1
|
Li S, Shao Q, Qiao H. Preclinical Concomitant Toxicokinetic Study of Schisandrin B by HPLC-MS/MS. Biomed Chromatogr 2025; 39:e70068. [PMID: 40150943 DOI: 10.1002/bmc.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Schisandrin B (Sch B), a natural lignan extracted from schisandra chinesis, has exhibited various pharmacological activities including anticancer effects. However, studies on the preclinical toxicokinetic profile of Sch B have not been publicly reported. This study aimed to investigate the preclinical concomitant toxicokinetics of multiple administration of Sch B. Sch B was administered orally to rats and dogs at 150, 300, and 600 mg/kg/day and 50, 100, and 200 mg/kg/day, respectively, for 26 weeks. Plasma concentrations of Sch B were determined by a validated HPLC-MS/MS method. According to the toxicokinetic results, significant gender differences were observed in the rats, and females had higher exposures than males for each dosing group. Toxicokinetic analysis demonstrated a notable accumulation in the plasma of dogs during the repeated administration of Sch B, and the degree of accumulation increased with the increase of the dose. The findings of this study indicated that there were differences in the concomitant toxicokinetics of Sch B between rats and dogs. These results can inform clinical studies and provide valuable insights for future human Sch B risk assessments.
Collapse
Affiliation(s)
- Sanwen Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Qing Shao
- Jiangsu Center for Safety Evaluation of Drugs, Jiangsu Provincial Institute of Materia Medica, Nanjing, China
| | - Hongqun Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Jiang B, Yang J, Huang Q, Li W, Peng Q, Gan H, Peng T, Yao L, Qi L. Schisandrin B downregulates exosomal fibronectin 1 expression to inhibit hepatocellular carcinoma growth. Front Pharmacol 2025; 16:1547685. [PMID: 40223922 PMCID: PMC11986357 DOI: 10.3389/fphar.2025.1547685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction In recent years, natural compounds have attracted wide attention for the treatment of liver cancer due to their therapeutic potential and reduced toxicity. Among these, Schisandrin B (Sch B), a primary bioactive component derived from Schisandra chinensis, has shown notable antitumor activity; however, its specific mechanism remains unclear. Methods The effect of Sch B on the growth of hepatocellular carcinoma(HCC) cells were assessed using CCK-8 assay, colony formation assay and EdU assay, and apoptosis was detected by flow cytometry. The co-culture system of macrophages and HCC cells was established to detect the effect of Sch B on the cell viability and cell cycle changes of HCC cells in the co-culture system. Then, the migration of HCC cells in the co-culture system was studied using a subtoxic concentration of Sch B. Exosomes of the co-culture system with or without Sch B effect were collected for identification and protein spectrum analysis. The differential protein was analyzed by KEGG enrichment analysis and protein interaction network, which was verified by western blotting. Meanwhile, the expression changes of macrophage polarization markers were detected. Finally, the inhibitory effect of Sch B on HCC and the changes of FN1 were verified by in vivo experiments. Results Sch B inhibited HCC cell growth; moreover, it significantly suppressed HCC cell proliferation in the co-culture system and induced S-phase cell cycle arrest by downregulating CDK4, CDK2, and cyclin A2 while upregulating p27 Kip1. Additionally, Sch B inhibited the migration of HCC cells in the co-culture system.The differentially expressed protein fibronectin 1(FN1) in liver cancer patients was higher than that in healthy people. Moreover, after SchB treatment, the expression of FN1 protein in exosomes decreased and the macrophages exhibited M1 polarization. In vivo experiments also verified that Sch B inhibited HCC growth and downregulated the expression of FN1 protein in tumor tissues. Conclusion Sch B may inhibit the development of HCC by inhibiting the expression of exosomal FN1during interactions between macrophages and HCC cells.
Collapse
Affiliation(s)
- Baoyi Jiang
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
| | - Jie Yang
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
| | - Qingtian Huang
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
- Department of Pathology, The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guang Dong, China
| | - Wei Li
- Biological Sample Resource Centre, The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guang Dong, China
| | - Qian Peng
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
| | - Huoye Gan
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
| | - Tieli Peng
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
| | - Leyi Yao
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guang Dong, China
- Biological Sample Resource Centre, The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guang Dong, China
| |
Collapse
|
3
|
Alaouna M, Molefi T, Khanyile R, Chauke-Malinga N, Chatziioannou A, Luvhengo TE, Raletsena M, Penny C, Hull R, Dlamini Z. The potential of the South African plant Tulbaghia Violacea Harv for the treatment of triple negative breast cancer. Sci Rep 2025; 15:5737. [PMID: 39962120 PMCID: PMC11832780 DOI: 10.1038/s41598-025-88417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat and has a low five-year survival rate. In South Africa, a large percentage of the population still relies on traditional plant-based medicine. To establish the utility of both methanol and water-soluble extracts from the leaves of Tulbaghia violacea, cytotoxicity assays were carried out to establish the IC50 values against a TNBC cell line. Cell cycle and apoptosis assays were carried out using the extracts. To identify the molecular compounds, present in water-soluble leaf extracts, NMR spectroscopy was performed. Compounds of interest were then used in computational docking studies with the anti-apoptotic protein COX-2. The IC50 values for the water- and methanol-soluble extracts were determined to be 400 and 820 µg/mL, respectively. The water-soluble extract induced apoptosis in the TNBC cell line to a greater extent than in the normal cell line. RNAseq indicated that there was an increase in the transcription of pro-apoptotic genes in the TNBC cell line. The crude extract also caused these cells to stall in the S phase. Of the 61 compounds identified in this extract, five demonstrated a high binding affinity for COX-2. Based on these findings, the compounds within the extract show significant potential for further investigation as candidates for the development of cancer therapeutics, particularly for TNBC.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulo Molefi
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Nkhensani Chauke-Malinga
- Papillon Aesthetics, Suite 302b Netcare Linksfield Hospital, 24 12th Ave, Linksfield West, Johannesburg, 2192, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maropeng Raletsena
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemistry, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodney Hull
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| | - Zodwa Dlamini
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
4
|
Xu H, Du Z, Li Z, Liu X, Li X, Zhang X, Ma J. MUC1-EGFR crosstalk with IL-6 by activating NF-κB and MAPK pathways to regulate the stemness and paclitaxel-resistance of lung adenocarcinoma. Ann Med 2024; 56:2313671. [PMID: 38325364 PMCID: PMC10851807 DOI: 10.1080/07853890.2024.2313671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The chemotherapy resistance often leads to chemotherapy failure. This study aims to explore the molecular mechanism by which MUC1 regulates paclitaxel resistance in lung adenocarcinoma (LUAD), providing scientific basis for future target selection. METHODS The bioinformatics method was used to analyse the mRNA and protein expression characteristics of MUC1 in LUAD. RT-qPCR and ELISA were used to detect the mRNA and protein expression, flow cytometry was used to detect CD133+ cells, and cell viability was detected by CCK-8 assay. The mRNA-seq was performed to analyse the changes in expression profile, GO and KEGG analysis were used to explore the potential biological functions. RESULTS MUC1 is highly expressed in LUAD patients and is associated with a higher tumour infiltration. In paclitaxel resistance LUAD cells (A549/TAX cells), the expression of MUC1, EGFR/p-EGFR and IL-6 were higher than that of A549 cells, the proportion of CD133+ cells was significantly increased, and the expression of cancer stem cell (CSCs) transcription factors (NANOG, OCT4 and SOX2) were significantly up-regulated. After knocking down MUC1 in A549/Tax cells, the activity of A549/Tax cells was significantly decreased. Correspondingly, the expression of EGFR, IL-6, OCT4, NANOG, and SOX2 were significantly down-regulated. The mRNA-seq showed that knocking down MUC1 affected the gene expression, DEGs mainly enriched in NF-κB and MAPK signalling pathway. CONCLUSION MUC1 was highly expressed in A549/TAX cells, and MUC1-EGFR crosstalk with IL-6 may be due to the activation of NF-κB and MAPK pathways, which promote the enrichment of CSCs and lead to paclitaxel resistance.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Zedong Du
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, Sichuan, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xueting Li
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Xuan Zhang
- Science and Education Department, 363 Hospital, Chengdu, Sichuan, P.R. China
| | - Jiayu Ma
- Department of Oncology, 363 Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
5
|
Xu Z, Zhou M, Feng Y, Han Z, Li Y, Yang G, Wang X, Zhang K, Liu S. Fe(III)-Triggered Radical Arylation of Arene Moieties from Cyclopropanols to Construct Dibenzocyclohepta/octanones: Synthesis of N-Acetylcolchinol- O-methyl ether. Org Lett 2024; 26:6950-6954. [PMID: 38980313 DOI: 10.1021/acs.orglett.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tricyclic 6-7-6 and 6-8-6 carbon ring systems are present in numerous biologically active natural molecules. However, simple and efficient synthetic approaches to these scaffolds remain challenging. Herein, we report a versatile strategy for constructing these ring systems via Fe(NO3)3-triggered radical arylation of arenes starting from cyclopropanols. This synthetic utility has been demonstrated in the synthesis of the natural product N-acetylcolchinol-O-methyl ether.
Collapse
Affiliation(s)
- Zelin Xu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Meichen Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuer Feng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziyu Han
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yaoyao Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Xin Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Co V, El-Nezami H, Liu Y, Twum B, Dey P, Cox PA, Joseph S, Agbodjan-Dossou R, Sabzichi M, Draheim R, Wan MLY. Schisandrin B Suppresses Colon Cancer Growth by Inducing Cell Cycle Arrest and Apoptosis: Molecular Mechanism and Therapeutic Potential. ACS Pharmacol Transl Sci 2024; 7:863-877. [PMID: 38481680 PMCID: PMC10928902 DOI: 10.1021/acsptsci.4c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 11/15/2024]
Abstract
Colon cancer is among the most lethal and prevalent malignant tumors in the world, and the lack of effective therapies highlights the need for novel therapeutic approaches. Schisandrin B (Sch B), a lignan extracted from the fruit ofSchisandra chinensis, has been reported for its anticancer properties. However, to date, no studies have been done to characterize the exact molecular mechanisms underlying the antitumorigenic effects of Sch B in colon cancer. This study aimed to explore the antitumorigenic effects of Sch B in colon cancer and to understand the underlying therapeutic mechanism. A comprehensive analysis of the molecular mechanism underlying the antitumorigenic effects of Sch B on human colon cancer cells was performed using a combination of Raman spectroscopy, RNA-seq, computational docking, and molecular biological experiments. The in vivo efficacy was evaluated by a mouse xenograft model. Sch B reduced cell proliferation and triggered apoptosis in human colon cancer cell lines. Raman spectroscopy, computational, RNA-seq, and molecular and cellular studies revealed that Sch B activated unfolded protein responses by interacting with CHOP and upregulating CHOP, which thereby induced apoptosis. CHOP knockdown alleviated the Sch B-induced reduction in cell viability and apoptosis. Sch B reduced colon tumor growth in vivo. Our findings demonstrated that Sch B induced apoptosis and inhibited cell proliferation and tumor growth in vitro and in vivo. These results provided an essential background for clinical trials examining the effects of Sch B in patients with colon cancer.
Collapse
Affiliation(s)
- Vanessa
Anna Co
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
| | - Hani El-Nezami
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Yawen Liu
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Bonsra Twum
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Priyanka Dey
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A. Cox
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Shalu Joseph
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roland Agbodjan-Dossou
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Mehdi Sabzichi
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roger Draheim
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Murphy Lam Yim Wan
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
- Division
of Microbiology, Immunology and Glycobiology, Department of Laboratory
Medicine, Faculty of Medicine, Lund University, 222 42 Lund, Sweden
| |
Collapse
|
7
|
Gao X, Lin Y, Huang X, Lu C, Luo W, Zeng D, Li Y, Su T, Liang R, Ye J. Comprehensive analysis of the role of Netrin G1 (NTNG1) in hepatocellular carcinoma cells. Eur J Pharmacol 2024; 963:176262. [PMID: 38101695 DOI: 10.1016/j.ejphar.2023.176262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Netrin G1 (NTNG1) is a member of the Netrin family and plays a crucial role in various human cancers. However, the molecular functions of NTNG1 in HCC and the underlying mechanisms remain unclear. HCC expression data was obtained from the GEO database and analyzed using various bioinformatics tools. The expression of NTNG1 in HCC tissues and liver cancer cells was evaluated through RT-qPCR and western blotting. Cells with stable NTNG1 overexpression and knockdown were established, and CCK-8, colony formation, and flow cytometry assays were conducted in vitro. The xenograft model was utilized to verify the tumorigenesis capacity of NTNG1 in vivo. IHC was employed to analyze the expression of NTNG1 and CD163 proteins. HCC-specific genes were screened, followed by functional enrichment and immune cell infiltration analysis. Finally, the Co-IP was used to detect the interaction between NTNG1 and N-cadherin. NTNG1 was highly expressed in HCC tissues and liver cancer cells, and associated with significantly poorer OS rates. In addition, NTNG1 overexpression in liver cancer cells significantly increased their proliferation, colony growth, invasion, migration, and EMT, while inhibiting apoptosis. Bioinformatics analyses indicated that NTNG1 was closely related to EMT and tumor infiltration. IHC staining revealed a positive correlation between NTNG1 expression and CD163 in HCC tissues. Additionally, an EMT inhibitor attenuated the expression levels of EMT-related markers and counteracted the effects of NTNG1 overexpression in liver cancer cells. This study is the first to identify NTNG1 as a potential therapeutic target in HCC, promoting tumor development and progression by regulating EMT.
Collapse
Affiliation(s)
- Xing Gao
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Yan Lin
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xi Huang
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Wenfeng Luo
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Dandan Zeng
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Yongqiang Li
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Tingshi Su
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Rong Liang
- Department of Medical Oncology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
| |
Collapse
|
8
|
Chang CM, Liang TR, Lam HYP. The Use of Schisandrin B to Combat Triple-Negative Breast Cancers by Inhibiting NLRP3-Induced Interleukin-1β Production. Biomolecules 2024; 14:74. [PMID: 38254674 PMCID: PMC10813220 DOI: 10.3390/biom14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal breast cancer subtype. Nowadays, chemotherapy remains the standard treatment of TNBC, and immunotherapy has emerged as an important alternative. However, the high rate of TNBC recurrence suggests that new treatment is desperately needed. Schisandrin B (Sch B) has recently revealed its anti-tumor effects in cancers such as cholangiocarcinoma, hepatoma, glioma, and multi-drug-resistant breast cancer. However, there is still a need to investigate using Sch B in TNBC treatment. Interleukin (IL)-1β, an inflammatory cytokine that can be expressed and produced by the cancer cell itself, has been suggested to promote BC proliferation and progression. In the current study, we present evidence that Sch B can significantly suppress the growth, migration, and invasion of TNBC cell lines and patient-derived TNBC cells. Through inhibition of inflammasome activation, Sch B inhibits interleukin (IL)-1β production of TNBC cells, hindering its progression. This was confirmed using an NLRP3 inhibitor, OLT1177, which revealed a similar beneficial effect in combating TNBC progression. Sch B treatment also inhibits IL-1β-induced EMT expression of TNBC cells, which may contribute to the anti-tumor response.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970374, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
9
|
Liu W, Li F, Guo D, Du C, Zhao S, Li J, Yan Z, Hao J. Schisandrin B Alleviates Renal Tubular Cell Epithelial-Mesenchymal Transition and Mitochondrial Dysfunction by Kielin/Chordin-like Protein Upregulation via Akt Pathway Inactivation and Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase Pathway Activation in Diabetic Kidney Disease. Molecules 2023; 28:7851. [PMID: 38067580 PMCID: PMC10708382 DOI: 10.3390/molecules28237851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular cell (RTC) epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction in db/db mice, accompanied by the downregulation of TGF-β1 and the upregulation of PGC-1α. Similarly, Sch B demonstrated a protective effect by reducing the expression of TGF-β1, α-SMA, fibronectin, and Col I, meanwhile enhancing the expression of E-cadherin in human RTCs (HK2 cells) stimulated with high glucose. Moreover, under high glucose conditions, Sch B effectively increased mitochondrial membrane potential, lowered ROS production, and increased the ATP content in HK2 cells, accompanied by the upregulation of PGC-1α, TFAM, MFN1, and MFN2. Mechanistically, the RNA-seq results showed a significant increase in KCP mRNA levels in HK2 cells treated with Sch B in a high glucose culture. The influence of Sch B on KCP mRNA levels was confirmed by real-time PCR in high glucose-treated HK2 cells. Depletion of the KCP gene reversed the impact of Sch B on TGF-β1 and PGC-1α in HK2 cells with high glucose level exposure, whereas overexpression of the KCP gene blocked EMT and mitochondrial dysfunction. Furthermore, the PI3K/Akt pathway was inhibited and the AMPK pathway was activated in HK2 cells exposed to a high concentration of glucose after the Sch B treatment. Treatment with the PI3K/Akt pathway agonist insulin and the AMPK pathway antagonist compound C attenuated the Sch B-induced KCP expression in HK2 cells exposed to a high level of glucose. Finally, molecular autodock experiments illustrated that Sch B could bind to Akt and AMPK. In summary, our findings suggested that Sch B could alleviate RTC EMT and mitochondrial dysfunction by upregulating KCP via inhibiting the Akt pathway and activating the AMPK pathway in DKD.
Collapse
Affiliation(s)
- Weilin Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
- Department of Infectious Diseases, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Dongwei Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Congyuan Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Juan Li
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhe Yan
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China (D.G.)
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
10
|
Zhang Y, Wang P, Jin MX, Zhou YQ, Ye L, Zhu XJ, Li HF, Zhou M, Li Y, Li S, Liang KY, Wang Y, Gao Y, Pan MX, Zhou SQ, Peng Q. Schisandrin B Improves the Hypothermic Preservation of Celsior Solution in Human Umbilical Cord Mesenchymal Stem Cells. Tissue Eng Regen Med 2023; 20:447-459. [PMID: 36947320 PMCID: PMC10219924 DOI: 10.1007/s13770-023-00531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising therapy for immune and inflammatory diseases. However, how to maintain the activity and unique properties during cold storage and transportation is one of the key factors affecting the therapeutic efficiency of hUCMSCs. Schisandrin B (SchB) has many functions in cell protection as a natural medicine. In this study, we investigated the protective effects of SchB on the hypothermic preservation of hUCMSCs. METHODS hUCMSCs were isolated from Wharton's jelly. Subsequently, hUCMSCs were exposed to cold storage (4 °C) and 24-h re-warming. After that, cells viability, surface markers, immunomodulatory effects, reactive oxygen species (ROS), mitochondrial integrity, apoptosis-related and antioxidant proteins expression level were evaluated. RESULTS SchB significantly alleviated the cells injury and maintained unique properties such as differentiation potential, level of surface markers and immunomodulatory effects of hUCMSCs. The protective effects of SchB on hUCMSCs after hypothermic storage seemed associated with its inhibition of apoptosis and the anti-oxidative stress effect mediated by nuclear factor erythroid 2-related factor 2 signaling. CONCLUSION These results demonstrate SchB could be used as an agent for hypothermic preservation of hUCMSCs.
Collapse
Affiliation(s)
- Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Mei-Xian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ying-Qi Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao-Juan Zhu
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Hui-Fang Li
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Ming Zhou
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Kang-Yan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ming-Xin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shu-Qin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
11
|
Liang Z, Zhang Y, Xu Y, Zhang X, Wang Y. Hesperidin inhibits tobacco smoke-induced pulmonary cell proliferation and EMT in mouse lung tissues via the p38 signaling pathway. Oncol Lett 2023; 25:30. [PMID: 36589667 PMCID: PMC9773313 DOI: 10.3892/ol.2022.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Tobacco smoke (TS) is the major cause of lung cancer. The abnormal proliferation and epithelial-mesenchymal transition (EMT) of lung cells promote occurrence and development of lung cancer. The p38 pathway intervenes in this cancer development. Hesperidin also serves a role in human health and disease prevention. The roles of p38 in TS-mediated abnormal cell proliferation and EMT, and the hesperidin intervention thereof are not yet understood. In the present study, it was demonstrated that TS upregulated proliferating cell nuclear antigen, vimentin and N-cadherin expression, whereas it downregulated E-cadherin expression, as assessed using western blotting and reverse transcription-quantitative PCR. Furthermore, it was observed that inhibition of the p38 pathway inhibit TS-induced proliferation and EMT. Hesperidin treatment prevented the TS-induced activation of the p38 pathway, EMT and cell proliferation in mouse lungs. The findings of the present study may provide insights into the pathogenesis of TS-related lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yanan Wang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
12
|
Zhang M, Wang Y, Amin A, Khan MA, Yu Z, Liang C. Network Pharmacology Analysis of Bioactive Components and Mechanisms of Action of Qi Wei Wan Formula for Treating Non-Small Cell Lung Carcinoma. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Astragali Radix (AR) and Schisandrae chinensis Fructus (SCF) have been used individually and in traditional Chinese medicine (TCM) formulas for treating non-small cell lung carcinoma (NSCLC). Qi Wei Wan (QWW), a 2-herb TCM formula composed of AR and SCF, is used to treat blood deficiency, fatigue, and metabolic abnormalities. We speculate that QWW may be more effective in treating NSCLC than AR or SCF alone. We identified 28 bioactive compounds in QWW and 322 targets of these compounds from databases. Network pharmacology analysis was used to identify 248 putative NSCLC-related gene targets of the bioactive compounds in QWW. Common target genes were analyzed to build protein–protein interaction networks. Implicated biological functions and pathways (p53, PI3K-Akt, etc) were identified by Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. Molecular docking of core target proteins with the key active compounds was also performed. This study identified the potential gene targets and mechanisms involved in the anti-NSCLC effects of QWW.
Collapse
Affiliation(s)
- Minghe Zhang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ye Wang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aftab Amin
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
13
|
Fu Z, Wang X, Lu X, Yang Y, Zhao L, Zhou L, Wang K, Fu H. Mannose-decorated ginsenoside Rb1 albumin nanoparticles for targeted anti-inflammatory therapy. Front Bioeng Biotechnol 2022; 10:962380. [PMID: 36046677 PMCID: PMC9420840 DOI: 10.3389/fbioe.2022.962380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Ginsenoside Rb1 is a potential anti-inflammatory natural molecule, but its therapeutic efficacy was tremendously hampered by the low solubility and non-targeted delivery. In this study, we innovatively developed a mannose (Man)-modified albumin bovine serum albumin carrier (Man-BSA) to overcome the previously mentioned dilemmas of Rb1. The constructed Man-BSA@Rb1 NPs could improve the solubility and increase the cellular uptake of Rb1, finally leading to the enhanced anti-inflammatory effects. The robust therapeutics of Man-BSA@Rb1 NPs were measured in terms of nitrite, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels, which might be achieved by potently inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide (LPS)-induced Raw264.7 cells. Moreover, the therapeutic efficacy of Man-BSA@Rb1 NPs was further confirmed in the d-Gal/LPS-induced liver injury model. The results indicated that Man-BSA may offer a promising system to improve the anti-inflammatory therapy of Rb1.
Collapse
Affiliation(s)
- Zhihui Fu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Lu
- School of Pharmacy and Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ying Yang
- School of Pharmacy and Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Lingling Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaikai Wang
- School of Pharmacy and Affiliated Hospital of Nantong University, Nantong University, Nantong, China
- *Correspondence: Kaikai Wang, ; Hanlin Fu,
| | - Hanlin Fu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kaikai Wang, ; Hanlin Fu,
| |
Collapse
|
14
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Yumin S, Jun W, Heng Y. Therapeutic potential of naturally occurring lignans as anticancer agents. Curr Top Med Chem 2022; 22:1393-1405. [PMID: 35546769 DOI: 10.2174/1568026622666220511155442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Cancer as a long-lasting and dramatic pandemic affects almost a third of the human being worldwide. At present, chemotherapy is the main clinical treatment strategy, but it is difficult to achieve satisfactory efficacy due to drug resistance and side effects. Natural products are becoming increasingly popular in cancer therapy due to their potent broad-spectrum anticancer potency and slight side effects. Lignans are complex diphenolic compounds, comprising a family of secondary metabolites existing widely in plants. Naturally occurring lignans have the potential to act on cancer cells by a range of mechanisms of action and could inhibit the colony formation, arrest the cell cycle in different phases, induce apoptosis, and suppress migration, providing privileged scaffolds for the discovery of novel anticancer agents. In recent five years, a variety of naturally occurring lignans were isolated and screened for their in vitro and/or in vivo anticancer efficacy, and some of them exhibited promising potential. This review has systematically summarized the resources, anticancer activity, and mechanisms of action of naturally occurring lignans, covering articles published between January 2017 and January 2022.
Collapse
Affiliation(s)
- Shi Yumin
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Wang Jun
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Yan Heng
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430070, PR China
| |
Collapse
|
16
|
Schisandrin B Attenuates Hepatic Stellate Cell Activation and Promotes Apoptosis to Protect against Liver Fibrosis. Molecules 2021; 26:molecules26226882. [PMID: 34833975 PMCID: PMC8620732 DOI: 10.3390/molecules26226882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The activation of hepatic stellate cells (HSC) plays a key role in the progression of hepatic fibrosis, it is essential to remove activated HSC through apoptosis to reverse hepatic fibrosis. Schisandrin B (Sch B) is the main chemical component of schisandrin lignan, and it has been reported to have good hepatoprotective effects. However, Schisandrin B on HSC apoptosis remains unclear. In our study, we stimulated the HSC-T6 and LX-2 cell lines with TGF-β1 to induce cell activation, and the proliferation and apoptosis of the activated HSC-T6 and LX-2 cells were detected after treatment with different doses of Schisandrin B. Flow cytometry results showed that Sch B significantly reduced the activity of activated HSC-T6 and LX-2 cells and significantly induced apoptosis. In addition, the cleaved-Caspase-3 levels were increased, the Bax activity was increased, and the Bcl-2 expression was decreased in HSC-T6 and LX-2 cells treated with Sch B. Our study showed that Sch B inhibited the TGF-β1-induced activity of hepatic stellate cells by promoting apoptosis.
Collapse
|