1
|
Cheng Q, Chen G, Wu X, Fang H, Shi J, Zhong B. Detection of serum SNHG22 and its correlation with prognosis of non-small cell lung cancer. J Cardiothorac Surg 2024; 19:536. [PMID: 39300525 PMCID: PMC11414149 DOI: 10.1186/s13019-024-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Lung cancer accounts for a significant proportion of cancer-related deaths in China, with the majority of the cases being classified as non-small cell lung cancer (NSCLC). The study aimed to investigate the expression of serum SNHG22 in patients with NSCLC, and its molecular mechanism and prognostic potential in NSCLC. METHODS Admitted 125 NSCLC patients were selected for the study, along with 125 healthy individuals in the same period. The levels of SNHG22 and miR-128-3p were quantified via RT-qPCR. Correlations between the SNHG22 level and the pathological characteristics of the NSCLC patients were investigated through the application of the chi-square test. The targeting relationship between SNHG22 and miR-128-3p was predicted by online database and confirmed by luciferase activity. The prognostic ability of SNHG22 in NSCLC was assessed by Kaplan-Meier curves and multivariate Cox analysis. RESULTS SNHG22 was upregulated in NSCLC and directly targeted miR-128-3p. The rate of overall survival is lower in patients with high-SNHG22 group compared to those with low-SNHG22 group. Silencing SNHG22 impaired the functionality of cells, which was restored by miR-128-3p inhibitor. SNHG22 stands as an independent predictor of poor prognosis in NSCLC patients. CONCLUSION The overexpression of SNHG22 in NSCLC is related to lymph node metastasis, TNM stage and patient survival, which is expected to be a prognostic predictor of NSCLC patients.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guoping Chen
- Department of Respiratory and Critical Care Medicine, Binhai County People's Hospital, Yancheng, 224500, China
| | - Xiaojiao Wu
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China.
| | - Hang Fang
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Jingjing Shi
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Bonian Zhong
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, No.1, Guangming East Road, Guangzhou, 511300, China.
| |
Collapse
|
2
|
Mao G, Liu J. Research on the mechanism of exosomes from different sources influencing the progression of lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4231-4248. [PMID: 38760988 DOI: 10.1002/tox.24292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
As a key regulator of intercellular communication, exosomes are essential for tumor cells. In our study, we will explore the mechanisms of exosomes from different sources on lung cancer. We isolated CD8+T cells and cancer-associated fibroblasts (CAFs) from venous blood and tumor tissues of lung cancer patients, and isolated exosomes. MiR-2682 was high expression in CD8+T-derived exosomes, and lncRNA-FOXD3-AS1 was upregulated in CAF-derived exosomes. Online bioinformatics database analysis showed that RNA Binding Motif Protein 39 (RBM39) was identified as the target of miR-2682, and eukaryotic translation initiation factors 3B (EIF3B) was identified as the RNA binding protein of FOXD3-AS1. CD8+T-derived exosomes inhibited the growth of A549 cells and promoted apoptosis, while miR-2682 inhibits reversed these effects of CD8+T-derived exosomes. CAF-derived exosomes promoted the growth of A549 cells and inhibited apoptosis, while FOXD3-AS1 siRNA reversed the effect of CAF-derived exosomes. Mechanism studies have found that miR-2682 inhibits the growth of lung cancer cells by inhibiting the expression of RBM39. FOXD3-AS1 promoted the growth of lung cancer cells by binding to EIF3B. In vivo experiments showed that CD8+T cell-derived exosome miR-2682 inhibited lung cancer tumor formation, while CAF-derived exosome FOXD3-AS1 promoted lung cancer tumor formation. This study provides mechanistic insights into the role of miR-2682 and FOXD3-AS1 in lung cancer progression and provides new strategies for lung cancer treatment.
Collapse
Affiliation(s)
- Guangxian Mao
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen, People's Republic of China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Jixian Liu
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen, People's Republic of China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Jia Y, Li Y, Du N, Zhao W, Liu Y. LIMK1 promotes the development of cervical cancer by up-regulating the ROS/Src-FAK/cofilin signaling pathway. Aging (Albany NY) 2024; 16:11090-11102. [PMID: 38975937 PMCID: PMC11272116 DOI: 10.18632/aging.206007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE In this study, we investigated the mechanism of action of LIMK1 in cervical cancer progression. METHODS The biological role of LIMK1 in regulating the growth, invasion, and metastasis of cervical cancer was studied in SiHa, CaSki cells and nude mice tumor models. The role of LIMK1 in the growth of cervical cancer was evaluated by HE staining. The role of LIMK1 in the invasion, metastasis, and proliferation of cervical cancer was evaluated by cell scratch, Transwell, and monoclonal experiments. The interaction among LIMK1, ROS, and Src was evaluated by Western blotting. The effects of regulating ROS and p-Src expression on LIMK1 in the migration/invasion and proliferation of cervical cancer cells were evaluated through cellular functional assays. RESULTS Overexpression of LIMK1 promoted tumor growth in nude mice. Cell scratch, Transwell, and monoclonal experiments suggested that LIMK1 promoted the invasion, metastasis, and proliferation of cervical cancer cells. Western blotting suggested that LIMK1 can promote the expression of ROS-related proteins NOX2, NOX4, p-Src, and downstream proteins p-FAK, p-ROCK1/2, p-Cofilin-1, F-actin and inhibit the expression of p-SHP2 protein. Correction experiments showed that LIMK1 regulated the expression of p-FAK and p-Cofilin-1 proteins by regulating ROS and p-Src. Through the detection of cervical cancer cell functions, it was found that the activation of ROS and p-Src induced by LIMK1 is an early event that promotes the migration, proliferation, and invasion of cervical cancer cells. CONCLUSIONS LIMK1 promotes the expression of F-actin and promotes the development of cervical cancer by regulating the oxidative stress/Src-mediated p-FAK/p-ROCK1/2/p-Cofilin-1 pathway.
Collapse
Affiliation(s)
- Yajing Jia
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yongping Li
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei Zhao
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yakun Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
4
|
Chong ZX, Ho WY, Yeap SK. Decoding the tumour-modulatory roles of LIMK2. Life Sci 2024; 347:122609. [PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
5
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
6
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ni Z, Liu W, Pan G, Mao A, Liu J, Zhang Q, Li J, Liu L, Li H. Circular forms of dedicator of cytokinesis 1 promotes breast cancer progression by derepressing never in mitosis related kinase 2 via sponging miR-128-3p. ENVIRONMENTAL TOXICOLOGY 2023; 38:1712-1722. [PMID: 37040338 DOI: 10.1002/tox.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The conjecture of breast cancer is uncertain because of its explosive growth and the complicated molecular mechanisms. Circular RNAs (circRNAs) are regulatory RNA sequences present in the genome and their regulatory mechanism involves the sponging of microRNAs (miRNAs). In this study, we explored the regulation between circular forms of dedicator of cytokinesis 1 (circDOCK1) (hsa_circ_0007142) and miR-128-3p, and its implication on the pathogenesis of breast cancer modulated by never in mitosis (NIMA) related kinase 2 (NEK2). We revealed an increase in circDOCK1 and NEK2 expression, and a decrease in miR-128-3p expression in breast cancer tissues and cell lines. Bioinformatics analysis and experimental validation indicated a positive correlation between circDOCK1 and NEK2 expression but a negative correlation was recorded between miR-128-3p and circDOCK1 or NEK2, respectively. Furthermore, inhibition of circDOCK1 expression was followed by an increase in miR-128-3p and a decrease in NEK2 levels in vitro and in vivo. The luciferase assay concluded that miR-128-3p was a direct target of circDOCK1 while NEK2 was the direct target of miR-128-3p. Furthermore, circDOCK1 inhibition hindered breast cancer development by repressing NEK2 and thus promoting the increased expression of miR-128-3p both in vitro and in vivo. We therefore conclude that circDOCK1 promotes breast cancer progression by targeting miR-128-3p-mediated downregulation of NEK2 and that the circDOCK1/hsa-miR-128-3p/NEK2 axis may be a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Anwei Mao
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Qing Zhang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Limin Liu
- Department of Medical Rehabilitation, Heze Domestic Professional College, Middle Xueyuan Road, Shanxian Development Zone, Heze, Shandong, 274300, China
| | - Hongchang Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| |
Collapse
|
8
|
Qu A, Wang Q, Chang Q, Liu J, Yang Y, Zhang X, Zhang Y, Zhang X, Wang H, Zhang Y. Prognostic and predictive value of a lncRNA signature in patients with stage II colon cancer. Sci Rep 2023; 13:1350. [PMID: 36693876 PMCID: PMC9873786 DOI: 10.1038/s41598-022-25852-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
The current staging method is inadequate to identify high-risk recurrence patients with stage II colon cancer (CC). Using a systematic and comprehensive-biomarker discovery and validation method, we aimed to construct a lncRNA-based signature to improve the prognostic prediction of stage II CC. We identified 1,377 differently expressed lncRNAs by analyzing 16 paired stage II CC tumor tissue and adjacent normal mucosal tissue from the TCGA dataset. Subsequently, using a univariable and step multivariable Cox regression model, we trained an 11-lncRNA signature in the training cohort (n = 141), which could divide patients into high-risk and low-risk groups (AUC at 3 years = 0.801, 95% CI: 0.724-0.877; AUC at 5 years = 0.801, 95% CI: 0.718-0.885). Significantly, patients in the high-risk group had poorer recurrence-free survival (RFS) compared with the low-risk group (log-rank test, P < 0.001 in the training cohort). This lncRNA-based signature was further confirmed in the validation cohort (P < 0.001). Multivariate Cox regression and stratified survival analyses showed that the prognostic value of this signature was independent of other clinicopathological risk factors (CEA, T stage, and chemotherapy). Time-dependent receiver operating characteristic (ROC) analysis demonstrated that this signature had better prognostic ability than any other clinical risk factors or single lncRNAs (all P < 0.05). A nomogram was constructed for clinical use, which integrated both the lncRNA-based signature and clinical risk factors (CEA and T stage) and performed well in the calibration plots. Altogether, our lncRNA-based signature was an independent prognostic factor and possessed a stronger predictive power compared with the currently used clinicopathological risk factors when predicting the recurrence of patients with stage II CC. Collectively, this lncRNA-based signature might facilitate individualized treatment decisions and postoperative counseling, ultimately contributing to improved survival.
Collapse
Affiliation(s)
- Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qian Wang
- Department of Gastroenterology, Central Hospital, Shandong First Medical University, Jinan, 250011, Shandong Province, People's Republic of China
| | - Qing Chang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jingkang Liu
- Department of Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, People's Republic of China
| | - Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
9
|
Yin H, Liu Y, Yue H, Tian Y, Dong P, Xue C, Zhao YT, Zhao Z, Wang J. DHA- and EPA-Enriched Phosphatidylcholine Suppress Human Lung Carcinoma 95D Cells Metastasis via Activating the Peroxisome Proliferator-Activated Receptor γ. Nutrients 2022; 14:nu14214675. [PMID: 36364935 PMCID: PMC9654432 DOI: 10.3390/nu14214675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The antineoplastic effects of docosahexaenoic acid-containing phosphatidylcholine (DHA-PC) and eicosapentaenoic acid-containing phosphatidylcholine (EPA-PC) were explored, and their underlying mechanisms in the human lung carcinoma 95D cells (95D cells) were investigated. After treatment of 95D cells with DHA-PC or EPA-PC, cell biological behaviors such as growth, adhesion, migration, and invasion were studied. Immunofluorescence and western blotting were carried out to assess underlying molecular mechanisms. Results showed that 95D cells proliferation and adherence in the DHA-PC or EPA-PC group were drastically inhibited than the control group. DHA-PC and EPA-PC suppressed the migration and invasion of 95D cells by disrupting intracellular F-actin, which drives cell movement. The protein expression of PPARγ was induced versus the control group. Furthermore, critical factors related to invasion, including matrix metallopeptidase 9 (MMP9), heparanase (Hpa), and vascular endothelial growth factor (VEGF), were drastically downregulated through the PPARγ/NF-κB signaling pathway. C-X-C chemokine receptor type 4 (CXCR4) and cofilin were significantly suppressed via DHA-PC and EPA-PC through the PPARγ/phosphatase and tensin homolog (PTEN)/serine-threonine protein kinase (AKT) signaling pathway. DHA-PC and EPA-PC reversed the PPARγ antagonist GW9662-induced reduction of 95D cells in migration and invasion capacity, suggesting that PPARγ was directly involved in the anti-metastasis efficacy of DHA-PC and EPA-PC. In conclusion, DHA-PC and EPA-PC have great potential for cancer therapy, and the antineoplastic effects involve the activation of PPARγ. EPA-PC showed more pronounced antineoplastic effects than DHA-PC, possibly due to the more robust activation of PPARγ by EPA-PC.
Collapse
Affiliation(s)
- Haowen Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zifang Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Hainan Huayan Collagen Technology Co., Ltd., Haikou 571000, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| |
Collapse
|
10
|
Li J, Wang J, Liu D, Tao C, Zhao J, Wang W. Establishment and validation of a novel prognostic model for lower-grade glioma based on senescence-related genes. Front Immunol 2022; 13:1018942. [PMID: 36341390 PMCID: PMC9633681 DOI: 10.3389/fimmu.2022.1018942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 01/10/2023] Open
Abstract
Objective Increasing studies have indicated that senescence was associated with tumorigenesis and progression. Lower-grade glioma (LGG) presented a less invasive nature, however, its treatment efficacy and prognosis prediction remained challenging due to the intrinsic heterogeneity. Therefore, we established a senescence-related signature and investigated its prognostic role in LGGs. Methods The gene expression data and clinicopathologic features were from The Cancer Genome Atlas (TCGA) database. The experimentally validated senescence genes (SnGs) from the CellAge database were obtained. Then LASSO regression has been performed to build a prognostic model. Cox regression and Kaplan-Meier survival curves were performed to investigate the prognostic value of the SnG-risk score. A nomogram model has been constructed for outcome prediction. Immunological analyses were further performed. Data from the Chinese Glioma Genome Atlas (CGGA), Repository of Molecular Brain Neoplasia Data (REMBRANDT), and GSE16011 were used for validation. Results The 6-SnG signature has been established. The results showed SnG-risk score could be considered as an independent predictor for LGG patients (HR=2.763, 95%CI=1.660-4.599, P<0.001). The high SnG-risk score indicated a worse outcome in LGG (P<0.001). Immune analysis showed a positive correlation between the SnG-risk score and immune infiltration level, and the expression of immune checkpoints. The CGGA datasets confirmed the prognostic role of the SnG-risk score. And Kaplan-Meier analyses in the additional datasets (CGGA, REMBRANDT, and GSE16011) validated the prognostic role of the SnG-signature (P<0.001 for all). Conclusion The SnG-related prognostic model could predict the survival of LGG accurately. This study proposed a novel indicator for predicting the prognosis of LGG and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Dongjing Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wen Wang, ; Jizong Zhao,
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- *Correspondence: Wen Wang, ; Jizong Zhao,
| |
Collapse
|
11
|
Liu X, Chen W, Qi Y, Zhu Y. Evaluation of lncRNA FOXD3-AS1 as a Biomarker for Early-Stage Lung Cancer Diagnosis and Subtype Identification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5702014. [PMID: 36159563 PMCID: PMC9492367 DOI: 10.1155/2022/5702014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose Lung cancer (LC) is the most commonly diagnosed cancer and the leading cause of cancer-related deaths. More and more long noncoding RNA (lncRNA) are associated with cancer. This study aimed to assess whether plasma lncRNA could be used to diagnose early-stage LC and identify subtypes of LC. Methods For bioinformatic analysis, we used genetic data from the Cancer Genome Atlas, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC) datasets and a small cell lung cancer (SCLC) dataset from the Gene Expression Omnibus. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to examine the relative expression of lncRNA in LC tissues and plasma samples. The patients' clinical information was obtained at the time of sample collection. Results According to public datasets, the lncRNA forkhead box D3 antisense 1 (FOXD3-AS1) was significantly upregulated in LUAD, LUSC, and SCLC tissues over controls. RT-qPCR assays confirmed this finding in LUAD, LUSC, and SCLC tissues and plasma samples. Even early-stage receiver operating characteristic analysis showed that plasma FOXD3-AS1 could be used to discriminate LUAD, LUSC, and SCLC from normal controls and identify LC subtypes SCLC. Conclusion FOXD3-AS1 is significantly upregulated in LC tissues and plasma. FOXD3-AS1 could be a potential biomarker for LC subtype identification and early diagnosis.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Pathology, Traditional Chinese Medicine Hospital of LuAn, Lu'an 237006, Anhui, China
| | - Wenyan Chen
- Department of Pathology, Traditional Chinese Medicine Hospital of LuAn, Lu'an 237006, Anhui, China
| | - Yu Qi
- Department of Pathology, Traditional Chinese Medicine Hospital of LuAn, Lu'an 237006, Anhui, China
| | - Yongqian Zhu
- Department of Pathology, Traditional Chinese Medicine Hospital of LuAn, Lu'an 237006, Anhui, China
| |
Collapse
|
12
|
Su Y, Xu B, Shen Q, Lei Z, Zhang W, Hu T. LIMK2 Is a Novel Prognostic Biomarker and Correlates With Tumor Immune Cell Infiltration in Lung Squamous Cell Carcinoma. Front Immunol 2022; 13:788375. [PMID: 35273591 PMCID: PMC8902256 DOI: 10.3389/fimmu.2022.788375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research found that LIM domain kinase 2 (LIMK2) expression correlated with a poor prognosis in many cancers. However, its role in lung squamous cell carcinoma (LUSC) has not yet been clarified. Our study aimed to clarify the role of LIMK2 in LUSC prognosis prediction and explore the relationship between LIMK2 and immune infiltration in LUSC. In this study, we first analyzed the expression level and prognostic value of LIMK2 across cancers. Subsequently, we explored the association of LIMK2 expression with immune infiltrating cells and immune checkpoints. our study found that LIMK2 was highly expressed and positively associated with the overall survival of LUSC. Moreover, our study further indicated that LIMK2 expression was significantly negatively correlated with immune cell infiltration and immune checkpoints in LUSC. Finally, we confirmed upstream regulatory noncoding RNAs (ncRNAs) of LIMK2, and the PVT1 and DHRS4-AS1/miR-423-5p/LIMK2 regulatory axes were successfully constructed in LUSC. Put together, LIMK2 is a novel prognostic biomarker and correlates with tumor immune cell infiltration in LUSC, and the expression of LIMK2 is regulated by the PVT1 and DHRS4-AS1/miR-423-5p axes.
Collapse
Affiliation(s)
- Yongcheng Su
- Cancer Research Center, Xiamen University School of Medicine, Xiamen, China
| | - Beibei Xu
- Department of General Surgery, The First Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qianwen Shen
- Cancer Research Center, Xiamen University School of Medicine, Xiamen, China
| | - Ziyu Lei
- Cancer Research Center, Xiamen University School of Medicine, Xiamen, China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University School of Medicine, Xiamen, China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University School of Medicine, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
13
|
Yang Q, Al-Hendy A. The Regulatory Functions and the Mechanisms of Long Non-Coding RNAs in Cervical Cancer. Cells 2022; 11:cells11071149. [PMID: 35406713 PMCID: PMC8998012 DOI: 10.3390/cells11071149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is one of the leading causes of death in gynecology cancer worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer. Still, other factors also contribute to cervical cancer development because these cancers commonly arise decades after initial exposure to HPV. So far, the molecular mechanisms underlying the pathogenesis of cervical cancer are still quite limited, and a knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve cervical cancer patient outcomes. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation, and the relevant role of lncRNAs in cervical cancer has recently been investigated. In this review, we summarize the recent progress in ascertaining the biological functions of lncRNAs in cervical cancer from the perspective of cervical cancer proliferation, invasion, and metastasis. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of lncRNAs in the pathogenesis of cervical cancer. Comprehensive and deeper insights into lncRNA-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with cervical cancer.
Collapse
|
14
|
Yao Q, Zhang X, Chen D. Emerging Roles and Mechanisms of lncRNA FOXD3-AS1 in Human Diseases. Front Oncol 2022; 12:848296. [PMID: 35280790 PMCID: PMC8914342 DOI: 10.3389/fonc.2022.848296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
Numerous long noncoding RNAs (lncRNAs) have been identified as powerful regulators of human diseases. The lncRNA FOXD3-AS1 is a novel lncRNA that was recently shown to exert imperative roles in the initialization and progression of several diseases. Emerging studies have shown aberrant expression of FOXD3-AS1 and close correlation with pathophysiological traits of numerous diseases, particularly cancers. More importantly, FOXD3-AS1 was also found to ubiquitously impact a range of biological functions. This study aims to summarize the expression, associated clinicopathological features, major functions and molecular mechanisms of FOXD3-AS1 in human diseases and to explore its possible clinical applications.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
15
|
Li Z, Li M, Xia P, Wang L, Lu Z. LncRNA FOXD3-AS1 Promotes Tumorigenesis of Glioma via Targeting miR-128-3p/ SZRD1 Axis. Cancer Manag Res 2021; 13:9037-9048. [PMID: 34916848 PMCID: PMC8666723 DOI: 10.2147/cmar.s324920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background The aim of the current study was to investigate the roles of LncRNA FOXD3-AS1 (FOXD3-AS1) in the glioma progression, and its underlying mechanism of competing endogenous RNA (ceRNA) network of FOXD3-AS1/miR-128-3p/SZRD1. Materials and Methods The FOXD3-AS1 expression and its prognostic relation were detected by bioinformatics tool. Next, glioma cell lines (HS683, U251, T98G, and SNB-19) were used to verify the FOXD3-AS1 expression. Furthermore, the roles of the FOXD3-AS1/miR-128-3p/SZRD1 axis on the glioma development in vitro and in vivo were examined. Results Bioinformatics analysis showed that FOXD3-AS1 was upregulated in the glioma and linked with poor prognosis. Consistently, FOXD3-AS1 level was overexpressed in the glioma cell lines (HS683 and U251). Subsequently, we verified that silencing of FOXD3-AS1 (si-FOXD3-AS1) restrained the cell proliferation, invasion, and tumor growth in vivo, and induced G0/G1 arrest, and promoted apoptosis. Further study also stated that FOXD3-AS1 interacted with miR-128-3p and SZRD1 was the target gene of miR-128-3p. Moreover, overexpression of miR-128-3p restrained the cell proliferation and metastasis of glioma, and reduced the SZRD1 level. Rescue assay illustrated that miR-128-3p inhibitor could reverse the suppressive impact of si-FOXD3-AS1 on the glioma progression. Similarly, SZRD1 overexpression could neutralize the influences of miR-128-3p mimic on glioma progression. Conclusion FOXD3-AS1 promoted the tumorigenesis of glioma, and exerted its function to modulate SZRD1 by targeting miR-128-3p.
Collapse
Affiliation(s)
- Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| |
Collapse
|
16
|
Yang H, Pan Y, Zhang J, Jin L, Zhang X. LncRNA FOXD3-AS1 Promotes the Malignant Progression of Nasopharyngeal Carcinoma Through Enhancing the Transcription of YBX1 by H3K27Ac Modification. Front Oncol 2021; 11:715635. [PMID: 34395290 PMCID: PMC8359730 DOI: 10.3389/fonc.2021.715635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can affect the progression of various tumors, including nasopharyngeal carcinoma (NPC). Here, lncRNA FOXD3-AS1 is highly expressed in NPC tissues through bioinformatics analysis and related to the malignant progression of NPC. METHODS Bioinformatics analysis and real-time reverse transcription quantitative PCR(RT-qPCR) assay were applied to identify the expression of FOXD3-AS1 in NPC tissues and cells. Specific short hairpin RNAs (shRNAs) or overexpression plasmids were used to knockdown or upregulate FOXD3-AS1 in NPC cells. The effect of FOXD3-AS1 on proliferation and metastasis of NPC was confirmed by CCK8, colony formation, transwell assays in vitro and mouse tumor growth and metastasis models in vivo, of which the mechanism was explored by RNA pull down, mass spectrometry (MS), RNA Immunoprecipitation (RIP), chromatin immunoprecipitation (CHIP) and luciferase assays. RESULTS FOXD3-AS1 was highly expressed in NPC tissues and cells. Knockdown of FOXD3-AS1 significantly inhibited proliferation, migration, and invasion of NPC cells in vitro and vivo. FOXD3-AS1 could specifically bind to YBX1 and have a positive effect on the expression of YBX1. Bioinformatics analysis showed that the promoter of YBX1 had a high enrichment of H3K27ac, which promote mRNA transcription and protein translation of YBX1. Moreover, overexpression of YBX1 could reverse the proliferation, migration and invasion arrest caused by FOXD3-AS1 knockdown. CONCLUSION LncRNA FOXD3-AS1 is highly expressed and promotes malignant phenotype in NPC, which may provide a new molecular mechanism for NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|