression profiles of 21 m6A regulators by consensus clustering. The differential expression and pathway analyses on the three clusters uncovered the m6A regulators involved in metabolic processes and immune responses in PCa. Moreover, we developed an m6A score to evaluate the m6A regulator activation for PCa. The m6A score is significantly associated with Gleason scores and metastasis in PCa. The predictive capacity of the m6A score on PCa metastasis was also validated in another independent cohort with an area under the curve of 89.5%. Hence, our study revealed the critical role of m6A regulators in PCa progression and the m6A score is a promising predictive biomarker for PCa metastasis.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, Shanghai 200040, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaohua Zhang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Chenkai Ma
- Molecular Diagnostic Solution, Nutrition and Health, Health and Biosecurity, CSIRO, North Ryde 2113, Australia
- Correspondence: (C.M.); (J.H.)
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, Shanghai 200040, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (C.M.); (J.H.)
| |
Collapse
|
8
|
Xie L, Wu S, He R, Li S, Lai X, Wang Z. Identification of epigenetic dysregulation gene markers and immune landscape in kidney renal clear cell carcinoma by comprehensive genomic analysis. Front Immunol 2022; 13:901662. [PMID: 36059531 PMCID: PMC9433776 DOI: 10.3389/fimmu.2022.901662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Kidney cancer is one the most lethal cancers of the urinary system, but current treatments are limited and its prognosis is poor. This study focused on kidney renal clear cell carcinoma (KIRC) and analyzed the relationship between epigenetic alterations and KIRC prognosis, and explored the prognostic significance of these findings in KIRC patients. Based on multi-omics data, differentially expressed histone-modified genes were identified using the R package limma package. Gene enhancers were detected from data in the FANTOM5 database. Gene promoters were screened using the R package ChIPseeker, and the Bumphunter in the R package CHAMP was applied to screen differentially methylated regions (DMR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional enrichment analysis of genes was performed using the R package clusterProfiler. We identified 51 dysregulated epigenetic protein coding genes (epi-PCGs) from 872 epi-PCGs, and categorized three molecular subtypes (C1, C2, and C3) of KIRC samples with significantly different prognosis. Notably, among the three molecular subtypes, we found a markedly differential immune features in immune checkpoints, cytokines, immune signatures, and immune cell distribution. C2 subtype had significantly lower enrichment score of IFNγ, cytotoxic score (CYT), and angiogenesis. In addition, an 8-gene signature containing 8 epi-PCGs (ETV4, SH2B3, FATE1, GRK5, MALL, HRH2, SEMA3G, and SLC10A6) was developed for predicting KIRC prognosis. Prognosis of patients with a high 8-gene signature score was significantly worse than those with a low 8-gene signature score, which was also validated by the independent validation data. The 8-gene signature had a better performance compared with previous signatures of KIRC. Overall, this study highlighted the important role of epigenetic regulation in KIRC development, and explored prognostic epi-PCGs, which may provide a guidance for exploiting further pathological mechanisms of KIRC and for developing novel drug targets.
Collapse
Affiliation(s)
- Linli Xie
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuang Wu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong He
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sisi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaodan Lai
- Department of Pharmacy, No. 958 Hospital of Chinese People's Liberation Army (PLA), Chongqing, China
- *Correspondence: Xiaodan Lai, ; Zhe Wang,
| | - Zhe Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiaodan Lai, ; Zhe Wang,
| |
Collapse
|
9
|
Xia D, Liu Q, Yan S, Bi L. Construction of a Prognostic Model for KIRC and Identification of Drugs Sensitive to Therapies - A Comprehensive Biological Analysis Based on m6A-Related LncRNAs. Front Oncol 2022; 12:895315. [PMID: 35719976 PMCID: PMC9201082 DOI: 10.3389/fonc.2022.895315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the common malignancies in the urinary system, kidney cancer has been receiving explorations with respect to its pathogenesis, treatment and prognosis due to its high morbidity, high mortality and low drug efficiency. Such epigenetic modifications for RNA molecules as N6-methyladenosine (m6A) usher in another perspective for the research on tumor mechanisms, and an increasing number of biological processes and prognostic markers have been revealed. In this study, the transcriptome data, clinical data and mutation spectrum data of KIRC in the TCGA database were adopted to construct an m6A-related lncRNA prognostic model. Besides, the predictive ability of this model for clinical prognosis was evaluated, and some compounds sensitive to therapies for KIRC were screened. The findings of this study demonstrate that this effective and stable model has certain clinical application value.
Collapse
Affiliation(s)
- Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qi Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songbai Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Gan Y, Li A, Liu J, Wang X, Zhang Z, Li Q, Ye X, Yao L, Zhang Q. m6A-mRNA Methylation Regulates Gene Expression and Programmable m6A Modification of Cellular RNAs With CRISPR-Cas13b in Renal Cell Carcinoma. Front Genet 2022; 12:795611. [PMID: 35126463 PMCID: PMC8815861 DOI: 10.3389/fgene.2021.795611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: N6-methyladenosine (m6A) is the most extensive messenger RNA modification. Despite recent advances in the biological roles of m6A, its role in the development and progression of renal cell carcinoma (RCC) remains unclear. Methods: In this study, we gained the transcriptome-wide m6A profile and gene expression pattern in RCC and paired adjacent peritumoral tissues by meRIP-seq and RNA-seq. m6A modifications of mRNAs were validated by meRIP-qPCR in tissues, and targeted methylation or demethylation was validated by using a CRISPR-Cas13b-based tool in RCC cell lines. Results: Our findings showed that there were 13,805 m6A peaks among 5,568 coding gene transcripts (mRNAs) in adjacent tissues and 24,730 m6A peaks among 6,866 mRNAs in tumor tissues. Furthermore, m6A modification sites were usually located in the coding sequences (CDS), and some near the start and stop codons. Gene Ontology analysis revealed that coding genes had differential N6-methyladenosine sites and were enriched in kidney development and cancer-related signaling pathways. We also found that different levels of m6A modifications could regulate gene expression. Conclusion: In summary, our results provided evidence for studying the potential function of RNA m6A modification and m6A-mediated gene expression regulation in human RCC.
Collapse
Affiliation(s)
- Ying Gan
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Aolin Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Jun Liu
- Urology and Lithotripsy Center, Peking University People’s Hospital, Peking University, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University, Beijing, China
| | - Xiaofei Wang
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Qinhan Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People’s Hospital, Peking University, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University, Beijing, China
- *Correspondence: Lin Yao, ; Xiongjun Ye, ; Qian Zhang,
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- *Correspondence: Lin Yao, ; Xiongjun Ye, ; Qian Zhang,
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- *Correspondence: Lin Yao, ; Xiongjun Ye, ; Qian Zhang,
| |
Collapse
|
11
|
Shi Y, Dou Y, Zhang J, Qi J, Xin Z, Zhang M, Xiao Y, Ci W. The RNA N6-Methyladenosine Methyltransferase METTL3 Promotes the Progression of Kidney Cancer via N6-Methyladenosine-Dependent Translational Enhancement of ABCD1. Front Cell Dev Biol 2021; 9:737498. [PMID: 34631715 PMCID: PMC8496489 DOI: 10.3389/fcell.2021.737498] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
The role of N6-methyladenosine (m6A)-modifying proteins in cancer progression depends on the cell type and mRNA affected. However, the biological role and underlying mechanism of m6A in kidney cancer is limited. Here, we discovered the variability in m6A methyltransferase METTL3 expression was significantly increased in clear cell renal cell carcinoma (ccRCC) the most common subtype of renal cell carcinoma (RCC), and high METTL3 expression predicts poor prognosis in ccRCC patients using a dataset from The Cancer Genome Atlas (TCGA). Importantly, knockdown of METTL3 in ccRCC cell line impaired both cell migration capacity and tumor spheroid formation in soft fibrin gel, a mechanical method for selecting stem-cell-like tumorigenic cells. Consistently, overexpression of METTL3 but not methyltransferase activity mutant METTL3 can promote cell migration, spheroid formation in cell line and tumor growth in xenograft model. Transcriptional profiling of m6A in ccRCC tissues identified the aberrant m6A transcripts were enriched in cancer-related pathways. Further m6A-sequencing of METTL3 knockdown cells and functional studies confirmed that translation of ABCD1, an ATP-binding cassette (ABC) transporter of fatty acids, was inhibited by METTL3 in m6A-dependent manner. Moreover, knockdown of ABCD1 in ccRCC cells decreased cancer cell migration and spheroid formation, and upregulation of ABCD1 acts as an adverse prognosis factor of kidney cancer patients. In summary, our study identifies that METTL3 promotes ccRCC progression through m6A modification-mediated translation of ABCD1, providing an epitranscriptional insight into the molecular mechanism in kidney cancer.
Collapse
Affiliation(s)
- Yue Shi
- Key Laboratory of Genomic and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanliang Dou
- Key Laboratory of Genomic and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Jie Qi
- Key Laboratory of Genomic and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zijuan Xin
- Key Laboratory of Genomic and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
12
|
Guimarães-Teixeira C, Barros-Silva D, Lobo J, Soares-Fernandes D, Constâncio V, Leite-Silva P, Silva-Santos R, Braga I, Henrique R, Miranda-Gonçalves V, Jerónimo C. Deregulation of N6-Methyladenosine RNA Modification and Its Erasers FTO/ALKBH5 among the Main Renal Cell Tumor Subtypes. J Pers Med 2021; 11:996. [PMID: 34683137 PMCID: PMC8538585 DOI: 10.3390/jpm11100996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Methylation of N6-adenosine (m6A) is the most abundant messenger RNA (mRNA) modification in eukaryotes. We assessed the expression profiles of m6A regulatory proteins in renal cell carcinoma (RCC) and their clinical relevance, namely, as potential biomarkers. (2) Methods: In silico analysis of The Cancer Genome Atlas (TCGA) dataset was use for evaluating the expression of the m6A regulatory proteins among RCC subtypes and select the most promising candidates for further validation. ALKBH5 and FTO transcript and protein expression were evaluated in a series of primary RCC (n = 120) and 40 oncocytomas selected at IPO Porto. (3) Results: In silico analysis of TCGA dataset disclosed altered expression of the major m6A demethylases among RCC subtypes, particularly FTO and ALKBH5. Furthermore, decreased FTO mRNA levels associated with poor prognosis in ccRCC and pRCC. In IPO Porto's cohort, FTO and ALKBH5 transcript levels discriminated ccRCC from oncocytomas. Furthermore, FTO and ALKBH5 immunoexpression differed among RCC subtypes, with higher expression levels found in ccRCC comparatively to the other RCC subtypes and oncocytomas. (4) Conclusion: We conclude that altered expression of m6A RNA demethylases is common in RCC and seems to be subtype specific. Specifically, FTO and ALKBH5 might constitute new candidate biomarkers for RCC patient management, aiding in differential diagnosis of renal masses and prognostication.
Collapse
Affiliation(s)
- Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- PhD Programme in Pathology & Molecular Genetics, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- PhD Programme in Pathology & Molecular Genetics, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
| | - Pedro Leite-Silva
- Cancer Epidemiology, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Rui Silva-Santos
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Wang R, Zheng Z, Mao S, Zhang W, Liu J, Li C, Liu S, Yao X. Construction and Validation of a Novel Eight-Gene Risk Signature to Predict the Progression and Prognosis of Bladder Cancer. Front Oncol 2021; 11:632459. [PMID: 34268106 PMCID: PMC8276675 DOI: 10.3389/fonc.2021.632459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) increases the risk of death. It is therefore important to find new relevant molecular models that will allow for effective prediction of the progression and prognosis of bladder cancer (BC). Using RNA-Sequence data of 49 BC patients in Shanghai tenth people's hospital (STPH) and weighted gene co-expression network analysis methods, a co-expression network of genes was developed and three key modules associated with malignant progression were selected. Based on the genes in three key modules, an eight-gene risk signature was established using univariate Cox regression and the Least absolute shrinkage and selection operator Cox model in The Cancer Genome Atlas Program (TCGA) and validated in validation sets. Subsequently, a nomogram based on the risk signature was constructed for prognostic prediction. The mRNA and protein expression levels of eight genes in cell lines and tissues were further investigated. The novel eight-gene risk signature was closely related to the malignant clinical features of BC and could predict the prognosis of patients in the training dataset (TCGA) and four validation sets (GSE32894, GSE13507, IMvigor210 trial, and STPH). The nomogram showed good prognostic prediction and calibration. The mRNA and protein expression levels of the eight genes were differentially expressed in cell lines and tissues. In our study, we established a novel eight-gene risk signature that could predict the progression and prognoses of BC patients.
Collapse
Affiliation(s)
- Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Han R, Sun W, Zhang H. Identification of a Signature Comprising 5 Soluble Carrier Family Genes to Predict the Recurrence of Papillary Thyroid Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211036314. [PMID: 34590520 PMCID: PMC8489750 DOI: 10.1177/15330338211036314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
RNA-sequencing data and relevant clinical data in The Cancer Genome Atlas for 502 samples of papillary thyroid cancer (PTC) were analyzed to determine the prognostic value of soluble carrier family genes in PTC. We analyzed soluble carrier family gene expression and function in the samples. Clustering identified 2 clusters in the data. Risk characteristics were identified using LASSO and Univariate Cox regression analysis, which divided the patients into low and high-risk groups. The expression levels of 88 soluble carrier genes were significantly different between tumors and normal tissue. The 2 PTC clusters had different clinical outcomes and distributions of gene expression. The expression levels of SFXN1, SLC12A4, SLC35A1, SLC35E1, and SLCO1C1 were markedly different between the 2 groups. The high risk and low risk groups had significant different prognoses (P < 0.05). Significant differences were identified for disease free survival (DFS), sex and T stage between the 2 subgroups. The risk score was identified as an independent prognostic variable (P < 0.05) and as a predictor of clinicopathological variables. In patients with PTC, solute carrier gene expression showed differential associations with clinicopathological variables. The 5 genes could be used as prognostic factors for PTC, particularly to predict PTC recurrence.
Collapse
Affiliation(s)
- Rui Han
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Rui Han and Wei Sun contributed equally to this article
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Rui Han and Wei Sun contributed equally to this article
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
15
|
Feng C, Huang X, Li X, Mao J. The Roles of Base Modifications in Kidney Cancer. Front Oncol 2020; 10:580018. [PMID: 33282735 PMCID: PMC7691527 DOI: 10.3389/fonc.2020.580018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Epigenetic modifications including histone modifications and DNA and RNA modifications are involved in multiple biological processes and human diseases. One disease, kidney cancer, includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still under intensive study. Understanding the roles of epigenetic modifications and underlying mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the function of DNA and RNA modifications has been uncovered in kidney tumor. In the present review, we summarize recent findings about the roles of epigenetic modifications (particularly DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer, especially the renal cell carcinomas.
Collapse
Affiliation(s)
- Chunyue Feng
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Translational Medicine of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|