1
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Halasa M, Afshan S, Wawruszak A, Borkowska A, Brodaczewska K, Przybyszewska-Podstawka A, Kalafut J, Baran M, Rivero-Müller A, Stepulak A, Nees M. Loss of Sirtuin 7 impairs cell motility and proliferation and enhances S-phase cell arrest after 5-fluorouracil treatment in head and neck cancer. Sci Rep 2025; 15:2123. [PMID: 39820554 PMCID: PMC11739472 DOI: 10.1038/s41598-024-83349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
Sirtuin 7 (SIRT7), a member of the sirtuin family of NAD+-dependent deacetylases, plays a vital role in cancer, exhibiting context-dependent functions across various malignancies. Our study investigates the role of SIRT7 depletion in head and neck squamous cell carcinoma (HNSCC) progression. In vitro and 3D organotypic models demonstrated that SIRT7 knock-out attenuates cancer cell viability, proliferation, and motility as well as induces downregulation of migration- and epithelial-mesenchymal transition (EMT)-related gene expression. Moreover, the SIRT7 loss results in slower organoid formation and less invasive organoid morphology, validated by vimentin downregulation. The SIRT7 loss potentiates S-phase arrest in cell cycle progression after 5-FU treatment and elevates the ratio of dead cells. Additionally, SIRT7 deletion reduces the expression of G1 phase-associated proteins, Cyclin D and CDK4. Altogether, our study highlights SIRT7 as a promising therapeutic target in HNSCC, enhancing the effectiveness of treatment modalities such as combinational treatment.
Collapse
Affiliation(s)
- Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland.
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland.
- Transplant Immunology, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Department of Surgery, The Houston Methodist Hospital, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Syeda Afshan
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, National Research Institute, Szaserow 128, Warsaw, 04-141, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, National Research Institute, Szaserow 128, Warsaw, 04-141, Poland
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
- FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, 20520, Finland
| |
Collapse
|
3
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
4
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Nathani A, Khan I, Tanimoto MH, Mejía JAA, DE Miranda AM, Rishi A, Dev S, Bastos JK, Singh M. Antitumor Potential of Guttiferone E Combined With Carboplatin Against Osimertinib-resistant H1975 Lung Cancer Through Apoptosis. Anticancer Res 2024; 44:4175-4188. [PMID: 39348999 PMCID: PMC11863775 DOI: 10.21873/anticanres.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND/AIM Low selectivity and high frequency of side-effects are the major problems of currently used chemotherapeutics. Among natural compounds, the polyprenylated acylphloroglucinol, guttiferone E, isolated from Brazilian red propolis, has attracted attention due to its marked anticancer properties and was evaluated here for its role against osimertinib-resistant H1975 cells (with double mutations of epidermal growth factor receptor: EGFR L858R/T790M). MATERIALS AND METHODS Guttiferone E was obtained from red propolis using established extraction procedures. Guttiferone E was tested using the H1975 cell line in in vitro (2D and 3D) cell cultures and in vivo in BALB/c athymic nude mice. Live/dead assay was also performed to support the results. Tumor tissues obtained from in vivo studies were used for western blotting. Guttiferone E reduced H1975 cell viability in a concentration-dependent manner. The IC50 values in 2D and 3D cell lines were 2.56±0.12 μM and 11.25±0.34 μM. Furthermore, at 10 mg/kg intraperitoneally, guttiferone E significantly reduced the tumor volume in tumor xenografts when used alone and in combination with carboplatin. Guttiferone E and carboplatin displayed synergistic inhibition of H1975 cells and animal tumors. Co-treatment of guttiferone E with carboplatin induced more prominent apoptosis than treatment with either drug alone. Guttiferone E treatment induced cleavage of poly-ADP ribose polymerase and induced apoptosis by significantly reducing levels of mammalian target of rapamycin, sirtuin 1, sirtuin 7, superoxide dismutase, programmed death-ligand 1, and programmed cell death 1 in tumor tissues. CONCLUSION Our results show guttiferone E to be a promising, novel and potent antitumor drug candidate for osimertinib-resistant lung cancer with EGFR L858R/T790M mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Matheus Hikaru Tanimoto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Aline Mayrink DE Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arun Rishi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, U.S.A
| | - Satyanarayan Dev
- Biological Systems Engineering, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
6
|
Kumari P, Tarighi S, Fuchshuber E, Li L, Fernández-Duran I, Wang M, Ayoson J, Castelló-García JM, Gámez-García A, Espinosa-Alcantud M, Sreenivasan K, Guenther S, Olivella M, Savai R, Yue S, Vaquero A, Braun T, Ianni A. SIRT7 promotes lung cancer progression by destabilizing the tumor suppressor ARF. Proc Natl Acad Sci U S A 2024; 121:e2409269121. [PMID: 38870055 PMCID: PMC11194565 DOI: 10.1073/pnas.2409269121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Eva Fuchshuber
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Luhan Li
- School of Medicine, Nankai University, Tianjin300071, China
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia08916, Spain
| | - Meilin Wang
- School of Medicine, Nankai University, Tianjin300071, China
| | - Joshua Ayoson
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Jose Manuel Castelló-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia08916, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia08916, Spain
| | - Maria Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia08916, Spain
| | - Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Stefan Guenther
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Mireia Olivella
- Facultat de Ciències, Tecnologia I Enginyeries, Universitat de Vic-Universitat Central de Catalunya, Vic, Barcelona08500, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central, Vic, Barcelona08500, Spain
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health, Justus Liebig University, GiessenD-35392, Germany
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin300071, China
| | - Alejandro Vaquero
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia08916, Spain
| |
Collapse
|
7
|
Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: a novel molecular target for personalized cancer treatment? Oncogene 2024; 43:993-1006. [PMID: 38383727 PMCID: PMC10978493 DOI: 10.1038/s41388-024-02976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
| |
Collapse
|
8
|
Liu Y, Shi G. Roles of sirtuins in asthma. Respir Res 2022; 23:251. [PMID: 36117172 PMCID: PMC9482752 DOI: 10.1186/s12931-022-02175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases and deacetylases that participate in a variety of cellular processes, including transcriptional activity, energy metabolism, DNA damage response, inflammation, apoptosis, autophagy, and oxidative stress. As a result, sirtuins are linked to multiple pathophysiological processes, such as cardiovascular diseases, metabolic diseases, autoimmune diseases, infectious diseases, and respiratory diseases. Asthma is the most common respiratory disease, which is characterized by airway inflammation and airway remodeling. Accumulating evidence has indicated that sirtuins are involved in the pathogenesis of asthma. Furthermore, some studies have suggested that sirtuin modulators are potential agents for the treatment of asthma via alteration of the expression or activity of sirtuins. In this review, we illustrate the role of sirtuins in asthma, discuss related molecular mechanisms, and evaluate the sirtuins-targeted therapy for asthma.
Collapse
|
9
|
Jiang L, Goncharov DA, Shen Y, Lin D, Chang B, Pena A, DeLisser H, Goncharova EA, Kudryashova TV. Akt-Dependent Glycolysis-Driven Lipogenesis Supports Proliferation and Survival of Human Pulmonary Arterial Smooth Muscle Cells in Pulmonary Hypertension. Front Med (Lausanne) 2022; 9:886868. [PMID: 35836951 PMCID: PMC9274086 DOI: 10.3389/fmed.2022.886868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hyper-proliferation of pulmonary arterial vascular smooth muscle cells (PAVSMC) is an important pathological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Lipogenesis is linked to numerous proliferative diseases, but its role in PAVSMC proliferation in PAH remains to be elucidated. We found that early-passage human PAH PAVSMC had significant up-regulation of key fatty acids synthesis enzymes ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN), and increased unstimulated proliferation compared to control human PAVSMC. Treatment with an allosteric ACC inhibitor 5-tetradecyloxy-2-furoic acid (TOFA) significantly decreased proliferation and induced apoptosis of human PAH PAVSMC. Intracellular lipid content and proliferation of PAH PAVSMC were not reduced by incubation in lipid-depleted media but suppressed by a non-metabolizable analog of glucose 2-Deoxy-D-glucose (2-DG) and partially restored by addition of pyruvate. Protein kinase Akt was upregulated in human PAH PAVSMC in a sirtuin 7 (SIRT7)- and c-Jun N-terminal kinase (JNK)-dependent manner. Pharmacological inhibition of Akt down-regulated ACLY and ACC, significantly reduced intracellular lipid content, inhibited proliferation and induced apoptosis of human PAH PAVSMC. Taken together, these data demonstrate that human PAH PAVSMC have up-regulated lipogenesis, which is supported in an Akt- and glycolysis-dependent manner and is required for increased proliferation and survival. Our data suggest that there is a mechanistic link between glycolysis, lipogenesis, and the proliferation of human PAH PAVSMC and call for further studies to determine the potential attractiveness of a SIRT7/JNK-Akt-lipogenesis axis as a target pathway to inhibit PAVSMC hyper-proliferation in PAH.
Collapse
Affiliation(s)
- Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Dmitry A Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Derek Lin
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Baojun Chang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andressa Pena
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Horace DeLisser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elena A Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Tatiana V Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
11
|
Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen G, Li N. Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem 2022; 477:2539-2552. [PMID: 35594000 DOI: 10.1007/s11010-022-04462-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
"Exterior-interior correlation between the lung and large intestine" is one of the important contents of traditional Chinese medicine. This theory describes the role of the lung and the intestine in association with disease treatment. The "lung-gut" axis is a modern extension of the "exterior-interior correlation between lung and large intestine" theory in TCM. Sirtuin (SIRT) is a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme family with deacetylase properties, which is highly conserved from bacteria to humans. The sirtuin defines seven silencing regulatory proteins (SIRT1-7) in human cells. It can regulate aging, metabolism, and certain diseases. Current studies have shown that sirtuins have dual characteristics, acting as both tumor promoters and tumor inhibitors in cancers. This paper provides a comparative summary of the roles of SIRT1-7 in the intestine and lung (both inflammatory diseases and tumors), and the promoter/suppressor effects of targeting SIRT family microRNAs and modulators of inflammation or tumors. Sirtuins have great potential as drug targets for the treatment of intestinal and respiratory diseases. Meanwhile, it may provide new ideas of future drug target research.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Di Zhou
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yuan Feng
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Bingxin Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yong Cui
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, China.
| | - Gang Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
12
|
Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci 2022; 79:297. [PMID: 35585284 PMCID: PMC9117384 DOI: 10.1007/s00018-022-04342-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.
Collapse
|
13
|
Bhattacharyya N, Gupta S, Sharma S, Soni A, Bagabir SA, Bhattacharyya M, Mukherjee A, Almalki AH, Alkhanani MF, Haque S, Ray AK, Malik MZ. CDK1 and HSP90AA1 Appear as the Novel Regulatory Genes in Non-Small Cell Lung Cancer: A Bioinformatics Approach. J Pers Med 2022; 12:jpm12030393. [PMID: 35330393 PMCID: PMC8955443 DOI: 10.3390/jpm12030393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the most invasive cancers affecting over a million of the population. Non-small cell lung cancer (NSCLC) constitutes up to 85% of all lung cancer cases, and therefore, it is essential to identify predictive biomarkers of NSCLC for therapeutic purposes. Here we use a network theoretical approach to investigate the complex behavior of the NSCLC gene-regulatory interactions. We have used eight NSCLC microarray datasets GSE19188, GSE118370, GSE10072, GSE101929, GSE7670, GSE33532, GSE31547, and GSE31210 and meta-analyzed them to find differentially expressed genes (DEGs) and further constructed a protein–protein interaction (PPI) network. We analyzed its topological properties and identified significant modules of the PPI network using cytoscape network analyzer and MCODE plug-in. From the PPI network, top ten genes of each of the six topological properties like closeness centrality, maximal clique centrality (MCC), Maximum Neighborhood Component (MNC), radiality, EPC (Edge Percolated Component) and bottleneck were considered for key regulator identification. We further compared them with top ten hub genes (those with the highest degrees) to find key regulator (KR) genes. We found that two genes, CDK1 and HSP90AA1, were common in the analysis suggesting a significant regulatory role of CDK1 and HSP90AA1 in non-small cell lung cancer. Our study using a network theoretical approach, as a summary, suggests CDK1 and HSP90AA1 as key regulator genes in complex NSCLC network.
Collapse
Affiliation(s)
| | - Samriddhi Gupta
- Department of Biochemistry, University of Hyderabad, Hyderabad 500046, India;
| | - Shubham Sharma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.S.); (A.S.)
| | - Aman Soni
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.S.); (A.S.)
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Malini Bhattacharyya
- Department of Environmental Plant Biology, Hemvati Nandan Bahuguna, Garhwal Central University, Srinagar 246174, India;
| | - Atreyee Mukherjee
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, Al Maarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Bursa Uludağ University, Görükle Campus, Bursa 16059, Turkey
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University Delhi, New Delhi 110007, India
- Correspondence: (A.K.R.); (M.Z.M.)
| | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.S.); (A.S.)
- Correspondence: (A.K.R.); (M.Z.M.)
| |
Collapse
|
14
|
Zhang C, Li Y, Liu B, Ning C, Li Y, Wang Y, Li Z. Discovery of SIRT7 Inhibitor as New Therapeutic Options Against Liver Cancer. Front Cell Dev Biol 2022; 9:813233. [PMID: 35174171 PMCID: PMC8841758 DOI: 10.3389/fcell.2021.813233] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Optimal therapeutic strategies for liver cancer patients remain challenging due to the high recurrence rate after surgical resection and chemotherapy resistance. Emerging evidence has shown that epigenetic factor SIRT7 is involved in various aspects of cancer biology, while inactive SIRT7 reverses human cancer phenotype and suppresses tumor growth. In the present study, we predicted the SIRT7 structure by using the fold recognition (or threading) method and performed structure-based virtual screening to develop specific SIRT7 inhibitor by docking 939319 structurally diverse compounds with SIRT proteins. Compounds with high affinities to SIRT7 but low affinities to other SIRT proteins were chosen as candidates of specific SIRT7 inhibitor. Our leading compounds 2800Z and 40569Z showed strong interaction with SIRT7 protein, and specifically inhibited SIRT7 deacetylation activity in vitro. Our docking results also revealed that ARG-120, TRP-126, and HIS-187 were critical sites responsible for interaction of SIRT7 with small molecules. Mutations in the aforementioned sites significantly abolished interaction and inhibitory effects of compounds to SIRT7. In addition, in vivo data indicated that compounds 2800Z and 40569Z were able to induce apoptosis and increase chemosensitivity to sorafenib in human liver cancer. Our findings demonstrated targeting SIRT7 may offer novel therapeutic options for cancer management, and the value of compounds 2800Z and 40569Z as chemical probes for the study of SIRT7 biological functions as well as starting leads for the development of new therapeutic options against liver cancer.
Collapse
Affiliation(s)
- Chen Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bohao Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Chao Ning
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yimin Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Ying Wang, ; Zhuan Li,
| | - Zhuan Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
- *Correspondence: Ying Wang, ; Zhuan Li,
| |
Collapse
|
15
|
Celastrol and Melatonin Modify SIRT1, SIRT6 and SIRT7 Gene Expression and Improve the Response of Human Granulosa-Lutein Cells to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121871. [PMID: 34942974 PMCID: PMC8750604 DOI: 10.3390/antiox10121871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
An excess of oxidative stress (OS) may affect several physiological processes fundamental to reproduction. SIRT1, SIRT6 and SIRT7 are involved in protection stress systems caused by OS, and they can be activated by antioxidants such as celastrol or melatonin. In this study, we evaluate SIRT1, SIRT6 and SIRT7 gene expression in cultured human granulosa-lutein (hGL) cells in response to OS inductors (glucose or peroxynitrite) and/or antioxidants. Our results show that celastrol and melatonin improve cell survival in the presence and absence of OS inductors. In addition, melatonin induced SIRT1, SIRT6 and SIRT7 gene expression while celastrol only induced SIRT7 gene expression. This response was not altered by the addition of OS inductors. Our previous data for cultured hGL cells showed a dual role of celastrol as a free radical scavenger and as a protective agent by regulating gene expression. This study shows a direct effect of celastrol on SIRT7 gene expression. Melatonin may protect from OS in a receptor-mediated manner rather than as a scavenger. In conclusion, our results show increased hGL cells survival with melatonin or celastrol treatment under OS conditions, probably through the regulation of nuclear sirtuins' gene expression.
Collapse
|
16
|
Yang F, Yuan WQ, Li J, Luo YQ. Knockdown of METTL14 suppresses the malignant progression of non-small cell lung cancer by reducing Twist expression. Oncol Lett 2021; 22:847. [PMID: 34733365 PMCID: PMC8561617 DOI: 10.3892/ol.2021.13108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant cancer types. N6-methyladenosine (m6A), an abundant eukaryotic mRNA modification, has been observed in multiple diseases, particularly cancer. Methyltransferase-like 14 (METTL14) is a central component of the m6A methyltransferase complex and has been reported to promote tumor development in several cancer types. The present study aimed to investigate the role of METTL14 in NSCLC. Relevant clinical and mRNA sequencing data for m6A-related genes were downloaded from The Cancer Genome Atlas database. R software was used to evaluate the expression of m6A regulators in NSCLC. The biological functions of METTL14 were evaluated using Cell Counting Kit-8, colony formation, Transwell migration and western blot analyses. The results demonstrated that METTL14 expression was upregulated in NSCLC tissues and cell lines, and its expression was high in cancer tissues from patients with NSCLC with all four stages (I, II, III and IV) of disease. METTL14 downregulation inhibited cell proliferation and migration in A549 and SK-MES-1 lung cancer cell lines. Knockdown of METTL14 in lung cancer cell lines increased E-cadherin expression and suppressed N-cadherin expression. Furthermore, METTL14 downregulation reduced the expression levels of the transcription factor Twist and the p-AKT/AKT ratio. In conclusion, the present findings revealed that silencing of METTL14 suppressed NSCLC malignancy by inhibiting Twist-mediated activation of AKT signaling. These data suggest that METTL14 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fang Yang
- Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wei-Qi Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Juan Li
- Department of Blood Transfusion, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yi-Qin Luo
- Department of Laboratory Medicine, The Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
17
|
Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun 2021; 12:5058. [PMID: 34433808 PMCID: PMC8387475 DOI: 10.1038/s41467-021-25274-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Dietary interventions such as intermittent fasting (IF) have emerged as an attractive strategy for cancer therapies; therefore, understanding the underlying molecular mechanisms is pivotal. Here, we find SIRT7 decline markedly attenuates the anti-tumor effect of IF. Mechanistically, AMP-activated protein kinase (AMPK) phosphorylating SIRT7 at T263 triggers further phosphorylation at T255/S259 by glycogen synthase kinase 3β (GSK3β), which stabilizes SIRT7 by decoupling E3 ligase UBR5. SIRT7 hyperphosphorylation achieves anti-tumor activity by disrupting the SKP2-SCF E3 ligase, thus preventing SKP2-mediated K63-linked AKT polyubiquitination and subsequent activation. In contrast, GSK3β-SIRT7 axis is inhibited by EGF/ERK2 signaling, with ERK2 inactivating GSK3β, thus accelerating SIRT7 degradation. Unfavorably, glucose deprivation or chemotherapy hijacks the GSK3β-SIRT7 axis via ERK2, thus activating AKT and ensuring survival. Notably, Trametinib, an FDA-approved MEK inhibitor, enhances the efficacy of combination therapy with doxorubicin and IF. Overall, we have revealed the GSK3β-SIRT7 axis that must be fine-tuned in the face of the energetic and oncogenic stresses in malignancy. The combination of intermittent fasting and chemotherapy can improve the response to treatment. Here, the authors show that SIRT7 activation is required to inactivate Akt during intermittent fasting and that the combination of intermittent fasting and inhibitors that block the Erk pathway can improve efficacy of treatment.
Collapse
|
18
|
Tian T, Fu X, Hu L, Yang X, Sun P, Sun F. FAST1 Predicts Poor Survival of Renal Carcinoma and Promotes Its Progression Through the TGF-β/Smad Pathway. Onco Targets Ther 2021; 14:1487-1499. [PMID: 33679133 PMCID: PMC7926040 DOI: 10.2147/ott.s288847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Renal carcinoma (RC) originates in the renal tubular epithelial system, among which renal cell carcinoma (RCC) is the most frequent one. The forkhead activin signal transducer 1 (FAST1) has been shown to interfere with tumor progression as an oncogene, while its role in RC is limited. Therefore, this paper explored the prognostic significance, specific effects, and related mechanisms of FAST1 on RC. Patients and Methods Cell colony formation assay, cell counting kit-8 (CCK8) assay, flow cytometry and Transwell assay were used to test cell proliferation, viability, apoptosis, migration and invasion, respectively. Western blot (WB) was employed to determine the protein level of FAST1. Results Our study confirmed that FAST1 was up-regulated in RC tissues and cell lines, and its overexpression often represented a poor prognosis of RC patients. Meanwhile, the in vitro experiments showed that overexpressing FAST1 facilitated RC cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and repressed cell apoptosis. In addition, the in vivo experiments illustrated that the up-regulation of FAST1 strengthened tumor growth. On the contrary, knocking down FAST1 had the opposite effects. Mechanistically, The TGF-β/Smad pathway contributed to RC evolvement and was activated by FAST1 both in vitro and in vivo. Conclusion This article suggests that FAST1 exerts a carcinogenic role in RC by regulating the TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Tao Tian
- Department of Urology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, People's Republic of China
| | - Xiangyang Fu
- Zaozhuang Yicheng District People's Hospital, Zaozhuang, Shandong, 277300, People's Republic of China
| | - Liangliang Hu
- Department of Urology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, People's Republic of China
| | - Xiaofeng Yang
- Department of Urology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, People's Republic of China
| | - Peng Sun
- Department of Urology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, People's Republic of China
| | - Fengfeng Sun
- Department of Urology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong, People's Republic of China
| |
Collapse
|
19
|
Zhao S, Wang B, Ma Y, Kuang J, Liang J, Yuan Y. NUCKS1 Promotes Proliferation, Invasion and Migration of Non-Small Cell Lung Cancer by Upregulating CDK1 Expression. Cancer Manag Res 2021; 12:13311-13323. [PMID: 33380837 PMCID: PMC7769091 DOI: 10.2147/cmar.s282181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a predominant type of lung cancer with a high mortality rate. Objective The aim of this study is to investigate the roles of nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) in NSCLC and to identify the potential mechanisms. Materials and Methods The expression of NUCKS1 in several NSCLC cells was detected firstly. Then, NUCKS1 was overexpressed or silenced in both A549 and NCI-H460 cells, where cell proliferation, invasion and migration were, respectively, determined, using CCK-8, colony formation assay, transwell and wound healing assays. Cell cycle analysis was performed, and the expression-associated proteins were detected by Western blotting. Subsequently, NCI-H460 cells with NUCKS1 overexpression for the subsequent tumor-bearing experiment. And the NUCKS1 expression in tumor tissues was measured by means of immunohistochemistry and Western blotting. Additionally, the STRING database predicted that Cyclin-Dependent Kinase 1 (CDK1) would bind to NUSK1, which was verified by the co-immunoprecipitation assay. Then, CDK1 was silenced by transfection with short hairpin RNA (shRNA)-CDK-1 or by exposure to CDK1 inhibitor p2767-00. And the biological characteristics of proliferation, invasion and migration were examined. Results Results indicated that NUCKS1 was overly expressed in NSCLC cells, and its overexpression promoted proliferation, invasion and migration of both A549 and NCI-H460 cells while NUCKS1 knockdown displayed the opposite effects. Moreover, the results of the xenograft experiments revealed that NUCKS1-upregulation promoted the tumor growth. Furthermore, the immunoprecipitation assay verified CDK1’s interaction with NUCKS1, and CDK1 knockdown alleviates the impact of NUCKS1 overexpression on NSCLC cell proliferation, invasion and migration. Conclusion Taken together, these findings demonstrated that NUCKS1 promotes proliferation, invasion and migration of NSCLC by upregulating CDK1, providing a novel putative target for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Shufen Zhao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou City, Guangdong Province 510095, People's Republic of China
| | - Yanning Ma
- Shunde Hospital, Southern Medical University, Foshan City, Guangdong Province 528308, People's Republic of China
| | - Junjie Kuang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Jiyun Liang
- Shunde Hospital, Southern Medical University, Foshan City, Guangdong Province 528308, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510515, People's Republic of China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou City, Guangdong Province 510095, People's Republic of China
| |
Collapse
|