1
|
Saranholi BH, França FM, Vogler AP, Barlow J, Vaz de Mello FZ, Maldaner ME, Carvalho E, Gestich CC, Howes B, Banks-Leite C, Galetti PM. Testing and optimizing metabarcoding of iDNA from dung beetles to sample mammals in the hyperdiverse Neotropics. Mol Ecol Resour 2024; 24:e13961. [PMID: 38646932 DOI: 10.1111/1755-0998.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Over the past few years, insects have been used as samplers of vertebrate diversity by assessing the ingested-derived DNA (iDNA), and dung beetles have been shown to be a good mammal sampler given their broad feeding preference, wide distribution and easy sampling. Here, we tested and optimized the use of iDNA from dung beetles to assess the mammal community by evaluating if some biological and methodological aspects affect the use of dung beetles as mammal species samplers. We collected 403 dung beetles from 60 pitfall traps. iDNA from each dung beetle was sequenced by metabarcoding using two mini-barcodes (12SrRNA and 16SrRNA). We assessed whether dung beetles with different traits related to feeding, nesting and body size differed in the number of mammal species found in their iDNA. We also tested differences among four killing solutions in preserving the iDNA and compared the effectiveness of each mini barcode to recover mammals. We identified a total of 50 mammal OTUs (operational taxonomic unit), including terrestrial and arboreal species from 10 different orders. We found that at least one mammal-matching sequence was obtained from 70% of the dung beetle specimens. The number of mammal OTUs obtained did not vary with dung beetle traits as well as between the killing solutions. The 16SrRNA mini-barcode recovered a higher number of mammal OTUs than 12SrRNA, although both sets were partly non-overlapping. Thus, the complete mammal diversity may not be achieved by using only one of them. This study refines the methodology for routine assessment of tropical mammal communities via dung beetle 'samplers' and its universal applicability independently of the species traits of local beetle communities.
Collapse
Affiliation(s)
- Bruno H Saranholi
- Department of Life Sciences, Imperial College London, Ascot, UK
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Filipe M França
- School of Biological Sciences, University of Bristol, Bristol, UK
- Graduate Program in Ecology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Fernando Z Vaz de Mello
- Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Instituto de Biociências, Cuiabá, MT, Brazil
| | - Maria E Maldaner
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade (PPGECB), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Edrielly Carvalho
- Programa de Pós-Graduação Em Entomologia, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Amazonas, Brazil
| | - Carla C Gestich
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Benjamin Howes
- Department of Life Sciences, Imperial College London, Ascot, UK
| | | | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
2
|
Sánchez Herrera M, Forero D, Calor AR, Romero GQ, Riyaz M, Callisto M, de Oliveira Roque F, Elme-Tumpay A, Khan MK, Justino de Faria AP, Pires MM, Silva de Azevêdo CA, Juen L, Zakka U, Samaila AE, Hussaini S, Kemabonta K, Guillermo-Ferreira R, Ríos-Touma B, Maharaj G. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230102. [PMID: 38705182 PMCID: PMC11070269 DOI: 10.1098/rstb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Melissa Sánchez Herrera
- Department of Museum Research and Collections, University of Alabama Museums, Tuscaloosa, AL 35487, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Laboratorio de Zoología y Ecología Acuática (LAZOEA), Biological Sciences Department, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 11132, Colombia
| | - Adolfo Ricardo Calor
- Instituto de Biologia, Laboratório de Entomologia Aquática, Universidade Federal da Bahia, Salvador, 40000-000, Brazil
| | - Gustavo Q. Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas-SP, CEP 13083-970, Brazil
| | - Muzafar Riyaz
- St Xavier's College, Palayamkottai, Tirunelveli, Tamil Nadu, CEP: 40170-115 7 – 627002, India
| | - Marcos Callisto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Genética, Ecologia e Evolução, Pampulha, Belo Horizonte - MG, 31270-901, Brazil
| | - Fabio de Oliveira Roque
- Departamento de Biología, Universidade Federal de Mato Grosso do Sul, Ciudade Universitaria, Pioneiros, Campo Grande, MS, 79070-900, Brazil
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Douglas, Cairns, 4811, Queensland, Australia
| | - Araseli Elme-Tumpay
- Laboratorio de Biodiversidad y Genética Ambiental (BioGeA), Universidad Nacional de Avellaneda, Mario Bravo 1460, CP1870 Piñeyro, Avellaneda, Buenos Aires, Argentina
- Colección Entomológica, Universidad Nacional de San Antonio Abad del Cusco, Gabinete C-338, Pabellón C, Ciudad Universitaria de Perayoc, Cusco, 08003, Peru
| | - M. Kawsar Khan
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ana Paula Justino de Faria
- Instituto de Ciências Biológicas, Universidade Estadual do Piauí, Rua João Cabral - Matinha, Teresina - PI, 64018-030, Brazil
| | - Mateus Marques Pires
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, 95914-014 Brazil
| | - Carlos Augusto Silva de Azevêdo
- Departamento de Biología, Universidade Estadual do Maranhão, Programa em Biodiversidade, Ambiente e Saúde, 65.055-310, Brazil
| | - Leandro Juen
- Instituto de Ciências Biológicas, Universidade Federal do Pará, UFPA, Belém - PA, 66077-830, Brazil
| | - Usman Zakka
- Department of Crop & Soil Science, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Akeweta Emmanuel Samaila
- Department of Agronomy, Federal University of Kashere: Kashere, P.M.B. 0182, Gombe State, Nigeria
| | - Suwaiba Hussaini
- Department of Biological Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Kehinde Kemabonta
- Department of Zoology, University of Lagos: Akoka, Lagos, 100213, Nigeria
| | - Rhainer Guillermo-Ferreira
- Centro de Pesquisas em Entomologia e Biologia Experimental, Universidade Federal do Triangulo Mineiro (UFTM), Uberaba - MG, 38061-500, Brazil
| | - Blanca Ríos-Touma
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Campus UDLAPARK, Quito, Ecuador 170513
| | - Gyanpriya Maharaj
- University of Guyana, Centre for the Study of Biological Diversity, Georgetown, Guyana
| |
Collapse
|