1
|
Zhao X, Zhang H, Liu Y, Li L, Wei H. Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction. Hum Mol Genet 2025; 34:492-511. [PMID: 39807637 DOI: 10.1093/hmg/ddae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis. Utilizing cell counting kit-8 (CCK-8) assays, colony formation experiments, wound healing assays, flow cytometry for apoptosis and cell cycle analysis, and Transwell assays, we have confirmed that LINC00115 significantly promotes proliferation, migration, and invasion of AEG cells in vitro. Animal experiments further validate the role of LINC00115 in promoting tumor growth and metastasis in vivo. Additionally, our nuclear-cytoplasmic fractionation experiments and RNA fluorescence in situ hybridization (FISH) reveal that LINC00115, along with its interacting protein KH-Type splicing regulatory protein (KHSRP), predominantly localizes to the cell nucleus. By conducting RNA pull-down assays and mass spectrometry (MS) analysis, we have identified a direct interaction between LINC00115 and KHSRP protein and further determined their binding sites through catRAPID and ENCORI databases. This study provides evidence of LINC00115 as a novel biomarker and potential therapeutic target for AEG and offers a fresh perspective on understanding the molecular mechanisms of AEG metastasis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Gastroenterology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | | | - Li Li
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
- Department of Thoracic Surgery, Huaihe Hospital of Henan University/Henan University School of Nursing and Health, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haitao Wei
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| |
Collapse
|
2
|
Kim J, Kang JH, Noh MG, Lee B, Choi YD, Kim OJ, Kim Y. New potential diagnostic markers for verrucous hyperplasia and verrucous carcinoma based on RNA-sequencing data. Mol Cell Probes 2024; 77:101980. [PMID: 39127310 DOI: 10.1016/j.mcp.2024.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Verrucous carcinoma (VC) is a rare subtype of squamous cell carcinoma (SCC) characterized by its histological presentation as a low-grade tumor with no potential for metastasis, setting it apart from invasive SCC. However, distinguishing VC from its benign counterpart, verrucous hyperplasia (VH), is challenging due to their clinical and morphological similarities. Despite the importance of accurate diagnosis for determining treatment strategies, diagnosis of VH and VC relied only on lesion recurrence after resection. To address this challenge, we generated RNA profiling data from tissue samples of VH and VC patients to identify novel diagnostic markers. We analyzed differentially expressed (DE) mRNA and long non-coding RNA (lncRNA) in tissue samples from VH and VC patients. Additionally, ChIP-X Enrichment Analysis 3 (ChEA3) was conducted to identify the top five transcription factors potentially regulating the expression of DE mRNAs in VH and VC. Our analysis of mRNA and lncRNA expression profiles in VH and VC provides insights into the underlying molecular characteristics of these diseases and offers potential new diagnostic markers. The identification of specific DE genes and lncRNAs may enable clinicians to more accurately differentiate between VH and VC, leading to better treatment choices.
Collapse
Affiliation(s)
- Janghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jee-Hye Kang
- Deparment of Dental Science, Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, School of Medicine, Ajou University, Gyeonggi-do, 16499, Republic of Korea
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Hwasun 58128, Republic of Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Ok Joon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
4
|
Liao S, Fang X, Zhou K, Zhao T, Ji L, Zhang W, Zhong X, Feng F, Lv J, Kang Y, Zhu D. LINC00482 sponged miR-2467-3p to promote bone metastasis of prostate cancer through activating Wnt/β-catenin signaling pathway. J Bone Oncol 2023; 41:100494. [PMID: 37575527 PMCID: PMC10413070 DOI: 10.1016/j.jbo.2023.100494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
This study was designed to investigate the biological functions of LINC00482 in prostate cancer (PCa) with bone metastasis. TCGA dataset of PCa was applied for LINC00482 expression analysis and real time PCR was used to verify the expression level of LINC00482 in PCa tissues as well as PCa bone metastatic tissues. To detect the biological functions of LINC00482 in vitro, various assays were used including CCK-8, EdU, colony formation and transwell assays. The biological functions of LINC00482 were also identified in vivo by inoculating PCa cells into the left cardiac ventricle of mice, followed by evaluating the osteolytic lesions and osteolytic score. In addition, Starbase and Lncbase databases were applied for predicting the potential target miRNA of LINC00482, while TargetScan and Starbase databases were used for predicting the potential target of miRNA. The luciferase reporter assay was utilized to determine the interactions among these molecules and western blotting was employed to verified the targeted proteins. Results showed that high expression level of LINC00482 was observed in bone metastatic PCa tissues and associated with PCa progression. Silencing of LINC00482 inhibited cell proliferation, migration and invasion in PCa. Furthermore, LINC00482 was proved to act as a competing endogenous RNA by sponging miR-2467-3p to activate Wnt/β-catenin signaling pathway, which may be a promising therapeutic target for PCa with bone metastasis.
Collapse
Affiliation(s)
- Shiyao Liao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Xuemei Fang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Kai Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou City, Zhejiang, China
| | - Tingxiao Zhao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Lichen Ji
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China
| | - Wei Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Qingdao University, Qingdao, China
| | - Xugang Zhong
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Qingdao University, Qingdao, China
| | - Fabo Feng
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Jun Lv
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Yao Kang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Danjie Zhu
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road 158#, Hangzhou, Zhejiang, China
- Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
6
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
7
|
Zeng T, Jiang S, Wang Y, Sun G, Cao J, Hu D, Wang G, Liang X, Ding J, Du J. Identification and validation of a cellular senescence-related lncRNA signature for prognostic prediction in patients with multiple myeloma. Cell Cycle 2023; 22:1434-1449. [PMID: 37227248 PMCID: PMC10281485 DOI: 10.1080/15384101.2023.2213926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which primarily occurs in the elderly. Cellular senescence is considered to be closely associated with the occurrence and progression of malignant tumors including MM, and lncRNA can mediate the process of cellular senescence by regulating key signaling pathways such as p53/p21 and p16/RB. However, the role of cellular senescence related lncRNAs (CSRLs) in MM development has never been reported. Herein, we identified 11 CSRLs (AC004918.5, AC103858.1, AC245100.4, ACBD3-AS1, AL441992.2, ATP2A1-AS1, CCDC18-AS1, LINC00996, TMEM161B-AS1, RP11-706O15.1, and SMURF2P1) to build the CSRLs risk model, which was confirmed to be highly associated with overall survival (OS) of MM patients. We further demonstrated the strong prognostic value of the risk model in MM patients receiving different regimens, especially for those with three-drug combination of bortezomib, lenalidomide, and dexamethasone (VRd) as first-line therapy. Not only that, our risk model also excels in predicting the OS of MM patients at 1, 2, and 3 years. In order to verify the function of these CSRLs in MM, we selected the lncRNA ATP2A1-AS1 which presented the largest expression difference between high-risk groups and low-risk groups for subsequent analysis and validation. Finally, we found that down-regulation of ATP2A1-AS1 can promote cellular senescence in MM cell lines. In conclusion, the CSRLs risk model established in present study provides a novel and more accurate method for predicting MM patients' prognosis and identifies a new target for MM therapeutic intervention.
Collapse
Affiliation(s)
- Tanlun Zeng
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Sihan Jiang
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yichuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Chen ZX, Liang L, Huang HQ, Li JD, He RQ, Huang ZG, Song R, Chen G, Li JJ, Cai ZW, Huang JA. LPCAT1 enhances the invasion and migration in gastric cancer: Based on computational biology methods and in vitro experiments. Cancer Med 2023. [PMID: 37184260 DOI: 10.1002/cam4.5991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND AIM The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION An increased level of LPCAT1 may promote the progression of GC.
Collapse
Affiliation(s)
- Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - He-Qing Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui Song
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zheng-Wen Cai
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
9
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Yang Z, Jia Y, Wang S, Zhang Y, Fan W, Wang X, He L, Shen X, Yang X, Zhang Y, Yang H. Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/ β-Catenin and Epithelial-Mesenchymal Transition Pathways. JOURNAL OF ONCOLOGY 2023; 2023:5093941. [PMID: 36866240 PMCID: PMC9974310 DOI: 10.1155/2023/5093941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Histone 3 lysine 4 methylation (H3K4me), especially histone 3 lysine 4 trimethylation (H3K4me3), is one of the most extensively studied patterns of histone modification and plays crucial roles in many biological processes. However, as a part of H3K4 methyltransferase that participates in H3K4 methylation and transcriptional regulation, retinoblastoma-binding protein 5 (RBBP5) has not been well studied in melanoma. The present study sought to explore RBBP5-mediated H3K4 histone modification and the potential mechanisms in melanoma. RBBP5 expression in melanoma and nevi specimens was detected by immunohistochemistry. Western blotting was performed for three pairs of melanoma cancer tissues and nevi tissues. In vitro and in vivo assays were used to investigate the function of RBBP5. The molecular mechanism was determined using RT-qPCR, western blotting, ChIP assays, and Co-IP assays. Our study showed that RBBP5 was significantly downregulated in melanoma tissue and cells compared with nevi tissues and normal epithelia cells (P < 0.05). Reducing RBBP5 in human melanoma cells leads to H3K4me3 downregulation and promotes cell proliferation, migration, and invasion. On the one hand, we verified that WSB2 was an upstream gene of RBBP5-mediated H3K4 modification, which could directly bind to RBBP5 and negatively regulate its expression. On the other hand, we also confirmed that p16 (a cancer suppressor gene) was a downstream target of H3K4me3, the promoter of which can directly bind to H3K4me3. Mechanistically, our data revealed that RBBP5 inactivated the Wnt/β-catenin and epithelial-mesenchymal transition (EMT) pathways (P < 0.05), leading to melanoma suppression. Histone methylation is rising as an important factor affecting tumorigenicity and tumor progression. Our findings verified the significance of RBBP5-mediated H3K4 modification in melanoma and the potential regulatory mechanisms of melanoma proliferation and growth, suggesting that RBBP5 is a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Zhiqin Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 2Departments of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yue Jia
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Shaojia Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongjun Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Wen Fan
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
- 3Departments of Reproduction, The Second Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Xin Wang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Liang He
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiaoyu Shen
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Xiangqun Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yi Zhang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Hongying Yang
- 1Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
12
|
Luo H, Xu C, Ge B, Wang T. CASC1 Expression in Bladder Cancer Is Regulated by Exosomal miRNA-150: A Comprehensive Pan-Cancer and Bioinformatics Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8100325. [PMID: 35836922 PMCID: PMC9276518 DOI: 10.1155/2022/8100325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
This study explored the role of cancer susceptibility 1 (CASC1) in tumorigenesis and development as well as the key pathways affecting bladder cancer progression. CASC1 was examined in various normal tissues in humans using the HPA database to quantify its expression level and subcellular localization. CASC1 is abundantly expressed in tumor tissues, primarily in cytoplasmic vesicles and stroma. TIMER2 was used to analyze the correlation between CASC1 expression levels and the types of infiltrates associated with immune cells and immunosuppressive cells. MDSC, Treg, M2, and CAF were significantly correlated with CASC1 expression in various tumors. Comparing patients with and without CASC1 mutation, those with CASC1 mutation had worse overall survival, progression-free survival, and disease-free survival. The correlation between has-miR-150 and CASC1 (for the case of bladder cancer) was then analyzed, and the related ceRNA network was mapped. A negative relationship between CASC1 expression and has-miR-150 expression was found in cases of bladder cancer. And the presence of miR-150-targeted CASC1 may be associated with bladder cancer progression. CASC1 is expressed at elevated levels in various tumor tissues, and it is associated with tumorigenesis and development. Exosomes containing miR-150-targeted CASC1 may affect the progression of bladder cancer.
Collapse
Affiliation(s)
- Huarong Luo
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bujun Ge
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianru Wang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang N, Li R, Jia H, Xie H, Liu C, Jiang S, Zhang K, Lin P, Yu X. Apaf-1 interacting protein, a new target of microRNA-146a-3p, promotes prostate cancer cell development via the ERK1/2 pathway. Cell Biol Int 2022; 46:1156-1168. [PMID: 35293661 DOI: 10.1002/cbin.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/06/2022]
Abstract
The Apaf-1 interacting protein APIP, a ubiquitously expressed anti-apoptotic molecule, is aberrantly expressed and of great significance in various cancers. However, little is known regarding the potential value and underlying mechanisms of APIP in prostate cancer. Here, we demonstrated that APIP expression is significantly upregulated in prostate cancer cell lines. APIP overexpression promoted tumor cell proliferation and migration and induced ERK1/2 activation. Pharmacological inhibition of ERK1/2 signaling reversed APIP-induced increase in cell proliferation and migration induced by APIP overexpression. Expression of APIP was hampered by miR-146a-3p. A dual luciferase reporter gene assay identified the regulatory relationship between APIP and miR-146a-3p in prostate cancer, suggesting that APIP is a direct target of miR-146a-3p. miR-146a-3p reduced cell proliferation and migration in prostate cancer. Furthermore, miR-146a-3p inhibited ERK1/2 activation. Application of an ERK1/2 inhibitor reversed the increase in cell proliferation and migration induced by miR-146a-3p inhibition. In summary, this study focused on the role of APIP in regulating cell growth and migration, and proposes a theoretical basis for APIP as a promising biomarker in prostate cancer development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nan Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Rou Li
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Huizhen Jia
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Hui Xie
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, 150001, P.R. China
| | - Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ke Zhang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| |
Collapse
|
14
|
Function of miRNA-145-5p in the pathogenesis of human disorders. Pathol Res Pract 2022; 231:153780. [DOI: 10.1016/j.prp.2022.153780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 01/09/2023]
|
15
|
Liu C, Lin P, Zhao J, Xie H, Li R, Yang X, Wang N, Jia H, Jiang S, Zhang K, Yu X. Knockdown of long noncoding RNA AC245100.4 inhibits the tumorigenesis of prostate cancer cells via the STAT3/ NR4A3 axis. Epigenomics 2021; 13:1591-1605. [PMID: 34657447 DOI: 10.2217/epi-2021-0293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: To explore the role and mechanism of long noncoding RNA AC245100.4 and NR4A3 in prostate cancer (PCa). Methods: RNA-sequencing analysis was used to detect the downstream genes of AC245100.4. A series of gain- and loss-of-function approaches were used to investigate the roles of AC245100.4 and NR4A3. RNA immunoprecipitation was performed to examine the interaction between AC245100.4 and STAT3. Results: AC245100.4 was significantly upregulated in PCa cells and tissues. Knockdown of AC21500.4 significantly inhibited the tumorigenesis of PCa cells. Mechanistically, AC245100.4 deregulated the transcription of NR4A3 via increasing p-STAT3, which acted as a transcriptional repressor of NR4A3. Conclusion: Knockdown of long noncoding RNA AC245100.4 inhibits the tumorigenesis of PCa cells via the STAT3/NR4A3 axis.
Collapse
Affiliation(s)
- Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Jiabin Zhao
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China.,Department of Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Xie
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China.,Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rou Li
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xu Yang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Nan Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Huizhen Jia
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Ke Zhang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| |
Collapse
|
16
|
Chen Y, Xu R, Ruze R, Yang J, Wang H, Song J, You L, Wang C, Zhao Y. Construction of a prognostic model with histone modification-related genes and identification of potential drugs in pancreatic cancer. Cancer Cell Int 2021; 21:291. [PMID: 34090418 PMCID: PMC8178883 DOI: 10.1186/s12935-021-01928-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. An effective prediction model is urgently needed for the accurate assessment of patients’ prognosis to assist clinical decision-making. Methods Gene expression data and clinicopathological data of the samples were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier (KM) survival analysis and survival point graph in training set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to identify potential small molecular drugs as the risk model-related treatments for PC patients. Results Four histone modification-related genes were identified to establish the risk signature, including CBX8, CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in treating PC patients. Conclusions Based on a histone modification-related gene signature, our model can serve as a reliable prognosis assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs were also identified with significant potentiality in treating PC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01928-6.
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jinshou Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| |
Collapse
|