1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
2
|
Yeşilaltay A, Muz D, Erdal B. Oncolytic Myxoma virus Increases Autophagy in Multiple Myeloma. Turk J Haematol 2024; 41:16-25. [PMID: 38258554 PMCID: PMC10918390 DOI: 10.4274/tjh.galenos.2024.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 01/24/2024] Open
Abstract
Objective Multiple myeloma, which affects plasma cells, is the second most common hematological malignancy. Despite the development of new drugs and treatment protocols, patient survival has not reached the desired level. In this study, we investigated the effects of Myxoma virus (MYXV), an oncolytic virus, on autophagy in myeloma cells. Materials and Methods We analyzed protein expressions of ATG-5, p62, Beclin-1, LC3B, and the apoptosis marker Bcl-2 as autophagy markers in human U-266 and mouse MOPC-315 myeloma cell lines subjected to different doses of MYXV. In addition, autophagic images of myeloma cells were investigated using transmission electron microscopy (TEM). Results In the first 24 h, which is the early stage of autophagy, ATG-5 and Beclin-1 expression levels were increased in the U-266 and MOPC-315 cell lines in the groups that had received MYXV at a multiplicity of infection of 15. At 48 h, a significant increase was detected in the expression of LC3B, which is a late indicator. Autophagosomes were observed in myeloma cells by TEM. Conclusion MYXV shows an antimyeloma effect by increasing autophagy in myeloma cells.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Başkent University İstanbul Hospital, Department of Hematology, İstanbul, Türkiye
| | - Dilek Muz
- Tekirdağ Namık Kemal University Faculty of Veterinary Medicine, Department of Virology, Tekirdağ, Türkiye
| | - Berna Erdal
- Tekirdağ Namık Kemal University Faculty of Medicine, Department of Microbiology, Tekirdağ, Türkiye
| |
Collapse
|
3
|
Sousa-Pimenta M, Martins Â, Machado V. Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:189-219. [PMID: 37541724 DOI: 10.1016/bs.ircmb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The increased tropism for malignant cells of some viruses has been highlighted in recent studies, prompting their use as a strategy to modify the transcriptional profile of those cells, while sparing the healthy ones. Likewise, they have been recognized as players modulating microenvironmental immunity, namely through an increase in antigen-presenting, natural-killer, and T CD8+ cytotoxic cells by a cross-priming mechanism elicited by tumor-associated antigens. The immunomodulatory role of the oncolytic virus seems relevant in hematological malignancies, which may relapse as a result of a proliferative burst elicited by an external stimulus in progenitor or neoplastic stem cells. By reprogramming the host cells and the surrounding environment, the potential of virotherapy ranges from the promise to eradicate the minimal measurable disease (in acute leukemia, for example), to the ex vivo purging of malignant progenitor cells in the setting of autologous bone marrow transplantation. In this review, we analyze the recent advances in virotherapy in hematological malignancies, either when administered alone or together with chemotherapeutic agents or other immunomodulators.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Biomedicina, Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | - Ângelo Martins
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Vera Machado
- Grupo de Oncologia Molecular e Patologia Viral, Centro de investigação do IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Instituto português de Oncologia do Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), LAB2, Rua Dr António Bernardino de Almeida, Porto, Portugal
| |
Collapse
|
4
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol 2023; 13:1142172. [PMID: 37009515 PMCID: PMC10050605 DOI: 10.3389/fcimb.2023.1142172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Recent reports have revealed that oncolytic viruses (OVs) play a significant role in cancer therapy. The infection of OVs such as oncolytic vaccinia virus (OVV), vesicular stomatitis virus (VSV), parvovirus, mammalian reovirus (MRV), human adenovirus, Newcastle disease virus (NDV), herpes simplex virus (HSV), avian reovirus (ARV), Orf virus (ORFV), inactivated Sendai virus (ISV), enterovirus, and coxsackievirus offer unique opportunities in immunotherapy through diverse and dynamic pathways. This mini-review focuses on the mechanisms of OVs-mediated virotherapy and their effects on immunogenic cell death (ICD), apoptosis, autophagy and regulation of the immune system.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Te-Kai Sun
- Tsairder Boitechnology Co. Ltd., Taichung, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancashire, United Kingdom
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Hung-Jen Liu,
| |
Collapse
|
6
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX), as a kind of chemotherapy agent with remarkable therapeutic effect, can be used to treat diverse malignant tumors clinically. Dose-dependent cardiotoxicity is the most serious adverse reaction after DOX treatment, which eventually leads to cardiomyopathy and greatly limits the clinical application of DOX. DOX-induced cardiomyopathy is not a result of a single mechanistic action, and multiple mechanisms have been discovered and demonstrated experimentally, such as oxidative stress, inflammation, mitochondrial damage, calcium homeostasis disorder, ferroptosis, autophagy and apoptosis. Dexrazoxane (DEX) is the only protective agent approved by FDA for the treatment of DOX cardiomyopathy, but its clinical treatment still has some limitations. Therefore, we need to find other effective therapeutic drugs as soon as possible. In this paper, the drugs that effectively improve cardiomyopathy in recent years are mainly described from the aspects of natural drugs, endogenous substances, new dosage forms, herbal medicines, chemical modification and marketed drugs. The aim of the present study is to evaluate the effects of these drugs on DOX-induced anticancer and cardiomyopathy curative effects, so as to provide some reference value for clinical treatment of DOX-induced cardiomyopathy in the future.
Collapse
Affiliation(s)
- Ye Chen
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Saixian Shi
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
7
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
8
|
The Use of Oncolytic Viruses in the Treatment of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13225687. [PMID: 34830842 PMCID: PMC8616105 DOI: 10.3390/cancers13225687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Multiple myeloma is a type of blood cancer caused by the uncontrolled growth of antibody producing B cells (known as plasma cells) that reside in the bone marrow. It is classed as a largely incurable cancer as whilst patients respond well to initial chemotherapy treatments, unfortunately after periods of disease remission, relapse usually occurs with the emergence of chemotherapy resistance. Therefore, there is a need for new approaches that not only reduce tumour load but also prevent tumour relapse. Oncolytic viruses (OVs) (tumour killing viruses) are being explored as a therapy for various cancers, including multiple myeloma. This review discusses the use of OVs in myeloma in preclinical model systems and early phase clinical trials, and discusses some of the hurdles involved in the translation to myeloma patients. Abstract Multiple myeloma accounts for 1% of all new cancers worldwide. It is the second most common haematological malignancy and has a low five-year survival rate (53.2%). Myeloma remains an incurable disease and is caused by the growth of malignant plasma cells in the bone marrow. Current anti-myeloma therapies (conventional chemotherapies, immunomodulatory drugs i.e., thalidomide and its’ analogues, proteasome inhibitors, monoclonal antibodies, and radiotherapy) initially substantially debulk tumour burden, but after a period of remission ‘plateau phase’ disease invariably relapses due to tumour recrudescence from foci of minimal residual disease (MRD) and accumulating drug resistance. Therefore, there is a compelling clinical need for the development of novel treatment regimens to target MRD and effectively eliminate all remaining tumour cells. This review will discuss the potential use of oncolytic virus (OV) therapies in the treatment of myeloma. Specifically, it will focus on preclinical studies using DNA viruses (adenovirus (Ad), vaccinia virus (VV), myxoma virus (MYXV), and herpes simplex virus (HSV)), RNA viruses (reovirus (reo), coxsackie virus, measles virus (MV) and bovine viral diarrhoea virus (BVDV), and vesicular stomatitis virus (VSV)), and on four types of viruses (VV, reo, MV-NIS and VSV-IFNβ-NIS) that have been assessed clinically in a small number of myeloma patients.
Collapse
|