1
|
Malviya A, Bhuyan R. Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas. Discov Oncol 2025; 16:5. [PMID: 39755870 DOI: 10.1007/s12672-025-01743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025] Open
Abstract
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets. Our study analyses the reported circRNAs in the mentioned malignancies, examining their nature, functions, targets, origins, and contributions as tumor enhancers or suppressors. The approach involved assessing full-text reports on PMC, utilizing keywords such as "CircRNA" and "Cancer types," coupled with bioinformatics, experimental assays, or clinical investigations. Exclusions encompassed non-English publications, conference abstracts, letters, and expert opinions. The findings unveil 577 identified circRNAs across these cancer types: 124 in CRC, 177 in GC, 93 in HCC, and 183 in LUAD. Mechanistic insights into how circRNAs modulate gene expression in cancer are explored, particularly their interactions with microRNAs and RNA-binding proteins. Dysregulation of circRNAs across various cancers and their potential as diagnostic and prognostic indicators are synthesized. The exploration extends to the potential of targeting circRNAs as a novel cancer therapy strategy, either through inhibiting oncogenic circRNAs or reinstating tumor-suppressive ones. This article discusses the challenges and prospects in harnessing circRNAs for cancer diagnostics and therapies. These comprehensive analyses hold promise for advancing cancer research and fostering the development of innovative therapies and diagnostics.
Collapse
Affiliation(s)
- Ayushi Malviya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India
| | - Rajabrata Bhuyan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
| |
Collapse
|
2
|
Zhao X, Xing X, Wu Y. CircSFMBT2 Plays an Oncogenic Role in Lung Adenocarcinoma Depending on the miR-1305/SALL4 Axis. Biochem Genet 2024; 62:3485-3503. [PMID: 38127171 DOI: 10.1007/s10528-023-10611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Circular RNAs (circRNAs) exhibit significant functions in diverse malignant tumors, including lung adenocarcinoma (LUAD). In this study, we aimed to elucidate the role of circRNA scm like with four mbt domains 2 (circSFMBT2) in LUAD. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay was performed for quantification of circSFMBT2, microRNA-1305 (miR-1305), spalt like transcription factor 4 (SALL4), proliferating Cell Nuclear Antigen (PCNA) or Ki-67. 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay and flow cytometry analysis were applied to analyze cell proliferation, metastasis and apoptosis, respectively. Mouse xenograft model was established to explore the function of circSFMBT2. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to estimate the relationship between miR-1305 and circSFMBT2 or SALL4. CircSFMBT2 was upregulated in LUAD and related to advanced TNM stage and poor prognosis. CircSFMBT2 knockdown suppressed cell proliferation, metastasis, glycolysis and induced apoptosis in LUAD cells in vitro as well as tumor formation in vivo. CircSFMBT2 directly targeted miR-1305, and miR-1305 inhibition reversed circSFMBT2 knockdown-mediated inhibitory effects on LUAD malignant behaviors. SALL4 was the target gene of miR-1305. MiR-1305 overexpression repressed the malignant phenotypes of LUAD cells, while SALL4 enhancement abated the effects. CircSFMBT2 aggravated the progression of LUAD by the miR-1305/SALL4 axis, which might provide a diagnostic and prognostic marker for LUAD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China
| | - Xiaojing Xing
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China
| | - Yongkai Wu
- Department of Hematology and Breast Medicine, Cancer Hospital of China Medical University, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China.
| |
Collapse
|
3
|
Zhang L, Zhang L, Zhang C, Shi S, Cao Z, Shao C, Li J, Yang Y, Zhang X, Wang J, Li X. circTADA2A inhibited SLC38A1 expression and suppresses melanoma progression through the prevention of CNBP trans-activation. PLoS One 2024; 19:e0301356. [PMID: 38635778 PMCID: PMC11025954 DOI: 10.1371/journal.pone.0301356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.
Collapse
Affiliation(s)
- Longjun Zhang
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Le Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Chi Zhang
- Department of Cataract, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Sunan Shi
- Department of Otolaryngology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Zhilei Cao
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Changliang Shao
- Department of Optometry, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jie Li
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Yingshun Yang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xi Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jian Wang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiangyun Li
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| |
Collapse
|
4
|
Zhang W, Xiao P, Liu B, Zhang Y. Circ-10720 as a ceRNA adsorbs microRNA-1238 and modulates ZEB2 to boost NSCLC development by activating EMT. Eur J Med Res 2024; 29:226. [PMID: 38610009 PMCID: PMC11010388 DOI: 10.1186/s40001-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are critical regulators in the progression of tumors. This experimental design aimed to explore the mechanism of circ-10720 in non-small cell lung cancer (NSCLC). METHODS We used RT-qPCR to measure circ-10720 expression in clinical samples and analyzed its relationship with the clinicopathological characteristics of NSCLC patients. The expression levels of microRNA-1238 (miR-1238) and Zinc Finger E-box-binding Homeobox 2 (ZEB2) in clinical samples were detected by RT-qPCR. NSCLC cells were transfected with relevant plasmids or sequences. Circ-10720, miR-1238, and ZEB2 expressions in cells were analyzed via RT-qPCR or western blot. Cell proliferation, apoptosis, migration, and invasion were assessed with CCK-8, flow cytometry, and transwell assay, respectively. The protein expression of ZEB2 and epithelial-mesenchymal transition (EMT)-related markers (E-cadherin, Vimentin, N-cadherin) were detected via western blot. Xenograft assay was used to determine the effect of circ-10720 on NSCLC in vivo. Circ-10720 and ZEB2 expressions in tumors were detected using RT-qPCR or Western blot. Immunohistochemistry was used to evaluate E-cadherin and N-cadherin expression in tumors. Finally, the binding relationship between miR-1238 with circ-10720 or ZEB2 was verified by the bioinformatics website, dual luciferase reporter assay, RNA pull-down assay, and RIP assay. RESULTS Circ-10720 was upregulated in NSCLC and correlated with TNM stage of NSCLC patients. MiR-1238 was lowly expressed but ZEB2 was highly expressed in NSCLC. Circ-10720 silencing suppressed the proliferation, metastasis, and EMT of NSCLC cells. Mechanically, circ-10720 was a competitive endogenous RNA (ceRNA) for miR-1238, and ZEB2 was a target of miR-1238. circ-10720-modulated ZEB2 via competitively binding with miR-1238 to control NSCLC progression. In addition, circ-10720 knockdown suppressed tumor growth in vivo. CONCLUSIONS Circ-10720 acts as a ceRNA to adsorb miR-1238 and modulate ZEB2 to facilitate the proliferation, migration, invasion, and EMT of NSCLC cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, Sichuan, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, Sichuan, China.
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Malviya A, Bhuyan R. The recent advancements in circRNA research: From biogenesis to therapeutic interventions. Pathol Res Pract 2023; 248:154697. [PMID: 37506629 DOI: 10.1016/j.prp.2023.154697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Circular RNAs (circRNAs) belong to the genre of long non-coding RNAs that are formed by special back-splicing events and are currently the molecule of interest for studies globally due their involvement in various ailments like diabetes, neurodegenerative disorders, cardio-vascular diseases and cancers. These class of highly stable RNAs participate in diverse cellular functionalities including microRNA (miRNA) sponging, ceRNA (competing endogenous RNA) activity or via exhibiting RNA binding protein (RBP) interactions. They are also known to regulate cancer progression both positively and negatively through various biological pathways such as, modulating the cell cycle and apoptotic pathways, epigenetic regulation, and translational and/or transcriptional regulations etc. Given its significance, a variety of computational tools and dedicated databases have been created for the identification, quantification, and differential expression of such RNAs in combination with sequencing approaches. In this review, we provide a comprehensive analysis of the numerous computational tools, pipelines, and online resources developed in recent years for the detection and annotation of circRNAs. We also summarise the most recent findings regarding the characteristics, functions, biological processes, and involvement of circRNAs in diseases. The review emphasises the significance of circRNAs as potential disease biomarkers and new treatment targets.
Collapse
Affiliation(s)
- Ayushi Malviya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Rajabrata Bhuyan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India.
| |
Collapse
|
6
|
Zhang Y, Qi W, Wu Y. EIF4A3-induced circular RNA SCAP facilitates tumorigenesis and progression of non-small-cell lung cancer via miR-7/SMAD2 signaling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65237-65249. [PMID: 37079240 PMCID: PMC10182944 DOI: 10.1007/s11356-023-26307-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
The eukaryotic translation initiation factor 4A (eIF4A) family determines transcription efficiency by directly binding to precursor RNAs. One member, EIF4A3, modulates the expression of circRNAs. Circular RNA SCAP (circSCAP), a newly found circRNA, has been implicated in atherosclerosis. Yet, how circSCAP regulates cancer development and progression remains understudied. Here, we investigated the function of circSCAP and the molecular mechanism in the tumorigenesis and progression of non-small-cell lung cancer (NSCLC). CircSCAP was upregulated in both NSCLC tissues and cell lines and was mainly located in the cytoplasm. CircSCAP expression was promoted by EIF4A3, which was associated with poor prognosis in patients with NSCLC. CircSCAP sponged miR-7 to upregulate small mothers against decapentaplegic 2 (SMAD2). CircSCAP knockdown undermined cell proliferation, migration, and invasion abilities in NSCLC cell lines (SPCA1 and A549), which was rescued by either inhibiting miR-7 or overexpressing SMAD2. Moreover, circSCAP knockdown upregulated E-cadherin, while downregulating N-cadherin, Vimentin, and MMP9 in SPCA1 and A549 cells, which were abolished by either inhibiting miR-7 or overexpressing SMAD2. Additionally, miR-7 was markedly downregulated, whereas SMAD2 was significantly upregulated in NSCLC tissues. MiR-7 expression was inversely correlated with circSCAP and SMAD2 expression in NSCLC tissues. In conclusion, this study demonstrates that circSCAP is significantly upregulated in NSCLC cell lines and tissues and elucidates that circSCAP facilitates NSCLC progression by sponging miR-7 and upregulating SMAD2. The study provides a novel molecular target for early diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Yingqing Zhang
- Department of Respiratory, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, People's Republic of China
- Jiaxing Key Laboratory of Precision Treatment for Lung Cancer, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Yonglei Wu
- Department of Respiratory, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Hasheminasabgorji E, Mishan MA, Tabari MAK, Bagheri A. miR-638: A Promising Cancer Biomarker with Therapeutic Potential. Curr Mol Med 2023; 23:377-389. [PMID: 35382724 DOI: 10.2174/1566524022666220405125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is an unmet need to improve the diagnosis of cancer with precise treatment strategies. Therefore, more powerful diagnostic, prognostic, and therapeutic biomarkers are needed to overcome tumor cells. microRNAs (miRNAs, miRs), as a class of small non-coding RNAs, play essential roles in cancer through the tumor-suppressive or oncogenic effects by post-transcriptional regulation of their targets. Many studies have provided shreds of evidence on aberrantly expressed miRNAs in numerous cancers and have shown that miRNAs could play potential roles as diagnostic, prognostic, and even therapeutic biomarkers in patients with cancers. Findings have revealed that miR-638 over or underexpression might play a critical role in cancer initiation, development, and progression. However, the mechanistic effects of miR-638 on cancer cells are still controversial. CONCLUSION In the present review, we have focused on the diagnostic, prognostic, and therapeutic potentials of miR-638 and discussed its mechanistic roles in various types of cancers.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Zhu J, Wang F, Weng Y, Zhao J. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer 2022; 13:3007-3017. [PMID: 36148757 PMCID: PMC9626310 DOI: 10.1111/1759-7714.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Exosomes can carry various kinds of RNAs to mediate intercellular communication. Circular RNA (circRNA) special AT-rich sequence-binding protein 2 (circSATB2) was identified as an oncogene in lung cancer. This study was performed to explore the association of circSATB2 with exosomes and the regulatory mechanism of circSATB2. Exosomes could transmit circSATB2 into lung cancer cells. Exosomes enhanced cell proliferation, invasion, and migration by carrying circSATB2. Exosomal circSATB2 abrogated the inhibitory effect of short hairpin (sh)-circSATB2 on lung cancer progression. Moreover, circSATB2 promoted tumor growth in vivo via exosomes. CircSATB2 interacted with microRNA-330-5p (miR-330-5p) and miR-330-5p targeted pseudopodium enriched atypical kinase 1 (PEAK1). In addition, circSATB2 affected the PEAK1 level via sponging miR-330-5p in lung cancer cells. All results suggested that exosomal transfer of circSATB2 contributed to the malignant development of lung cancer by acting as a sponge of miR-330-5p to upregulate PEAK1.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow UniversityMedical College of Soochow UniversitySuzhouChina
| | - Fudong Wang
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Yuan Weng
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow UniversityMedical College of Soochow UniversitySuzhouChina,Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
9
|
Piscopo P, Manzini V, Rivabene R, Crestini A, Le Pera L, Pizzi E, Veroni C, Talarico G, Peconi M, Castellano AE, D’Alessio C, Bruno G, Corbo M, Vanacore N, Lacorte E. A Plasma Circular RNA Profile Differentiates Subjects with Alzheimer's Disease and Mild Cognitive Impairment from Healthy Controls. Int J Mol Sci 2022; 23:ijms232113232. [PMID: 36362022 PMCID: PMC9658433 DOI: 10.3390/ijms232113232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The most frequently used biomarkers to support the diagnosis of Alzheimer’s Disease (AD) are Aβ42, total-Tau, and phospho-tau protein levels in CSF. Moreover, magnetic resonance imaging is used to assess hippocampal atrophy, 18F-FDG PET to identify abnormal brain metabolism, and PET imaging for amyloid deposition. These tests are rather complex and invasive and not easily applicable to clinical practice. Circulating non-coding RNAs, which are inherently stable and easy to manage, have been reported as promising biomarkers for central nervous system conditions. Recently, circular RNAs (circRNAs) as a novel class of ncRNAs have gained attention. We carried out a pilot study on five participants with AD and five healthy controls (HC) investigating circRNAs by Arraystar Human Circular RNA Microarray V2.0. Among them, 26 circRNAs were differentially expressed (FC ≥ 1.5, p < 0.05) in participants with AD compared to HC. From a top 10 of differentially expressed circRNAs, a validation study was carried out on four up-regulated (hsa_circRNA_050263, hsa_circRNA_403959, hsa_circRNA_003022, hsa_circRNA_100837) and two down-regulated (hsa_circRNA_102049, hsa_circRNA_102619) circRNAs in a larger population. Moreover, five subjects with mild cognitive impairment (MCI) were investigated. The analysis confirmed the upregulation of hsa_circRNA_050263, hsa_circRNA_403959, and hsa_circRNA_003022 both in subjects with AD and in MCI compared to HCs. We also investigated all microRNAs potentially interacting with the studied circRNAs. The GO enrichment analysis shows they are involved in the development of the nervous system, and in the cellular response to nerve growth factor stimuli, protein phosphorylation, apoptotic processes, and inflammation pathways, all of which are processes related to the pathology of AD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
- Correspondence:
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
- EBRI Rita Levi-Montalcini Foundation, 00161 Rome, RM, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Loredana Le Pera
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Elisabetta Pizzi
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | - Martina Peconi
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | | | - Carmelo D’Alessio
- Department of Neurology, IRCCS Neuromed Institute, 86077 Pozzilli, IS, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, MI, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention ad Heath Promotion, Istituto Superiore di Sanità, 00162 Rome, RM, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention ad Heath Promotion, Istituto Superiore di Sanità, 00162 Rome, RM, Italy
| |
Collapse
|
10
|
Sang C, Rao D, Wu C, Xia Y, Si M, Tang Z. Role of circular RNAs in the diagnosis, regulation of drug resistance and prognosis of lung cancer (Review). Oncol Lett 2022; 24:302. [PMID: 35949591 PMCID: PMC9353231 DOI: 10.3892/ol.2022.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors in China and is the highest cause of mortality among male and female patients, both in urban and rural areas. A subset of patients with lung cancer only display chest tightness without any other obvious symptoms. This is because most symptoms do not manifest during the early stages of disease development. Consequently, most patients with lung cancer are diagnosed when the disease is in the advanced stages, when they are already unfit for surgical treatment. Furthermore, the prognosis of patients with lung cancer is poor. The 5-year survival rate of patients with stage IA lung cancer is 85%, compared with 6% in those with stage IV. This requires the development of strategies for early diagnosis, treatment and prognosis to improve the management of lung cancer. Circular RNAs (circRNAs) belong to a class of closed circular non-coding RNAs formed by reverse splicing of a precursor mRNA. These RNAs are highly stable, ubiquitously expressed, conserved, and show high specificity. CircRNAs regulate biological processes, such as the proliferation, differentiation and invasion of lung cancer cells. Therefore, they can be used as biomarkers for the early diagnosis and prognosis prediction of lung cancer, as well as novel targets for therapy design. In the present review, the biological characteristics and functions of circRNAs, as well as their application in the diagnosis, control of drug resistance and effect on the prognosis of patients with lung cancer, will be discussed.
Collapse
Affiliation(s)
- Chengpeng Sang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Dingyu Rao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Caixia Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yao Xia
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Maoyan Si
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
11
|
Abuduwaili K, Zhu X, Shen Y, Lu S, Liu C. circ_0008797 attenuates non-small cell lung cancer proliferation, metastasis, and aerobic glycolysis by sponging miR-301a-3p/SOCS2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1697-1710. [PMID: 35305058 DOI: 10.1002/tox.23518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE This paper firstly reported the exact function of circ_0008797 on non-small cell lung cancer (NSCLC) progression. METHODS NSCLC tissues/matched normal tissues were harvested from 88 NSCLC patients. RNA fluorescence in situ hybridization experiment was applied to detect circ_0008797 localization in NSCLC cells. circ_0008797 effect on NSCLC cells proliferation, migration, invasion, glucolysis, and apoptosis was researched by cell counting kit-8 assay, 5-ethynyl-2'deoxyuridine assay, Transwell experiment, glycolysis assay, and TUNEL assay. Dual luciferase reporter gene assay, RNA pull-down assay and RNA immunoprecipitation assay were used to verify the binding relationship between two genes. In vivo tumorigenesis and lung metastasis was performed using nude mice. Quantitative reverse transcription-polymerase chain reaction, immunohistochemistry and western blot were applied for genes expression detection. Hematoxylin and eosin staining was performed on lung tissues. RESULTS circ_0008797 was low expressed in NSCLC tissues and cell lines, associating with poor outcome (p <.05). circ_0008797 was mainly expressed in NSCLC cells cytoplasm. circ_0008797 inhibited proliferation, migration, invasion, and glycolysis, but enhanced apoptosis of NSCLC cells (p <.05). circ_0008797 attenuated malignant phenotype of NSCLC cells by sponging miR-301a-3p. circ_0008797 facilitated SOCS2 expression by sponging miR-301a-3p. SOCS2 knockdown partially reversed the inhibitory effect of miR-301a-3p inhibition on NSCLC cells malignant phenotype (p <.05). circ_0008797 attenuated NSCLC prolifearion and metastasis in vivo (p <.05). CONCLUSION circ_0008797 attenuates NSCLC proliferation, metastasis and aerobic glycolysis by sponging miR-301a-3p/SOCS2.
Collapse
Affiliation(s)
- Kahaerjiang Abuduwaili
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Yanli Shen
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Suqiong Lu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Chunling Liu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| |
Collapse
|
12
|
Wang Q, Yan C, Zhang P, Li G, Zhu R, Wang H, Wu L, Xu G. Microarray Identifies a Key Carcinogenic Circular RNA 0008594 That Is Related to Non-Small-Cell Lung Cancer Development and Lymph Node Metastasis and Promotes NSCLC Progression by Regulating the miR-760-Mediated PI3K/AKT and MEK/ERK Pathways. Front Oncol 2021; 11:757541. [PMID: 34858831 PMCID: PMC8632265 DOI: 10.3389/fonc.2021.757541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to explore the circular RNA (circRNA/circ) profile engaged in non-small cell lung cancer (NSCLC) development and metastasis and to investigate potentially key carcinogenic circRNAs related to NSCLC. Methods CircRNA profiles between 10 NSCLC tissues and 10 adjacent tissues and between five NSCLC tissues with lymph node metastasis (LNM) and five NSCLC tissues without LNM were detected by Arraystar Human circRNA Array followed by bioinformatics. Circ_0008594 knockdown, circ_0004293 overexpression, and circ_0003832 overexpression plasmids were transfected into H23 and H460 cells to sort potential oncogenic circRNA. Then circ_0008594 overexpression and knockdown plasmids were transfected, followed by that circ_0008594 knockdown plus miR-760 knockdown plasmids were transfected into these cells. Cell proliferation, apoptosis, invasion, stemness, and pathways were detected. In addition, xenograft mice models were constructed via injecting H23 cells with circ_0008594 overexpression or knockdown to validate the findings. Results A total of 455 dysregulated circRNAs in NSCLC tissues versus adjacent tissues and 353 dysregulated circRNAs in NSCLC tissues with LNM versus those without LNM were discovered. Via cross-analysis, 19 accordant circRNAs were uncovered, among which three candidate circRNAs (circ_0008594, circ_0004293, circ_0003832) were chosen for functional experiments, during which it was observed that circ_0008549 affected H23 and H460 cell proliferation and apoptosis more obviously than circ_0004293 and circ_0003832. Subsequent experiments showed that circ_0008594 promoted H23 and H460 cell proliferation and invasion but affected stemness less and negatively regulated miR-760 via direct binding. Furthermore, miR-760 attenuated the effect of circ_0008549 on regulating H23 and H460 cell functions and the PI3K/AKT and MEK/ERK pathways. In vivo experiments further confirmed that circ_0008549 increased tumor volume, epithelial-mesenchymal transition, and the PI3K/AKT and MEK/ERK pathways while reducing tumor apoptosis and miR-760 NSCLC xenograft models. Conclusion Our study identifies several valuable circRNAs related to NSCLC development and LNM. Furthermore, as a key functional circRNA, circ_0008594 was observed to promote NSCLC progression by regulating the miR-760-mediated PI3K/AKT and MEK/ERK pathways.
Collapse
Affiliation(s)
- Qiushi Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunhua Yan
- Department of Respiratory, Longgang District People's Hospital of Shenzhen, Shenzhen, China.,Department of Respiratory, Longgang District The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Pengfei Zhang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruidong Zhu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanbing Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Libo Wu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Song P, Chen J, Zhang X, Yin X. Construction of competitive endogenous RNA network related to circular RNA and prognostic nomogram model in lung adenocarcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9806-9821. [PMID: 34814370 DOI: 10.3934/mbe.2021481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early researches have revealed that circular RNA (circRNA) had the potential of biomarkers and could affect tumor progression through regulatory networks. However, few research focused on the function of circRNA in lung adenocarcinoma and the regulation mechanism of competitive endogenous RNA. In present study, through differential expression analysis, 10 circRNAs, 98 miRNAs(microRNA) and 2497 mRNAs were screened. Based on the 10 circRNAs and related databases, a competitive endogenous RNA regulatory network (ceRNA network) containing 7 circRNAs, 13 miRNAs and 147 mRNAs was constructed. KEGG and GO analysis suggested that 147 mRNAs were obviously enriched in biological pathway related to LUAD. By constructing a PPI network, 12 hub genes were identified by MCODE. The result of survival analysis showed that 10 hub genes (BIRC5, MKI67, CENPF, RRM2, BUB1, MELK, CEP55, CDK1, NEK2, TOP2A) were significantly related to the survival of LUAD. We randomly divided 483 clinical data into two parts: train set and validation set. The train set was used for Cox regression analysis, 3 prognostic factors (stage, T, CDK1) were screened. The nomogram model was constructed based on stage, T and CDK1. The model was evaluated by ROC curve, calibration chart, Kaplan-Meier (KM) curve and validation set data. The results indicated that the model has good accuracy. Our study elucidated the regulatory mechanism of circRNA in lung adenocarcinoma, and the nomogram model also provided insight for the clinical analysis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Pingping Song
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Jing Chen
- School of Science, Southwest University of Science and Technology, Sichuan 621000, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Xiaofeng Yin
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| |
Collapse
|